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Abstract. In this paper, we give a O(log copt)-approximation algorithm
for the point guard problem where c,p; is the optimal number of guards.
Our algorithm runs in time polynomial in n, the number of walls of the
art gallery and the spread A, which is defined as the ratio between the
longest and shortest pairwise distances. Our algorithm is pseudopoly-
nomial in the sense that it is polynomial in the spread A as opposed
to polylogarithmic in the spread A, which could be exponential in the
number of bits required to represent the vertex positions. The special
subdivision procedure in our algorithm finds a finite set of potential
guard-locations such that the optimal solution to the art gallery prob-
lem where guards are restricted to this set is at most 3cop:. We use a set
cover cum VC-dimension based algorithm to solve this restricted problem
approximately.

1 Introduction

The art gallery problem addresses the following question [7]: How many guards
are required to guard an art gallery with n walls? This problem was first posed by
Victor Klee in 1973 [8]. Chvatal showed that | % | guards are always sufficient and
occasionally necessary [10]. Since then, numerous variations of this problem have
been studied including mobile guards, guards with limited visibility, guarding
rectilinear polygons, etc., see, e.g., [8,9, 7]. In this paper, we study one version of
the art gallery problem, also known as the point-guard problem. The point-guard
problem involves finding the minimum number of points and their positions so
that guards located at these points cover (i.e. see) every point in the interior of
the art gallery.

Lee and Lin show that the point-guard problem is NP-hard [11]. Eidenbenz,
Stamm and Widmayer prove that even finding a (1 4 ¢)-approximation for this
problem for any e > 0 is NP-hard [4]. They also show that the problem of art
gallery with holes can not be approximated by a polynomial time algorithm
with ratio (45£)Inn for any € > 0, unless NP C TIME(n@U°81°em)) Brodén,
Hammar and Nisson prove that the point-guard problem even for a special class
of art galleries, which are 2-link polygons, is APX-hard [12].




In [5], Ghosh proposes an O(log n)-approximation algorithm for the minimum
vertex-guard problem where guards can be be located only at the vertices of the
art gallery. Gonzalez-Banos and Latombe [3] consider another version of the art
gallery problem in which guards have range and incidence constraints and are
required to cover only the walls of the art gallery. They choose a set of uniformly
randomly selected points from the art gallery as potential guard-locations and
solve this new problem. They argue that their algorithm computes with high
probability a solution whose size is at most a factor O(logn-log (clogn)) times
the size of the optimal solution ¢. In [15], Efrat and Har-Peled consider another
variant of the art gallery problem where guards are restricted to be placed on
the points of a dense grid and propose a randomized algorithm which with
high probability yields the approximation ratio within O(log¢’), where ¢’ is the
optimal solution size for the modified problem. In the same paper [15], Efrat and
Har-Peled propose an exact algorithm for the point-guard problem with running
time at most O((nc)3¢t1)), where is ¢ is the size of the optimal solution. This
is the first known exact solution to the problem, although the running time is
exponential in the size of the optimal solution.

Our result: We give a pseudopolynomial time O(log ¢, )-approximation al-
gorithm for the point-guard problem, where ¢, is the size of the optimal solution
which can be as large as ©(n) in some cases. Our algorithm is pseudopolynomial
in the sense that it is polynomial in the number of walls n of the art gallery and
the spread A of the vertices of the art gallery. The spread of a set of points is
defined as the ratio of the longest and shortest pairwise distances [13,14]. In the
worst case, the spread A could possibly be exponential in the number of bits
required to represent positions of the vertices of the art gallery. To the best of
our knowledge, this is the first pseudopolynomial time algorithm that yields a
solution with a guaranteed approximation ratio.

Our basic approach involves using a special subdivision procedure to obtain
a finite set of potential guard-locations. We then consider a new problem of
choosing the minimum number of guards from this finite set. We devise our
algorithm such that the new problem has an optimal solution at most three
times the optimal solution to the original point-guard problem. We solve the
new problem using a set cover cum VC-dimension-based algorithm. Our overall
algorithm can be summarized in the following 3 steps:

— Step 1: Generate an initial triangulation of the art gallery based on the
visibility cell decomposition.

— Step 2: Subdivide the initial triangulation such that each triangle in the
final triangulation satisfies a special property — the region that is visible to
any point in a triangle is always a subset of the region simultaneously visible
to the three vertices of the triangle.

— Step 3: Formulate the set cover problem and solve it approximately using
the VC-dimension-based algorithm of Gonzélez-Banos and Latombe [3].



2 Basic Terminology

Most of the definitions and notation we present in this section have been bor-
rowed from [1,2]; however, we reformulate some of these and define new ones
for our convenience. Most of the notions we describe below are illustrated in
Figure 1.

For the sake of simplicity, we consider the case of an art gallery without holes.
At the end of the paper, we comment about the case of an art gallery with holes.
An art galley without holes can be represented as a simple polygon. Here, we
consider the boundary also as a part of the polygon. Let P be a simple polygon
with n vertices. Some of these are reflex vertices that subtend an angle greater
than 180° inside P. We say two points in P see each other if the line segment
between them does not intersect with the exterior of P.

The wvisibility polygon V(x) for any point « € P, is the polygon consisting of
all the points in P that are visible from z. Note that some of the edges of V()
coincide with those of the original polygon P and some are newly introduced
as shown in Figure 1(a). A new edge is introduced at a reflex vertex of P that
blocks the view of x. We call this reflex vertex a blocking reflex vertex. The other
end-point of the new edge which lies on the boundary of P is referred to as an
image of x through the blocking reflex vertex. To remove any ambiguities, we
assume that for P and V(z), no two consecutive edges are collinear.

For any point = € P, we say that x sees an edge of P, if it sees a point on
the edge. If = cannot see either of the end-points of a visible edge of P, we say
that = sees the edge partially. We call the corresponding edge of P a partial edge
with respect to x. We say that = sees a visible edge of P non-partially, if it sees
at least one of its end-points. We call the corresponding edge of P a non-partial
edge with respect to x. If we join every vertex of V() to x, we get a triangulation
of V(z). We call each triangle as a visibility sector of x. The edge of a visibility
sector that is a part of an edge of P is referred to as a base of the visibility
sector. Depending upon the type of the edge of P corresponding to the base of
a visibility sector, we classify the visibility sector into non-partial-edge sector or
partial-edge sector.

3 Initial Triangulation using Visibility Cell
Decomposition

In this section, we define a particular subdivision of the polygon — the wisibility
cell decomposition. Then we show how to triangulate this subdivision to generate
the initial triangulation in Step 1 of our algorithm.

The wisibility cell decomposition of P is a subdivision induced by visibility
polygons of all the vertices of P. We call each component of the subdivision a
visibility cell. We state without proofs the following properties of the visibility
cell decomposition that are useful both in the construction and analysis of our
algorithm. We refer interested readers to the papers by Bose et al. [1] and Guibas
et al. [2] for further details.
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Fig. 1. Visibility polygon and visibility sectors

— Each visibility cell is a convex polygon.

— The total number of visibility cells in the visibility cell decomposition is
O(n?).

— By definition, any two points in a visibility cell see the same set of vertices
of P. Furthermore any two points in the same visibility cell see the same set
of non-partial edges and the same set of partial edges of P.

Step 1 of our algorithm can be summarized as follows:
Construct the visibility cell decomposition of the polygon. Triangulate each
visibility cell simply by joining its one particular vertex to every other vertex.

4 Further Subdivision of the Initial Triangulation

In this section, we describe Step 2 of our algorithm. We give a procedure to
subdivide the initial triangulation in such a way that each triangle in the final
triangulation satisfies a special visibility property — the region that is visible to
any point in a triangle is covered by the visibility polygons of the three vertices
of the triangle.

4.1 Vertex-Visibility Property and Vertex-Pair-Visibility Property

We first define the desirable property which each triangle in the final triangula-
tion is required to satisfy.

Definition 1. Let Aabe be a triangle in the polygon P. We say Aabe satisfies
the vertex visibility property, if for any point x € Aabe, V(x) C V(a)UV (b)UV (c).

Covering the visibility polygon of a point is equivalent to covering every
visibility sector of the point. This motivates the following definition.



Definition 2. A triangle in a visibility cell satisfies the vertex-visibility prop-
erty with respect to a particular edge of the polygon, if the corresponding visi-
bility sector of any point in the triangle is a subset of the union of the visibility
polygons of the vertices of the triangle.

The vertex-visibility property is not directly useful in the construction of our
algorithm. We define a more convenient property.

Definition 3. A triangle in a wvisibility cell satisfies the vertex-pair-visibility
property with respect to a particular edge of the polygon, if the visibility sectors
of any two vertices of the triangle overlap on the edge.

Consider the images of two points in a visibility cell through a blocking reflex
vertex on an edge of the polygon. We call the portion of the edge between the
two images as a span of the two points corresponding to the blocking reflex
vertex. Note that the image of a point on the segment joining these two points
lies in the span by one-to-one mapping. Now consider the images of the three
vertices of a triangle in a visibility cell through a blocking reflex vertex on an
edge of the polygon. One of the three images lies between the other two. We call
the portion of the edge between the two extreme images as a span of the triangle
through the blocking reflex vertex.

Lemma 1. For any point in a triangle in a visibility cell, its image through a
blocking reflex vertex always lies in the span of the triangle through the blocking
reflex vertex.

Proof. The image of any point on a segment lies in the span of the two endpoints
of the segment corresponding to a blocking vertex. Thus, the image of any point
on the perimeter of a triangle lies in the span of the triangle. Now consider any
point in the interior of the triangle. The image of this point is same as the image
of the point on the perimeter of the triangle where the line segment joining this
point, the blocking reflex vertex and its image intersects the perimeter. Hence
the image of any point in the triangle is in its span. O

Theorem 1. A triangle in a wvisibility cell satisfies the vertex-pair-visibility as
well as the vertex-visibility property with respect to a mon-partial edge.

Proof. Let Aabc be a triangle in a visibility cell C'. Let e be a non-partial edge.
As we have already seen, at least one of the end-points of a non-partial edge is
visible from any point in a visibility cell. Depending on whether one or both the
end-points of a non-partial edge are visible, we make two cases and deal with
each case separately.

Case 1: Both the end-points of e are visible from any point in C. In this case,
by definition, Aabc satisfies the vertex-pair-visibility property. Let u and v be
the end-points of e. Consider the convex hull of a, b, ¢, v and v. Since Aabc is
on one side of e, line segment wv must be one of the edges of the convex hull.
Therefore, the convex hull can also be formed by considering the union of Aabc
and the visibility sectors of a, b and c. Note that the convex hull is a subset



of V(a)UV (b)UV (c) and the visibility sector of any point x € Aabc is a subset
of this convex hull. Therefore, Aabc also satisfies the vertex-visibility property
with respect to e.

Case 2: In this case, only one end-point of e is visible from any point in C'. Let
u be the visible end-point. Let r be a blocking reflex vertex. Again by definition
Aabce satisfies the vertex-pair-visibility property because v is a common visible
point. Now, consider any point x in Aabc. The visibility sector of x with respect
to e consists of two triangles, Azur and Aurz’, where z’ is the image of x
through r. By similar arguments as in the first case, we can prove that Azur is
a subset of V(a)UV(b)UV (c). By Lemma 1, 2’ lies in the span of the image of
Aabc through r. Thus, at least one of a, b or ¢ cover Arux’. Therefore, Aabc
satisfies the vertex-visibility property with respect to e. O

Theorem 2. If a triangle in a visibility cell satisfies the vertex-pair-visibility
property with respect to a partial edge e, then it also satisfies the vertex-visibility
property with respect to e.

Proof. Let Aabc be a triangle in a visibility cell C' such that it satisfies the
vertex-pair-visibility property with respect to the partial edge e. Let r1 and 79
be the two blocking reflex vertices. Consider vertices a and b. The visibility
sectors of a and b overlap on e. Let a; and as be images of a through r; and ry
respectively. Let b; and by be images of b through r; and 79 respectively. Since
araz and byby overlap on e, at least one of by and by lies in between a; and as.
Since e is a partial edge, a1b; and asbs do not overlap on e. In other words, the
spans of a and b with respect to 1 and o do not overlap on e. By extending this
argument to the three vertices, a, b and ¢, the spans of any two vertices with
respect to 71 and r do not overlap. This implies that the spans of Aabc also do
not overlap on e because if they do, the previous condition of pairwise vertices
having non-overlapping spans is violated for at least one pair. The portion of e
that is simultaneously visible to a, b and ¢ consists of the spans of Aabc through
r1 and 79 and the patch between the two spans. By Lemma 1, for any point = in
Aabe, the two images of x through r1 and 7z lie in the spans of Aabe through
r1 and ro respectively. Thus, the portion of e that is visible to z is contained in
the portion that is visible to a, b and c. Therefore, the visibility sector of x is a
subset of V(a)UV (b)UV (c). O

The theorem we prove below is useful in the analysis of the algorithm. Let
subtriangle be a triangle that is contained within a triangle.

Theorem 3. If a triangle in a visibility cell satisfies the vertex-pair-visibility
property with respect to a partial edge e, then any subtriangle also satisfies the
vertex-pair-visibility property with respect to e.

Proof. Let Aabc be a triangle in a visibility cell C' such that it satisfies the
vertex-pair-visibility property with respect to the partial edge e. Let r1 and 79
be the two blocking reflex vertices. We already proved in the proof of Theorem 2
that the spans of Aabc through r1 and ro do not overlap on e because it satisfies



the vertex-pair-visibility property. For any two points z and y in Aabc, the spans
of x and y through r; and 2 do not overlap on e because they are contained in
the spans of Aabe through r1 and ro. Therefore, the visibility sectors of x and
y overlap on e. Therefore, any Axyz in Aabc satisfies the vertex-pair-visibility
property. O

The above theorem allows us to further subdivide the visibility cell without
affecting already existent vertex-pair visibility property with respect to a partial-
edge visibility sector.

4.2 Further Subdivision

In this subsection, we give a procedure to further subdivide the initial triangu-
lation obtained in Step 1 of our algorithm. The subdivision procedure described
below generates the final triangulation where every triangle satisfies the vertex-
visibility property. This property is required so that we can reduce the art gallery
problem to a problem with guaranteed approximation ratio. Using the results of
Theorem 1 and Theorem 2, we achieve this by developing a subdivision proce-
dure which is based on a stronger condition, the vertex-pair-visibility property.

First we define a notion that is useful in the description of our algorithm. Let
a and b be two points in a visibility cell such that the visibility sectors of a and
b do not overlap on a partial edge. Let 1 and ro be the corresponding blocking
reflex vertices. Consider the convex hull of a, b, r; and ro. We call a triangle
obtained by taking set difference between the convex hull and the union of the
visibility sectors of a and b as a dark triangle of segment ab. An example of a
dark triangle is shown in Figure 2(a).

Step 2 of our algorithm can be summarized as follows.

For every Aabc in the initial triangulation obtained in Step 1, repeat the
following procedure:

1. Construct a set S of partial edges for which Aabc does not satisfy the vertex-
pair-visibility property. Repeat the following procedure for every edge e € S:
(a) Construct a dark triangle of every edge of Aabc.

(b) For each dark triangle whose interior is not disjoint with Aabe, invoke
SUBDIVIDE-DARK-TRIANGLE.

(¢) Intersect with Aabe, the subdivisions of all such dark triangles on which
the function SUBDIVIDE-DARK-TRIANGLE is invoked in the above
step to generate a new subdivision of Aabc.

2. Intersect all the subdivisions of Aabc corresponding to every edge e € S to
generate the final subdivision. Triangulate the final subdivision in the similar
way as in Step 1 of our algorithm and return the final triangulation of Aabe.

Function SUBDIVIDE-DARK-TRIANGLE:

Input: A dark triangle Aaob corresponding to the two blocking reflex vertices
r1 and ro

Procedure: Let a1b; and asbs be the two spans of ab through r; and ry
respectively on the partial edge. Construct a line joining the reflex vertex ro and



the image a1 of a through r; and another line joining the reflex vertex r; and
the image ba of b through 72. Depending upon whether the two lines intersect
inside or outside Aaob, choose one of the following two steps.

(Case 1) The two lines meet outside Aaob : Return the new subdivision of
Aaob induced by the two lines (Figure 2(a)). Terminate the function.

(Case 2) The two lines meet in Aaob : Return the new subdivision of Aaob
without Aa’o’'t’/, where o' is the point of intersection of the two lines, and o’
and b’ are the points of intersection of the two lines with the segment ab.
Check if Aa’o’'b’ satisfies the vertex-pair-visibility property. If it does not, in-
voke SUBDIVIDE-DARK-TRIANGLE on Ad'o'V. (Figure 2(b))

by

Fig.2. Aaob is a dark triangle. Two cases in SUBDIVIDE-DARK-TRIANGLE:
(a)lines air2 and bar1 meet outside Aaob (b) lines air2 and beri meet in Aaob

As a result of Theorem 1 and Theorem 2, in our subdivision procedure, we
need to subdivide a triangle only if it does not satisfy the vertex-pair-visibility
property with respect to a partial edge. The result of our subdivision procedure
is the final triangulation where every triangle satisfies the vertex-pair visibility
property and in turn, the vertex-visibility property. Now we prove this result.

As we have already mentioned, using the results of Theorem 1 and Theorem 2,
we check whether a triangle in the initial triangulation satisfies the vertex-pair-
visibility with respect to partial edges only. As a result of Theorem 3, the sub-
division procedure of a triangle with respect to one edge is ‘independent’ of the
subdivision procedure with respect to another edge. This allows us to subdivide
a triangle in the edge-by-edge fashion.



Lemma 2. Consider the partial-edge visibility sector of a point in a visibility
cell. Any triangle that lies in the visibility sector as well as the wvisibility cell
always satisfies the vertex-pair-visibility property.

Proof. Let x be a point in a visibility cell C'. Let r1 and 72 be the blocking reflex
vertices corresponding to the partial edge. Let 1 and xo be the images of point
x through r1 and ro respectively. Any point a that lies in the visibility sectors of
x as well as in the same visibility cell C, sees the line segment x1x5. Therefore,
by definition, any triangle that lies in the visibility sector of x as well as in C
satisfies the vertex-pair-visibility property. O

Let Aabc be a triangle in the initial triangulation. Suppose that it does not
satisfy the vertex-pair-visibility property with respect to a partial edge. Consider
the convex hull of a, b, ¢, 71 and ro. The convex hull can also be obtained by
taking union of the visibility sectors of a, b and ¢ and the dark triangles of all the
edges of Aabc. By Lemma 2, the portions of Aabc that lie in the visibility sector
of any of the vertices satisfies the vertex-pair-visibility property. The remaining
part of Aabe is a subset of the union of the dark triangles. Therefore, in our
subdivision procedure in Step 2, we just subdivide the dark triangles.

Now we prove correctness of the function SUBDIVIDE-DARK-TRIANGLE
with reference to Figure 2

Theorem 4. In the first case, the subdivision of Naob satisfies the vertex-pair-
visibility property.

Proof. Consider line a17s. It subdivides Aaob into two part. a; is always visible
from any point in one part. Therefore that always satisfies the vertex-pair visi-
bility property. Similarly line by subdivides Aaob in two parts out of which one
part always satisfies the vertex-pair-visibility property because by is the common
visible point from that part. In the first case lines airo and bor; meet outside
Aabe. Both the parts of mentioned above that satisfy the vertex-pair-visibility
property cover Aaob in the first case. Therefore, the subdivision of Aaob satisfies
the vertex-pair-visibility property. O

Theorem 5. In the second case, the subdivision of Naob except Na’'o'b satisfies
the vertex-pair-visibility property.

The proof of the above theorem is similar to the proof of Theorem 4. Aa’o’V/
may not satisfy the vertex-pair-visibility property. In that case, we subdivide
Ad'0'b by again invoking the function SUBDIVIDE-DARK-TRIANGLE. The
first case is the termination case for the recursion in SUBDIVIDE-DARK-TRIANGLE.
In the next section, we show that SUBDIVIDE-DARK-TRIANGLE indeed ter-
minates. Thus, subdivision generated by SUBDIVIDE-DARK-TRIANGLE al-
ways satisfies the vertex-pair-visibility property.

The function SUBDIVIDE-DARK-TRIANGLE in the subdivision procedure
described above is recursive. Here, we address the question after how many steps
this recursion ends. We define spread A of the vertices of the art gallery as the
ratio of the longest and shortest pairwise distances [13,14]. Now we prove the
following theorem.



Theorem 6. The recursive function SUBDIVIDE-DARK-TRIANGLE ends in
O(AQ) steps.

Proof. Let L be the longest and let € be the shortest pairwise distances among
the vertices of the art gallery. Thus, A = L/e. The length of each subdivision
of the partial edge at the end of the recursive procedure is at most €. Since the
length of any partial edge can be at most L, the total number of subdivisions
does not exceed A. a

5 Set Cover Formulation and Approximate Solution

In this section, we describe Step 3 of our algorithm. We choose all the vertices
of the final triangulation obtained in Step 2 as the potential guard-locations and
formulate the set cover problem. The set cover problem is then solved approxi-
mately using a VC-dimension-based algorithm.

Step 3 of our algorithm can be summarized in the following way:

1. Construct a set G consisting of all the vertices of the final triangulation
obtained in Step 2 of our algorithm. Let |G| = m.

2. Construct the visibility polygon for every g; € G and generate the new
subdivision of the polygon. Enumerate all the cells in the new subdivision
and group them in the set X = {1,2,..,1}. For each g; € G, construct a
set R; of cells visible from g;, that is, R; = {z € X|z € V(g;)}. Build the
set family, R = {Ry, Ra..., R;,}. Group X and R together to form the set
system (X, R).

3. Invoke the function SET-COVER on the set system (X, R) to obtain a near-
optimal covering of X from the set family R.

The function SET-COVER used in the above procedure is based on the
algorithm proposed by Bronnimann and Goodrich [6] for finding set covers for
set systems with finite VC-dimension. Here, we do not give details of the function
SET-COVER. Instead, we refer interested readers to [3] for further details.

6 Analysis of the Algorithm

In this section, we analyze the bound on the approximation ratio and running
time of our algorithm.

6.1 Bound on the Approximation Ratio of Our Algorithm

Consider the set system (X, R) that we construct in Step 3 of our algorithm. Let
T, where € X, be a set consisting of all the sets in R that contain . We define
the dual set system (Y,S) of (X,R) by setting Y = R and S = {T,|z € X}
[6,3]. Y corresponds to the set of candidate locations for guards. An element
in S corresponds to a cell and is a set of candidate guard-locations that are



visible from every point in the cell. We can also write this dual set system as
(G,{GNV(z) | x € P}), where G consists of the set of all candidate guard-
locations. Valtr showed that the VC-dimension of the more general set system
(P,{PNV(z) | x € P}) is bounded by 23 [16]3. Using the definition of the VC-
dimension it is easy to prove that the VC-dimension of the dual set system (Y, S)
is also bounded by 23.

The result from [6] implies that it is possible to compute an approximate solu-
tion to the set cover problem with the approximation ratio O(dlog(dc)), where d
is the VC-dimension and c is the size of the optimal solution. The constant bound
on the VC-dimension in this case implies that we obtain O(log ¢,p:)-approximate
solution, where ¢, is the size of the optimal solution. c,,+ can be as large as
O(n) in some cases.

6.2 Analysis of the Running Time of the Algorithm

Theorem 7. The running time of our algorithm is polynomial in the number
of walls, n and the spread A of the vertices of the art gallery.

Proof. Here we provide only the sketch of the proof. In Step 1, the initial tri-
angulation can be generated in O(n?) time and consists of O(n*) triangles [1,
2]. In Step 2, for each triangle in the initial triangulation, we can check in O(n)
time whether it satisfies the vertex-pair visibility property. In the worst case,
the recursive subdivision procedure for each triangle with respect to a partial
edge may run in O(A) time as shown in Theorem 6 and may generate O(A) line
segments to form the subdivision. This ensures that the number of triangles in
the final subdivision is polynomial in n and A. In Step 3, SET-COVER runs in
O(|X]) time [6, 3], where | X| is the total number of cells. O

A can be at most exponential in the input size. Thus, our algorithm runs in
pseudopolynomial time.

6.3 Art Gallery with holes

When the art gallery has holes, our algorithm can still be used. Guibas et al. [2]
extend the visibility cell decomposition to a polygon with holes; except that
in this case, the vertices of the holes also act as the blocking vertices. The
subdivision procedure of our algorithm is still valid in this case. Valtr prove
that for this case of an art gallery with holes the VC-dimension is bounded by
O(log h), where h is the number of holes [16]. Thus, in this case our algorithm
yields a solution with the approximation ratio O(log h-log(cop: logh)).

% In the earlier draft of this paper, we had used O(logn) bound on the VC-dimension.
Csaba Toth pointed us to the constant VC-dimension bound in [16]



7 Conclusions

In this paper, we have presented a pseudopolynomial time algorithm for the
point guard problem with guaranteed O(logn) approximation ratio. The immi-
nent question is whether we can improve the running time of our algorithm. An
interesting topic for future research is to investigate whether our subdivision pro-
cedure can be applied to other variants of the art gallery problems, particularly
for the case when guards have limited range.
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