
c© The Author 2006. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oupjournals.org

doi:10.1093/comjnl/bxm033

The Bidimensionality Theory and
Its Algorithmic Applications∗

Erik D. Demaine1, MohammadTaghi Hajiaghayi1

1MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge, MA 02139, USA.

Email: {edemaine,hajiagha}@mit.edu

This paper surveys the theory of bidimensionality. This theory characterizes a
broad range of graph problems (“bidimensional”) that admit efficient approximate
or fixed-parameter solutions in a broad range of graphs. These graph classes
include planar graphs, map graphs, bounded-genus graphs, and graphs excluding
any fixed minor. In particular, bidimensionality theory builds on the Graph Minor
Theory of Robertson and Seymour, by extending the mathematical results and
building new algorithmic tools. Here we summarize the known combinatorial and
algorithmic results of bidimensionality theory, with the high-level ideas involved
in their proof; we describe the previous work on which the theory is based and/or

extends; and we mention several remaining open problems.
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1. INTRODUCTION

The theory of bidimensionality, developed recently in
a series of papers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
provides general techniques for designing efficient fixed-
parameter algorithms and approximation algorithms
for NP-hard graph problems in broad classes of
graphs. This theory applies to graph problems that are
bidimensional in the sense that (1) the solution value
for the k × k grid graph (and similar graphs) grows
with k, typically as Ω(k2), and (2) the solution value
goes down when contracting edges and optionally when
deleting edges in the graph. Examples of such problems
include feedback vertex set, vertex cover, minimum
maximal matching, face cover, a series of vertex-removal
parameters, dominating set, edge dominating set, R-
dominating set, connected dominating set, connected
edge dominating set, connected R-dominating set,
unweighted TSP tour (a walk in the graph visiting all
vertices), and chordal completion (fill-in).

Bidimensional problems have many structural prop-
erties. For example, any graph in an appropriate minor-
closed class has treewidth bounded above in terms of the
problem’s solution value, typically by the square root
of that value. These properties lead to efficient—often
subexponential—fixed-parameter algorithms, as well as
polynomial-time approximation schemes, for bidimen-
sional problems in many minor-closed graph classes.

∗A preliminary version of this paper appeared in Proceedings
of the 12th International Symposium on Graph Drawing, LNCS
3383, 2004, pages 517–533.

The bidimensionality theory unifies and improves
several previous results. The theory is based on
algorithmic and combinatorial extensions to parts of the
Robertson-Seymour Graph Minor Theory, in particular
initiating a parallel theory of graph contractions. The
foundation of this work is the topological theory of
drawings of graphs on surfaces.

This survey is organized as follows. Section 2
defines the various graph classes of increasing generality
for which bidimensionality theory has been developed.
Section 3 describes several structural properties of
graphs in these classes, in particular from Graph
Minor Theory, that form the basis of bidimensionality.
Section 4 defines bidimensional problems, and gives
some examples. Section 5 describes one of the main
structural properties of bidimensionality, namely, that
the treewidth is bounded in terms of the parameter
value. Sections 6–10 describe several results in
bidimensionality theory: separator theorems, bounds
on local treewidth, fixed-parameter algorithms, and
polynomial-time approximation schemes. Throughout,
we give the high-level proof ideas, in particular how the
various results fit together. Section 11 discusses the
main remaining open problems in the area.

2. GRAPH CLASSES

In this section, we introduce several families of graphs,
each playing an important role in both the Graph
Minor Theory and the bidimensionality theory. Refer to
Figure 1. All of these graph classes are generalizations
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of planar graphs, which are well-studied in algorithmic
graph theory. Unlike planar graphs and map graphs,
every other class of graphs we consider can include any
particular graph G; of course, this inclusion requires a
bound or excluded minor large enough depending on G.
This feature distinguishes this line of research from
other work considering exclusion of particular fixed
minors, e.g., K3,3, K5, or K6.

apex−minor−free

H−minor−free

general

planar

map graphs

single−crossing−minor−freebounded−genus

FIGURE 1. Interesting classes of graphs. Arrows point
from more specific classes to more inclusive classes.

2.1. Definitions of Graph Classes

The first three classes of graphs relate to embeddings
on surfaces. A graph is planar if it can be drawn in the
plane (or the sphere) without crossings. A graph has
(Euler) genus at most g if it can be drawn in a surface
of Euler characteristic g. For orientable surfaces, the
Euler genus is twice the number of handles (i.e., twice
the “usual” genus), and for nonorientable surfaces, the
Euler genus is the number of crosscaps. A class of
graphs has bounded genus if every graph in the class
has genus at most g for a fixed g.

Given an embedded planar graph and a two-coloring
of its faces as either nations or lakes, the associated
map graph has a vertex for each nation and an edge
between two vertices corresponding to nations (faces)
that share a vertex. The dual graph is defined
similarly, but with adjacency requiring a shared edge
instead of just a shared vertex. Map graphs were
introduced by Chen, Grigni, and Papadimitriou [11] as a
generalization of planar graphs that can have arbitrarily
large cliques. Thorup [12] gave a polynomial-time
algorithm for constructing the underlying embedded
planar graph and face two-coloring for a given map
graph, or determining that the given graph is not a
map graph.

We view the class of map graphs as a special case of
taking fixed powers of a family of graphs. The kth power
Gk of a graph G is the graph on the same vertex set
V (G) with edges connecting two vertices in Gk precisely
if the distance between these vertices in G is at most k.

For a bipartite graph G with bipartition V (G) = U∪W ,
the half-square G2[U ] is the graph on one side U of the
partition, with two vertices adjacent in G2[U ] precisely
if the distance between these vertices in G is 2. A graph
is a map graph if and only if it is the half-square of some
planar bipartite graph [11]. In fact, this translation
between map graphs and half-squares is constructive
and takes polynomial time.

The next three classes of graphs relate to excluding
minors. Given an edge e = {v, w} in a graph G, the
contraction of e in G is the result of identifying vertices
v and w in G and removing all loops and duplicate
edges. A graph H obtained by a sequence of such edge
contractions starting from G is said to be a contraction
of G. A graph H is a minor of G if H is a subgraph
of some contraction of G. A graph class C is minor-
closed if any minor of any graph in C is also a member
of C. A minor-closed graph class C is H-minor-free if
H /∈ C. More generally, we use the term “H-minor-free”
to refer to any minor-closed graph class that excludes
some fixed graph H.

A single-crossing graph is a minor of a graph that
can be drawn in the plane with at most one pair of
edges crossing. Note that a single-crossing graph may
not itself be drawable with at most one crossing pair
of edges; see [2]. Such graphs were first defined by
Robertson and Seymour [13]. A minor-closed graph
class is single-crossing-minor-free if it excludes a fixed
single-crossing graph.

An apex graph is a graph in which the removal of
some vertex leaves a planar graph. A graph class is
apex-minor-free if it excludes some fixed apex graph.
Such graph classes were first considered by Eppstein
[14, 15], in connection to the notion of bounded local
treewidth as described in Section 7.

The next section describes strong structural proper-
ties of the last three classes of graphs (minor-excluding
classes) in terms of the first two classes of graphs
(embeddable on surfaces) and other ingredients.

3. STRUCTURAL PROPERTIES

Graphs from single-crossing-minor-free and H-minor-
free graph classes have powerful structural properties
from the Graph Minor Theory. First we need to define
treewidth, pathwidth, and clique sums.

3.1. Background

The notion of treewidth was introduced by Robertson
and Seymour [16]. To define this notion, first we
consider a representation of a graph as a tree, called
a tree decomposition. Precisely, a tree decomposition of
a graph G = (V,E) is a pair (T, χ) in which T = (I, F )
is a tree and χ = {χi | i ∈ I} is a family of subsets of
V (G) such that

(i)
⋃

i∈I χi = V ;
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(ii) for each edge e = {u, v} ∈ E, there exists an i ∈ I
such that both u and v belong to χi; and

(iii) for all v ∈ V , the set of nodes {i ∈ I | v ∈ χi}
forms a connected subtree of T .

To distinguish between vertices of the original graph
G and vertices of T in the tree decomposition, we call
vertices of T nodes and their corresponding χi’s bags.
The width of the tree decomposition is the maximum
size of a bag in χ minus 1. The treewidth of a graph G,
denoted tw(G), is the minimum width over all possible
tree decompositions ofG. A tree decomposition is called
a path decomposition if T = (I, F ) is a path. The
pathwidth of a graphG, denoted pw(G), is the minimum
width over all possible path decompositions of G.

The notion of clique sums goes back to character-
izations of K3,3-minor-free and K5-minor-free graphs
by Wagner [17] and serves as an important tool in the
Graph Minor Theory. Suppose G1 and G2 are graphs
with disjoint vertex sets and let k ≥ 0 be an inte-
ger. For i = 1, 2, let Wi ⊆ V (Gi) form a clique
of size k and let G′i be obtained from Gi by deleting
some (possibly no) edges from the induced subgraph
Gi[Wi] with both endpoints in Wi. Consider a bijec-
tion h : W1 →W2. We define a k-sum G of G1 and G2,
denoted by G = G1 ⊕k G2 or simply by G = G1 ⊕G2,
to be the graph obtained from the union of G′1 and G′2
by identifying w with h(w) for all w ∈W1. The images
of the vertices of W1 and W2 in G1⊕k G2 form the join
set. Note that each vertex v of G has a corresponding
vertex in G1 or G2 or both. It is also worth mentioning
that ⊕ is not a well-defined operator: it can have a set
of possible results.

3.2. Structure of Single-Crossing-Minor-Free
Graphs

The structure of single-crossing-minor-free graphs can
be described as follows:

Theorem 3.1. [13] For any fixed single-crossing
graph H, every H-minor-free graph can be obtained by
a sequence of k-sums, 0 ≤ k ≤ 3, of planar graphs
and graphs of bounded treewidth, where the bound on
treewidth depends on H.

This theorem generalizes characterizations of K3,3-
minor-free and K5-minor-free graphs [17]. A graph is
K3,3-minor-free if and only if it can be obtained by k-
sums, 0 ≤ k ≤ 2, of planar graphs and K5. A graph
is K5-minor-free if and only if it can be obtained by k-
sums, 0 ≤ k ≤ 3, of planar graphs and of V8 (the length-
8 cycle C8 together with four edges joining diametrically
opposite vertices).

This structural property of single-crossing-minor-free
graphs has since been strengthened to ensure that the
summands are minors of the original graph and to
provide algorithms for finding the decomposition:

Theorem 3.2. [2] For any fixed single-crossing graph
H, there is an O(n4)-time algorithm to compute, given
an H-minor-free graph G, a decomposition of G as
a sequence of k-sums, 0 ≤ k ≤ 3, of planar graphs
and graphs of bounded treewidth (where the bound on
treewidth depends on H), each of which is a minor of G.

3.3. Structure of H-Minor-Free Graphs

The structure of H-minor-free graphs is described by
a deep theorem of Robertson and Seymour [18]. This
theorem is the heart of the Graph Minors series of
papers, in particular forming the basis of the proof of
Wagner’s Conjecture in [19]. Intuitively, the theorem
says that, for every graph H, every H-minor-free graph
can be expressed as a “tree structure” of pieces, where
each piece is a graph that can be drawn in a surface
in which H cannot be drawn, except for a bounded
number of “apex” vertices and a bounded number of
“local areas of non-planarity” called vortices. Here the
bounds depend only on H.

Roughly speaking, we say that a graph G is h-almost
embeddable in a surface S if there exists a set X of size
at most h of vertices, called apex vertices or apices, such
that G−X can be obtained from a graph G0 embedded
in S by attaching at most h graphs of pathwidth at
most h to G0 within h faces in an orderly way. More
precisely, a graph G is h-almost embeddable in S if there
exists a vertex set X of size at most h (the apices) such
that G−X can be written as G0∪G1∪· · ·∪Gh, where

(i) G0 has an embedding in S;
(ii) the graphs Gi, called vortices, are pairwise disjoint;
(iii) there are faces F1, . . . , Fh of G0 in S, and there

are pairwise disjoint disks D1, . . . , Dh in S, such
that for i = 1, . . . , h, Di ⊂ Fi and Ui := V (G0) ∩
V (Gi) = V (G0) ∩Di; and

(iv) the graph Gi has a path decomposition (Bu)u∈Ui of
width less than h, such that u ∈ Bu for all u ∈ Ui.
The sets Bu are ordered by the ordering of their
indices u as points along the boundary cycle of
face Fi in G0.

An h-almost embeddable graph is apex-free if the set X
of apices is empty.

Now, the deep result of Robertson and Seymour is as
follows:

Theorem 3.3. [18] For every graph H, there exists
an integer h ≥ 0 depending only on |V (H)| such that
every H-minor-free graph can be obtained by at most
h-sums of graphs that are h-almost-embeddable in some
surfaces in which H cannot be embedded.

In particular, if H is fixed, any surface in which H
cannot be embedded has bounded genus. Thus, the
summands in the theorem are h-almost-embeddable in
bounded-genus surfaces.

As stated in [20], the proof of this theorem in [18]
in fact establishes the following stronger result. An
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explicit proof is also given in [21]. The additional
structure provided by this theorem is useful for some
mathematical and algorithmic results.

Theorem 3.4. The clique-sum decomposition of
Theorem 3.3, written as G1 ⊕ G2 ⊕ · · · ⊕ Gk, has the
additional property that the join set of each clique-sum
between G1 ⊕G2 ⊕ · · · ⊕Gi−1 and Gi is a subset of the
apices in Gi. Furthermore, the join set of each clique-
sum involving piece Gj contains at most three vertices
from the bounded-genus part of Gj.

Recently, a polynomial-time algorithm has been
developed that computes the decomposition guaranteed
by Theorem 3.4, for fixed H [21]. The same
paper proves another algorithmic result for structural
decomposition of H-minor-free graphs (an existential
version of which is proved in [20]):

Theorem 3.5. [21, Theorem 3.1] For a fixed
graph H, there is a constant cH such that, for any
integer k ≥ 1 and for every H-minor-free graph G, the
vertices of G (or the edges of G) can be partitioned into
k + 1 sets such that any k of the sets induce a graph of
treewidth at most cHk. Furthermore, such a partition
can be found in polynomial time.

Proof idea. We use Theorem 3.4 to decompose the
graph G. In each piece, we partition the bounded-
genus part according to layer numbers in a breadth-first
search, treated modulo k + 1. (This idea of layerwise
partition goes back to Baker’s approach for PTASs in
planar graphs [22].) Vortices are easy to handle because
they have bounded pathwidth. Apices are easy to
handle because they are bounded in number—indeed,
the apices could be in all sets in the partition of a
piece, and still any k sets would induce a graph of
bounded treewidth. This latter fact is crucial for joining
pieces across clique sums, because each join set consists
entirely of apices in the child, so the child can inherit
the partition of the join vertices from the parent. More
care is required for edge partitions.

This theorem has several applications to approxima-
tion algorithms, as detailed in [21]. For example, we
obtain a simple 2-approximation to vertex coloring of
H-minor-free graphs as follows. Decompose the ver-
tices of the H-minor-free graph into k = 2 bounded-
treewidth graphs; then optimally color each piece via
dynamic programming; and then combine the colorings
by using a disjoint color set for each piece. The result-
ing coloring uses at most twice the optimal number of
colors, because the optimal coloring of each piece is a
lower bound for the original graph. A similar approach
leads to constant-factor approximations for many min-
imization and maximization problems, in some cases
even leading to polynomial-time approximation schemes
(PTASs). In addition, the paper establishes a constant-
factor approximation to treewidth, and approximation

to half-integral multicommodity flow, in H-minor-free
graphs.

3.4. Structure of Apex-Minor-Free Graphs

Apex-minor-free graph classes are an important
subfamily of H-minor-free graph classes. The general
structural theorem for H-minor-free graphs applies in
this context as well. However, reductions developed in
[6] suggest that the decomposition can be restricted to
a particular form in the apex-minor-free case:

Conjecture 1. [6] For every graph H, there is an
integer h ≥ 0 depending only on |V (H)| such that
every H-minor-free graph can be obtained by at most h-
sums of graphs that are h-almost-embeddable in some
surfaces in which H cannot be embedded and whose
apices are connected via edges only to vertices within
vortices.

3.5. Grid Minors

The r×r grid is the canonical planar graph of treewidth
Θ(r). In particular, an important result of Robertson,
Seymour, and Thomas [23] is that every planar graph of
treewidth w has an Ω(w)×Ω(w) grid graph as a minor.
Thus every planar graph of large treewidth has a grid
minor certifying that its treewidth is almost as large
(up to constant factors). Recently, this result has been
generalized to any H-minor-free graph class:

Theorem 3.6. [9] For any fixed graph H, every H-
minor-free graph of treewidth w has an Ω(w) × Ω(w)
grid as a minor.

Proof idea. We follow the decomposition provided by
Theorem 3.4. Because the treewidth of a clique sum
is at most the maximum treewidth of the pieces, some
piece has treewidth as large as the original graph, and
we can focus on that piece. We solve the bounded-
genus case using results from [5]. Apices and vortices
are easy to handle. Particular care is required to make
the grid minor we find in the piece into a minor of the
original graph, because some edges may be removed
during clique sums with other pieces.

Thus the r × r grid is the canonical H-minor-free
graph of treewidth Θ(r) for any fixed graph H. This
result is also best possible up to constant factors.
Section 11 discusses the remaining issue of bounding
the constant factor and its dependence on H.

A similar but weaker bound plays an important role
in the Graph Minor Theory [24]: for any fixed graph H
and integer r > 0, there is an integer w > 0 such that
every H-minor-free graph with treewidth at least w has
an r× r grid graph as a minor. This result has been re-
proved by Robertson, Seymour, and Thomas [23], Reed
[25], and Diestel, Jensen, Gorbunov, and Thomassen
[26]. Among these proofs, the best known bound on
w in terms of r is that every H-minor-free graph of
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treewidth larger than 205|V (H)|3r has an r× r grid as a
minor [23]. Theorem 3.6 therefore offers an exponential
(and best possible) improvement over previous results.

Theorem 3.6 cannot be generalized to arbitrary
graphs: Robertson, Seymour, and Thomas [23] proved
that some graphs have treewidth Ω(r2 lg r) but have
grid minors only of size O(r) × O(r). The best known
relation for general graphs is that having treewidth
more than 202r5

implies the existence of an r × r grid
minor [23]. The best possible bound is believed to be
closer to Θ(r2 lg r) than 2Θ(r5), perhaps even equal to
Θ(r2 lg r) [23].

4. BIDIMENSIONAL
PARAMETERS/PROBLEMS

Bidimensionality has been introduced and developed in
a series of papers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Although
implicitly hinted at in [1, 2, 3, 4], the first use of the
term “bidimensional” was in [5].

First we define “parameters” as an alternative view
on optimization problems. A parameter P is a function
mapping graphs to nonnegative integers. The decision
problem associated with P asks, for a given graph G
and nonnegative integer k, whether P (G) ≤ k. Many
optimization problems can be phrased as such a decision
problem about a graph parameter P .

Now we can define bidimensionality. A parameter
is g(r)-bidimensional (or just bidimensional) if it
is at least g(r) in an r × r “grid-like graph”
and if the parameter does not increase when
taking either minors (g(r)-minor-bidimensional) or
contractions (g(r)-contraction-bidimensional). The
exact definition of “grid-like graph” depends on the
class of graphs allowed and whether we are considering
minor- or contraction-bidimensionality. For minor-
bidimensionality and for any H-minor-free graph class,
the notion of a “grid-like graph” is defined to be the r×r
grid, i.e., the planar graph with r2 vertices arranged on
a square grid and with edges connecting horizontally
and vertically adjacent vertices. For contraction-
bidimensionality, the notion of a “grid-like graph” is
as follows:

(i) For planar graphs and single-crossing-minor-free
graphs, a “grid-like graph” is an r×r grid partially
triangulated by additional edges that preserve
planarity.

(ii) For bounded-genus graphs, a “grid-like graph” is
such a partially triangulated r × r grid with up to
genus(G) additional edges (“handles”).

(iii) For apex-minor-free graphs, a “grid-like graph” is
an r × r grid augmented with additional edges
such that each vertex is incident to O(1) edges
to nonboundary vertices of the grid. (Here O(1)
depends on the excluded apex graph.)

Contraction-bidimensionality is so far undefined for H-
minor-free graphs (or general graphs).1

Examples of bidimensional parameters include the
number of vertices, the diameter, and the size of
various structures such as feedback vertex set, vertex
cover, minimum maximal matching, face cover, a
series of vertex-removal parameters, dominating set,
edge dominating set, R-dominating set, connected
dominating set, connected edge dominating set,
connected R-dominating set, unweighted TSP tour (a
walk in the graph visiting all vertices), and chordal
completion (fill-in). For example, feedback vertex set is
Ω(r2)-minor-bidimensional (and thus also contraction-
bidimensional) because (1) deleting or contracting an
edge preserves existing feedback vertex sets, and (2) any
vertex in the feedback vertex set destroys at most four
squares in the r× r grid, and there are (r−1)2 squares,
so any feedback vertex set must have Ω(r2) vertices.
See [5, 7] for arguments of either contraction- or minor-
bidimensionality for the other parameters.

We also say that the corresponding optimization
problems based on these parameters, e.g., finding the
minimum-size feedback vertex set, are bidimensional.
With the exception of diameter, all of these bidimen-
sional problems are Θ(r2)-bidimensional, which is the
most common case (and in some papers used as the defi-
nition of bidimensionality). Diameter is the main excep-
tion, being only Θ(r)-contraction-bidimensional for
planar graphs, single-crossing-minor-free graphs, and
bounded-genus graphs, and only Θ(lg r)-contraction-
bidimensional for apex-minor-free graphs. See [7] for
details.

5. PARAMETER-TREEWIDTH BOUNDS

The genesis of bidimensionality was in fact the notion of
a parameter-treewidth bound. A parameter-treewidth
bound is an upper bound f(k) on the treewidth of a
graph with parameter value k. In many cases, f(k)
can even be shown to be sublinear in k, often O(

√
k).

Parameter-treewidth bounds have been established for
many parameters and graph classes; see, e.g., [27,
28, 29, 30, 31, 32, 33, 3, 2, 1, 7, 6, 5]. Essentially
all of these bounds can be obtained from the theory
of bidimensional parameters. Thus bidimensionality
is the most powerful method so far for establishing
parameter-treewidth bounds, encompassing all such
previous results for H-minor-free graphs.

The central result in bidimensionality that generalizes
these bounds is that every bidimensional parameter has
a parameter-treewidth bound, in its corresponding fam-
ily of graphs as defined in Section 4 (namely, H-minor-
free graphs for minor-bidimensional parameters; and

1For the parameters to which we have applied bidimensional-
ity, contraction-bidimensionality does not seem to extend beyond
apex-minor-free graphs, but perhaps a suitably extended defini-
tion could be found in the context of different applications or a
“theory of graph contractions”.
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planar graphs, bounded-genus graphs, or apex-minor-
free graphs for contraction-bidimensional parameters,
depending on the grid-like graphs handled). More pre-
cisely, we have the following result:

Theorem 5.1. [9, 7] If the parameter P is
g(r)-bidimensional, then for every graph G in the
family associated with the parameter P , tw(G) =
O(g−1(P (G))). In particular, if g(r) = Θ(r2), then the
bound becomes tw(G) = O(

√
P (G)).

Proof idea. We use Theorem 3.6 to construct an r ×
r grid minor R of G where r = Ω(tw(G)). By
bidimensionality, P (R) ≥ g(r). If P is minor-
bidimensional, then P (G) ≥ P (R) ≥ g(r) ≥
g(Ω(tw(G)), which is the desired result. If P is
contraction-bidimensional, we cannot delete edges to
form the grid R exactly, but using results of [8, 7] we
show that just performing the contractions forms the
appropriate kind of “grid-like graph”, serving the same
role as R.

Such a parameter-treewidth bound was origi-
nally established in the weaker form tw(G) =
(g−1(P (G)))O(g−1(P (G))) [7]. The stronger bound of
tw(G) = O(g−1(P (G))) was obtained first for planar
graphs [3], then single-crossing-minor-free graphs [1, 2],
then bounded-genus graphs [5, 8], and finally apex-
minor-free graphs for contraction-bidimensional param-
eters and H-minor-free graphs for minor-bidimensional
parameters [9] (Theorem 5.1 above) using the grid-
minor bound of Theorem 3.6.

We can extend the definition of g(r)-minor-
bidimensionality to general graphs by again defining a
“grid-like graph” to be the r×r grid. Still we can obtain
a parameter-treewidth bound [23, 34], but the bound is
weaker: tw(G) = 2O(g−1(k))5 .

6. SEPARATOR THEOREMS

If we apply the parameter-treewidth bound of
Theorem 5.1 to the parameter of the number of vertices
in the graph, which is minor-bidimensional with g(r) =
r2, then we immediately obtain the following (known)
bound on the treewidth of an H-minor-free graph:

Theorem 6.1. [35, Proposition 4.5], [36, Corol-
lary 24], [9] For any fixed graph H, every H-minor-free
graph G has treewidth O(

√
|V (G)|).

A consequence of this result is that every vertex-
weighted H-minor-free graph G has a vertex separator
of size O(

√
|V (G)|) whose removal splits the graph into

two parts each with weight at most 2/3 of the original
weight [35, Theorem 1.2]. This generalization of the
classic planar separator theorem has many algorithmic
applications; see e.g. [35, 37]. Also, this result shows
that the structural properties of H-minor-free graphs
given by Theorems 3.3 and 3.4 are powerful enough to

conclude that these graphs have small separators, which
we expect from such a strong theorem.

Section 11 discusses the issue of how tight a lead
constant can be obtained in such a result.

7. LOCAL TREEWIDTH

Eppstein [15] introduced the diameter-treewidth prop-
erty for a class of graphs, which requires that the
treewidth of a graph in the class is upper bounded by a
function of its diameter. He proved that a minor-closed
graph family has the diameter-treewidth property pre-
cisely if the graph family excludes some apex graph.
In particular, he proved that any graph in such a fam-
ily with diameter D has treewidth at most 22O(D)

. (A
simpler proof of this result is obtained in [4].)

If we apply the parameter-treewidth bound of
Theorem 5.1 to the diameter parameter, which is
contraction-bidimensional with g(r) = Θ(lg r) [4], then
we immediately obtain the following stronger diameter-
treewidth bound for apex-minor-free graphs:

Theorem 7.1. [9] For any fixed apex graph H, every
H-minor-free graph of diameter D has treewidth 2O(D).

This theorem is not the best possible. In some
sense, it is necessarily limited, because it still does not
exploit the full structure of H-minor-free graphs from
Theorem 3.3. The difficulty is that, in a grid-like graph,
the O(1) edges from a vertex to nonboundary vertices
can accumulate to make the diameter small. However,
it is possible to show that, effectively, not too many
vertices can have such edges. This fact comes from the
property that there are a bounded number of apices in
the clique-sum decomposition of Theorem 3.3, and in
an apex-minor-free graph, each apex cannot have more
than a bounded number of edges to “distant” vertices.
Based on this fact, a complicated proof establishes the
following even stronger diameter-treewidth bound in
apex-minor-free graphs:

Theorem 7.2. [6] For any fixed apex graph H, every
H-minor-free graph of diameter D has treewidth O(D).

This diameter-treewidth bound is the best possible
up to constant factors. Thus this theorem establishes
that, in minor-closed graph families, having any
diameter-treewidth bound is equivalent to having a
linear diameter-treewidth bound. As mentioned before,
no minor-closed graph families beyond apex-minor-
free graphs can have any diameter-treewidth bound.
Theorem 7.2 is therefore the ultimate characterization
of diameter-treewidth bounds in minor-closed graph
families (up to constant factors).

The proof of Theorem 7.2 is the basis for
Conjecture 1. In fact, Theorem 7.2 would not be hard
to prove assuming Conjecture 1.

The diameter-treewidth property has been used
extensively in a slightly modified form called the
bounded-local-treewidth property, which requires that
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the treewidth of any connected subgraph of a graph
in the class is upper bounded by a function of its
diameter. For minor-closed graph families, which is
the focus of most work in this context, these properties
are identical. Graphs of bounded local treewidth have
many similar properties to both planar graphs and
graphs of bounded treewidth, two classes of graphs
on which many problems are substantially easier. In
particular, Baker’s approach for PTASs on planar
graphs [22] applies to this setting. As a result, PTASs
are known for hereditary maximization problems such
as maximum independent set, maximum triangle
matching, maximum H-matching, and maximum tile
salvage; for minimization problems such as minimum
vertex cover, minimum dominating set, minimum edge-
dominating set; and for subgraph isomorphism for a
fixed pattern [2, 15, 38]. Graphs of bounded local
treewidth also admit several efficient fixed-parameter
algorithms. In particular, Frick and Grohe [39] give a
general framework for deciding any property expressible
in first-order logic in graphs of bounded local treewidth.
Theorem 7.2 substantially improves the running time of
these algorithms, in particular improving the running

time of the PTASs from 222O(1/ε)

nO(1) to 2O(1/ε)nO(1),
where n is the number of vertices in the graph.

8. SUBEXPONENTIAL
FIXED-PARAMETER ALGORITHMS

A fixed-parameter algorithm is an algorithm for
computing a parameter P (G) of a graph G whose
running time is h(P (G))nO(1) for some function h.
The exponent O(1) must be independent of G; thus
the exponentiality of the algorithm is bounded by the
parameter P (G), and the dependence on n is only
polynomial. A typical function h for many fixed-
parameter algorithms is h(k) = 2O(k). In the last
five years, several researchers have obtained exponential
speedups in fixed-parameter algorithms in the sense that
the h function reduces exponentially, e.g., to 2O(

√
k).

For example, the first fixed-parameter algorithm for
finding a dominating set of size k in planar graphs [40]
has running time O(8kn); subsequently, a sequence of
subexponential algorithms and improvements have been
obtained, starting with running time O(46

√
34kn) [27],

then O(227
√

kn) [28], and finally O(215.13
√

kk + n3 +
k4) [29]. Other subexponential algorithms for other
domination and covering problems on planar graphs
have also been obtained [27, 30, 31, 32, 33].

All subexponential fixed-parameter algorithms devel-
oped so far are based on showing a sublinear parameter-
treewidth bound and then using an algorithm whose
running time is singly exponential in treewidth and
polynomial in problem size. As mentioned in Section 5,
essentially all sublinear treewidth-parameter bounds

proved so far can be obtained through bidimensional-
ity. Theorem 5.1, combined with algorithms for com-
puting tree decompositions of approximately optimal
width [41], yield the following general result for design-
ing subexponential fixed-parameter algorithms:

Theorem 8.1. [9, 7] Consider a g(r)-bidimensional
parameter P that can be computed on a graph G in
h(w)nO(1) time given a tree decomposition of G of
width at most w. Then there is an algorithm computing
P on any graph G in P ’s corresponding graph class,
with running time [h(O(g−1(k))) + 2O(g−1(k))]nO(1). In
particular, if g(r) = Θ(r2) and h(w) = 2o(w2), then this
running time is subexponential in k.

In particular, this result gives subexponential
fixed-parameter algorithms for many bidimensional
parameters, including feedback vertex set, vertex cover,
minimum maximal matching, a series of vertex-removal
parameters, dominating set, edge dominating set,
R-dominating set, clique-transversal set, connected
dominating set, connected edge dominating set,
connected R-dominating set, unweighted TSP tour, and
chordal completion [9, 7].

For minor-bidimensional parameters, these algo-
rithms apply to all H-minor-free graphs. The next
section describes to what extent these algorithms can
be extended to general graphs.

For contraction-bidimensional parameters, these
algorithms apply to apex-minor-free graphs. On the
other hand, subexponential fixed-parameter algorithms
can be obtained for dominating set, which is
contraction-bidimensional, on H-minor-free graphs [5],
map graphs [3], and fixed powers of planar graphs
(or even fixed powers of H-minor-free graphs) [3, 5].
These algorithms are necessarily more complicated than
those produced from Theorem 8.1, because apex-minor-
free graphs are precisely the minor-closed graph classes
for which dominating set has a parameter-treewidth
bound [7]. An intriguing open question is whether
these techniques can be extended to other contraction-
bidimensional problems than dominating set, for fixed
powers of H-minor-free graphs and/or other classes of
graphs.

9. FIXED-PARAMETER ALGORITHMS
FOR GENERAL GRAPHS

As mentioned in Section 5, minor-bidimensionality can
be defined for general graphs as well. In this section we
show how the bidimensionality theory in this case leads
to a general class of fixed-parameter algorithms.

A major result from the Graph Minor Theory (in
particular [42, 19]) is that every minor-closed graph
property is characterized by a finite set of forbidden
minors. More precisely, for any property P on graphs
such that a graph having property P implies that
all its minors have property P , there is a finite set
{H1, H2, . . . ,Hh} of graphs such that a graph G has
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property P if and only if G does not have Hi as
a minor for all i = 1, 2, . . . , h. The algorithmic
consequence of this result is that there exists an O(n3)-
time algorithm to decide any fixed minor-closed graph
property, by finitely many calls to an O(n3)-time minor
test [42]. This consequence has been used to show
the existence of polynomial-time algorithms for several
graph problems, some of which were not previously
known to be decidable [43].

However, all of these algorithmic results (except the
minor test) are nonconstructive: we are guaranteed that
efficient algorithms exist, but are not told what they
are. The difficulty is that we know that a finite set of
forbidden minors exists, but lack “a means of identifying
the elements of the set, the cardinality of the set, or
even the order of the largest graph in the set” [43].
Indeed, there is a mathematical sense in which any
proof of the finite-forbidden-minors theorem must be
nonconstructive [44].

We can apply these graph-minor results to prove
the existence of algorithms to compute parameters,
provided the parameters never increase when taking a
minor. For any fixed parameter and any fixed k ≥ 0,
there is an O(n3)-time algorithm that decides whether
a graph has parameter value ≤ k. Unfortunately, the
existence of these algorithms does not necessarily imply
the existence of a single fixed-parameter algorithm
that works for all k ≥ 0, because the algorithms for
individual k (in particular the set of forbidden minors)
might be uncomputable. We do not even know an
upper bound on the running time of these algorithms
as a function of n and k, because we do not know the
dependence of the size of the forbidden minors on k.

In [34], fixed-parameter algorithms are constructed
for nearly all parameters that never increase when
taking a minor, with explicit time bounds in terms of
n and k. Essentially, by assuming a few very common
properties of the parameter, we obtain a generalized
form of minor-bidimensionality. The proof is then
similar to that of Theorem 8.1.

Theorem 9.1. [34] Consider a parameter P that
is positive on some g × g grid, never increases
when taking minors, is at least the sum over the
connected components of a disconnected graph, and can
be computed in h(w)nO(1) time given a width-w tree
decomposition of the graph. Then there is an algorithm
that decides whether P is at most k on a graph with n

vertices in
[
22O(g

√
k)5

+ h(2O(g
√

k)5)
]
nO(1) time.

As mentioned in [34], a conjecture of Robertson,
Seymour, and Thomas [23] would improve the running
time to h(O(k lg k))nO(1), which is 2O(k lg k)nO(1) for
the typical case of h(w) = 2O(w). This conjectured
time bound almost matches the fastest known fixed-
parameter algorithms for several parameters, e.g.,
feedback vertex set, vertex cover, and a general family
of vertex-removal problems [43].

10. POLYNOMIAL-TIME
APPROXIMATION SCHEMES

Recently, the bidimensionality theory has been
extended to obtain polynomial-time approximation
schemes (PTASs) for essentially all bidimensional
parameters, including those mentioned above [10].
These PTASs are based on techniques that gener-
alize and in some sense unify the two main pre-
vious approaches for designing PTASs in planar
graphs, namely, the Lipton-Tarjan separator approach
[45] and the Baker layerwise decomposition approach
[22]. The PTASs apply to H-minor-free graphs for
minor-bidimensional parameters and to apex-minor-free
graphs for contraction-bidimensional parameters. To
achieve this level of generality, [10] uses the sublinear
parameter-treewidth bound of Theorem 5.1 as well as
a recent O(1)-approximation algorithm for treewidth in
H-minor-free graphs [46, 21].

Before we can state the general theorem for construct-
ing PTASs, we need to define a few straightforward
required conditions, which are commonly satisfied by
most bidimensional problems. The theorem considers
families of problems in which we are given a graph and
our goal is to find a minimum-size set of vertices and/or
edges satisfying a certain property. Such a problem nat-
urally defines a parameter and therefore the notion of
bidimensionality. A minor-bidimensional problem has
the separation property if it satisfies the following three
conditions:

(i) If a graph G has k connected components
G1, G2, . . . , Gk, then an optimal solution for G is
the union of optimal solutions for each connected
component Gi.

(ii) There is a polynomial-time algorithm that, given
any graphG, given any vertex cut C whose removal
disconnects G into connected components G1, G2,
. . . , Gk, and given an optimal solution Si to each
connected component Gi of G − C, computes
a solution S for G such that the number of
vertices and/or edges in S within the induced
subgraph G[C ∪ ∪i∈IV (Gi)] consisting of C and
some connected components of G−C is

∑
i∈I |Si|±

O(|C|) for any I ⊆ {1, 2, . . . , k}. In particular, the
total cost of S is at most OPT(G− C) +O(|C|).

(iii) Given any graph G, given any vertex cut C, and
given an optimal solution OPT to G, for any union
G′ of some subset of connected components of
G− C, |OPT∩G′| = |OPT(G′)| ±O(|C|).

For contraction-bidimensional problems, the exact
requirements on the problem are slightly different but
similarly straightforward. The main distinction is
that the connected components are always considered
together with the cut C. As a result, the merging
algorithm in Condition 2 must take as input a solution
to a generalized form of the problem that does not count
the cost of including all vertices and edges from the

The Computer Journal Vol. 51 No. 3, 2008



The Bidimensionality Theory and Its Algorithmic Applications 9

cut C. We omit the exact definition of the separation
property in this case in the interest of space.

Theorem 10.1. [10] Consider a bidimensional
problem satisfying the separation property. Suppose
that the problem can be solved on a graph G with n
vertices in f(n, tw(G)) time. Suppose also that the
problem can be approximated within a factor of α in
g(n) time. For contraction-bidimensional problems,
suppose further that both of these algorithms also apply
to the generalized form of the problem. Then there is a
(1 + ε)-approximation algorithm whose running time is
O(nf(n,O(α2/ε))+n3g(n)) for the corresponding graph
class of the bidimensional problem.

Proof idea. The central idea is to use a separator
theorem like Theorem 6.1, but to bound the separator
size by O(

√
OPT) instead of O(

√
|V (G)|). Without

such a bound, the overhead of a single separator might
incur a cost far greater than OPT, and this has been
the limiting factor of the separator approach in the past.
From Theorem 5.1 and bidimensionality, we obtain that
the treewidth of G is O(

√
OPT), and this leads to a

separator that bisects the number of vertices. However,
for an effective recursion, we need to find a separator
that bisects OPT. This challenge is particularly difficult
because we do not know OPT and its distribution in the
tree decomposition.

This result shows a strong connection between subex-
ponential fixed-parameter tractability and approxima-
tion algorithms for combinatorial optimization prob-
lems on H-minor-free graphs. In particular, this result
yields a PTAS for the following minor-bidimensional
problems in H-minor-free graphs: feedback vertex set,
face cover (defined just for planar graphs), vertex cover,
minimum maximal matching, and a series of vertex-
removal problems. Furthermore, the result yields a
PTAS for the following contraction-bidimensional prob-
lems in apex-minor-free graphs: dominating set, edge
dominating set, R-dominating set, connected dominat-
ing set, connected edge dominating set, connected R-
dominating set, and clique-transversal set.

11. OPEN PROBLEMS

Several combinatorial and algorithmic open problems
remain in the theory of bidimensionality and related
concepts.

One interesting direction is to generalize bidimension-
ality to handle general graphs, not just H-minor-free
graph classes. As mentioned in Section 5, the natu-
ral generalization of minor-bidimensionality still yields
a parameter-treewidth bound, but it is very large. This
direction essentially asks for the size of the largest grid
minor guaranteed to exist in any graph of treewidth w.
Robertson, Seymour, and Thomas [23] proved that
every graph of treewidth larger than 202r5

has an r× r
grid as a minor, but that some graphs of treewidth

Ω(r2 lg r) have no grid larger than O(r) × O(r), con-
jecturing that the right requirement on treewidth for
an r × r grid is closer to the Θ(r2 lg r) lower bound.
Other work leads to a conjecture of Θ(r3) being the
right bound [47]. If either of these conjectures are
correct, we would obtain nearly as good parameter-
treewidth bounds for minor-bidimensional parameters
as in the H-minor-free case. Polynomial upper bounds
have recently been established for classes of graphs that
do not exclude a fixed minor, namely, map graphs and
power graphs [47].

A similar generalization of parameter-treewidth
bounds beyond apex-minor-free graphs is not possi-
ble for all contraction-bidimensional parameters, e.g.,
dominating set [7], but it would still be quite inter-
esting to explore an analogous “theory of graph con-
tractions” paralleling the Graph Minor Theory. Such
a theory would be an interesting and powerful tool
for handling problems that are closed under contrac-
tions but not minors, and therefore deserves more
focus. Unfortunately, the contraction analog of Wag-
ner’s Conjecture has recently been disproved for series-
parallel graphs [47] (although it holds for trees, tri-
angulated planar graphs, and 2-connected outerpla-
nar graphs). As a consequence, general techniques
for deciding contraction-closed properties in general
graphs would need to use a different approach than
that of Graph Minor Theory. Nonetheless, it would
be interesting to generalize the subexponential fixed-
parameter algorithms and polynomial-time approxima-
tion schemes for contraction-bidimensional problems
from apex-minor-free graphs to H-minor-free graphs.
So far such results are known only for dominating set
[5, 36], but there are many other natural contraction-
bidimensional problems to tackle, such as unweighted
TSP. Another challenging problem for approximation
is minimum chordal completion (or minimum fill-in),
which is contraction-bidimensional yet no constant-
factor approximation algorithm is known even for pla-
nar graphs.

Another interesting direction is to obtain the best
constant factors in terms of the fixed excluded minor H.
These constants are particularly important in the
context of the exponent in the running time of a fixed-
parameter algorithm. At the heart of all such constant
factors is the lead constant in Theorem 3.6. This factor
must be Ω(

√
|V (H)| lg |V (H)|), because otherwise such

a bound would contradict the lower bound for general
graphs. An upper bound near this lower bound (in
particular, polynomial in |V (H)|) is not out of the
question: the bound on the size of separators in [35]
has a lead factor of |V (H)|3/2. In fact, Alon, Seymour,
and Thomas [35] suspect that the correct factor for
separators is Θ(|V (H)|), which holds e.g. in bounded-
genus graphs. We also suspect that the same bound
holds for the factor in Theorem 3.6, which would
imply the corresponding bound for separators. Explicit
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bounds have recently been constructed for the case of
H = K3,k using different techniques [47].

A third interesting direction is to generalize the
polynomial-time approximation schemes that come out
of bidimensionality to more general algorithmic prob-
lems that do not correspond directly to bidimensional
parameters. One general family of such problems arises
when adding weights to vertices and/or edges, and the
goal is e.g. to find the minimum-weight dominating set.
It is difficult to define bidimensionality of the corre-
sponding weighted parameter because its value is no
longer well-defined on an r × r grid: the parameter
value now depends on the weights of vertices in such a
grid. Another family of such problems arises when plac-
ing constraints (e.g., on coverage or domination) only
on subsets of vertices and/or edges. Examples of such
problems include Steiner tree [48] and subset feedback
vertex set [49]. Again it is difficult to define bidimen-
sionality in such cases because the value of the param-
eter on a grid depends on which vertices and/or edges
of the grid are in the subset.

Finally, we mention some broader directions in which
bidimensionality theory may be generalized. Instead
of basing bidimensionality on treewidth, it might be
possible to use cliquewidth, a parameter that also leads
to efficient algorithms when it is small, and which is
bounded whenever treewidth is bounded; see, e.g., [50].
We already obtain a parameter-cliquewidth bound from
the existing theory, but an alternative theory may allow
us to bound the cliquewidth in more general graphs
than H-minor-free graphs. Another direction might be
to generalize to more general families of matroids that
have excluded-minor characterizations; see, e.g., [51].
It would also be interesting to capture problems such
as graph coloring in H-minor-free graphs, for which the
best possible approximation factor is between 4/3 and 2
[21], while it still may be possible to obtain an additive
O(1) approximation.
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