
Algorithmic Layout of Characters in Perspective

Mariel Bass1, Erik D. Demaine2, and Martin L. Demaine2

1Glass Lab, Massachusetts Institute of Technology, Cambridge, MA, USA; mariel@marielbass.com
2CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA; demaine@mit.edu

Abstract
We describe a simple and practical algorithm for arranging a collection of images (“characters”) in a perspective
layout that looks uniform. Randomness and tunable parameters make for varied layouts, with no repetition of a
pattern. We present an application of this algorithm to an art installation made from paper printed with computed
layouts and folded along curved creases.

Introduction

In this paper, we describe the making of “Hanging Out”, shown in Figure 1: an installation of twelve pieces of
paper, each printed with a unique algorithmic layout of hand-drawn characters, folded along curved creases,
and hung from the ceiling (in addition to a few pieces of paper on the floor). The total number of characters in
the hanging pieces is 41,732, the 2021 population of Fitchburg, Massachusetts, where we did the installation.

Figure 1: Photographs of “Hanging Out” installation at Fitchburg Art Museum, 2023. Printed and folded
paper, 5ft × 10ft × 14ft tall. Sculpture and photographs by the authors.



Figure 2: 54 hand-drawn characters that form the basis of our examples and installation.

The main mathematical innovation in this installation is our algorithm for randomly laying out characters
in perspective while appearing to have a uniform or controlled density. The algorithm also offers several
tunable parameters to make a wide variety of layout families; each layout family also offers infinite variation
by rerolling the random numbers. We implemented the algorithm in a web app1 that allows users to set the
parameters and immediately see the resulting layout (either in a rectangle or on the curved crease pattern).

In this paper, we present a sequence of algorithms, where each algorithm is a small tweak to the previous
algorithm, starting with a very simple random layout and ending with our final algorithm. This progression
allows us to describe each idea that we developed, while illustrating its effect with example outputs. The
intermediate algorithms also produce pleasing results themselves, so they are of independent interest.

Drawing Aside

(a) No border (b) Small border

Figure 3: A small white border more
clearly separates the layers.

Although the main focus of this paper is on the layout algo-
rithm, we start with a brief description of the drawings that
we use in all of our examples. We (specifically M. Bass)
looked at photographs of people performing various activities,
and hand-drew them in an abstract style (in particular, without
faces) using black and grey pens on paper. See Figure 2.

Then we scanned these drawings, and Photoshopped them
to improve contrast and erase the background to be transparent,
so that characters can stack on top of each other. In fact, we
left a small white border around each character, to visually
separate the layers better. Figure 3 shows the resulting effect.

In addition to each character as drawn, we consider their horizontal reflection (through a vertical line);
Figure 3 shows an example with the dancer. This trick effectively doubles the number of characters from 54

1The web app was written in Civet (a language that compiles to TypeScript/JavaScript) using the SolidJS reactive framework,
with SVG for the rendering engine. We plan to open-source a version at https://erikdemaine.org/curved/HangingOut/.

https://erikdemaine.org/curved/HangingOut/


(a) 50 characters at 75% height in random order (b) 100 characters at 50% height in random order

Figure 4: Examples of completely random layouts, with uniform random stacking order.

to 108, increasing the visual variety. It also enables interesting interactions between characters, which can
be facing either toward or away from each other.

For each character, we define its natural height ratio 𝑟 according to how it should be sized relative to
other characters. Most characters all have the same 100% height, while some sitting or otherwise active
characters get scaled down to 50%, 60%, 70%, 80%, or 90% height. See Figure 2.

So Random

We start with a simple random layout, which places the characters at uniform random 𝑥 and 𝑦 coordinates
within a specified rectangle called the bounding rectangle. See Figure 4. The main parameters here are
how tall the characters are relative to the bounding rectangle (ℎmax), and how many characters to place (𝑛).
Figures 4(a) and 4(b) show two different settings: 50 characters at 75% height, and 100 characters at 50%
height, respectively. Here 50% or 75% defines the maximum height ℎmax of a character (as a fraction of the
height of the bounding rectangle); the actual height ℎ = ℎmax · 𝑟 is scaled down by the character’s natural
height ratio 𝑟 .

In these diagrams, the stacking order of characters is uniform random. In other words, the layout
algorithm is as follows: for each of 𝑛 times, we choose a uniform random character to place, compute
their height ℎ = ℎmax · 𝑟, compute their width (according to aspect ratio), choose uniform random 𝑥 and 𝑦

coordinates among values that place the character within the bounding rectangle, and then draw the character
on top of all previous characters.

These randomly stacked layouts feel similar to Murakami murals of repeating characters, such as his
sunflowers and kaikai/kiki characters. See Figure 5.

Sorting Out

Our goal was to make the characters seem like they were interacting in a more natural scene. In this setting,
characters have a natural depth order, from back (higher 𝑦 coordinate) to front (lower 𝑦 coordinate). Figure 6
shows the result of sorting the randomly generated characters in this order, with Figures 6(a) and 6(b) showing
the same two parameter choices as Figures 4(a) and 4(b) (but with different random choices).

These layouts essentially correspond to orthographic projection, with each character having the same
height ℎ = ℎmax · 𝑟 in each instance. Decreasing the height parameter ℎmax essentially corresponds to
increasing the height of a camera looking down on the scene.



(a) Printed floor mural accompanying
“Kawaii–Vacances: Summer Vacation in the Kingdom

of the Golden” by Takashi Murakami (2008).

(b) “Lots, Lots of Kaikai and Kiki” by Takashi Murakami
(2009). Acrylic and platinum leaf on 5-panel canvas

mounted on aluminum frame.

Figure 5: Examples of Murakami’s murals of repeating characters, from the exhibit “Takashi Murakami:
Lineage of Eccentrics” at the Museum of Fine Arts, Boston (2017). Photographs by E. Demaine.

(a) 50 characters at 75% height in 𝑦-sorted order (b) 100 characters at 50% height in 𝑦-sorted order

Figure 6: Examples of random-coordinate layouts, with stacking order defined by 𝑦 coordinate.
Corresponds to orthographic 3D views. Compare with Figure 4.

Gaining Perspective

We are more used to seeing scenes in perspective. We can achieve this effect by scaling the characters smaller
when their 𝑦 coordinate is larger (farther back), as shown in Figure 7. More precisely, for each character, we
choose a random value 𝑧 between 0 and 1, indicating closeness to the camera, and then place the character as
follows.

First, we use 𝑧 to determine the character’s scale: we affinely map 𝑧 to be between two parameters ℎmin
and ℎmax, and use the resulting value ℎ̂ = (1 − 𝑧) · ℎmin + 𝑧 · ℎmax to determine the character’s height (again
measured as a fraction of the bounding rectangle’s height): ℎ = ℎ̂ ·𝑟 . Here ℎmax effectively controls the height
of the camera looking down on the scene: a camera at eye level would have ℎmax = 1, while a higher camera
would have ℎmax < 1. Figures 7(a) and 7(b) show two different choices for ℎmax: 65% and 50%, respectively.
Parameter ℎmin prevents characters from being too small; we usually set ℎmin = 1

10ℎmax. The character’s scale
also affects the character’s placement in 𝑥 coordinate, which is chosen uniformly in the range that keeps the
entire character within the bounding rectangle.



(a) 100 characters at 65% maximum height (b) 150 characters at 50% maximum height

Figure 7: Examples of perspective layout, with uniform random 𝑧 values. Background appears sparse.

(a) 100 characters at 65% maximum height (b) 150 characters at 50% maximum height

Figure 8: Examples of perspective layout, with exponentiated random 𝑧 values. Density appears uniform.

Second, we use 𝑧 to determine the character’s 𝑦 coordinate. Consider the range of 𝑦 coordinates that place the
character inside the bounding rectangle, according to the now-fixed scale. Then we select the 𝑦 coordinate
that is a 𝑧 fraction down from the top of the range. (In fact, the 𝑦 range is relative to the character’s full
height ℎ̂, not natural height ℎ, so that characters of varying natural height are bottom-aligned.) As before, we
use the 𝑦 coordinate (or 𝑧) to determine the stacking order of characters.

Appearing Uniform

The layouts in Figure 7 are unsatisfying because the background feels very sparse, while the foreground feels
too crowded. The problem is that we have defined 𝑧 to be uniformly distributed, but characters in back (with
smaller 𝑧) are smaller and so do not fill the space as much as characters in front (with larger 𝑧). A natural
solution is to use a nonuniform distribution for 𝑧, i.e., place relatively more characters farther back.

In fact, we found it useful to define two different 𝑧 parameters: 𝑧1 which determines the character’s
scale (as described above), and 𝑧2 which determines the character’s 𝑦 coordinate (as described above). After
some experimentation, we found good distributions to be 𝑧1 = 𝑧1.5 and 𝑧2 = 𝑧3 where 𝑧 is a common number
chosen uniformly from [0, 1]. Figure 8 shows the results, with the same parameters as Figure 7.



(a) 100 characters at 65% maximum height (b) 150 characters at 50% maximum height

Figure 9: Examples of perspective layout with blur. Simulates low depth-of-field camera.

Deep Blur

We can make the perspective layout “pop” more by adding a low depth-of-field camera effect, where characters
farther in the background get increasingly blurred. After some experimentation, we found that a Gaussian
blur with standard deviation 𝜎 = 1

2
(
1 − 𝑧1

)
produced visually appealing results, as shown in Figure 9.

Overall, we found the blur effect to look nice on screen, but less so in print on a large-scale sculpture.
Thus we ended up not using this effect in the final installation, and omit it from other examples.

(Don’t) Be Dense

Now that we have a nice perspective layout, we explore the possible variations for making a variety of
different prints (beyond just rerolling the random numbers). We have already illustrated the effect of varying
the maximum height ℎmax of the characters, or effective camera angle. The main remaining parameter at this
stage is the number of characters to draw, 𝑛, which (together with ℎmax) controls the characters’ density.

Figure 10 shows two variations on the parameters from Figures 8(b) and 9(b), decreasing and increasing
respectively the number of characters by a factor of 3. When selecting these examples, we found ourselves
looking at several more random trials in the case of lower density (Figure 10(a)). We suspect that, as the
density gets larger, randomness appears more uniform, so the results are more likely to look nice.

(a) 50 characters at 50% maximum height (b) 450 characters at 50% maximum height

Figure 10: Examples of varying the density of characters. Compare with Figures 8(b) and 9(b).



(a) 200 characters at 65% maximum height

(b) 250 characters at 50% maximum height

Figure 11: Examples of left-leaning distributions with 𝑥 = 𝑥3. Density is higher on the left.

Leaning Left

The layouts so far achieve a nice uniform-density look. For variety, we wanted the distribution to vary from
one end of the paper to the other. In other words, we wanted the density to be higher at one end of the
bounding rectangle and lower at the other end.

Again we found that our friend, exponentiation, was an effective way to modify a uniform distribution
into a nonuniform distribution. Specifically, among the range of 𝑥 coordinates that place the character inside
the bounding rectangle, we choose an 𝑥 = 𝑥𝛼 fraction from the left (or right), where 𝑥 is a number chosen
uniformly from [0, 1] and 𝛼 is a user-specified parameter. Our final installation used 𝛼 = 3 in some pieces.

Figure 11 illustrates the result. These examples use a much wider bounding rectangle than the previous
examples, to give room to visualize the variation in density.

Best Friends

Another flexibility we have is in the random choice of which character to display. Instead of choosing
each character uniformly at random, we can bias this distribution toward certain characters. For example,
Figure 12 makes the forward-facing “umbrella man” 10 times more likely to be selected, and the two side-
facing umbrella carriers each 5 times more likely to be selected — a distribution used in one piece of our final
installation. (Our focus on umbrellas comes from “umbrella man” being the first selected drawing, which
formed the basis in style for all other drawings.)

Where’s Waldo?

The software allows the user to interactively drag characters from their random placement, and to flip each
character horizontally or vertically. We used the last feature to create an effect like “Where’s Waldo”



(a) 100 characters at 65% maximum height (b) 150 characters at 50% maximum height

Figure 12: Examples of uneven distribution of character selection. So many umbrellas.

(a) 100 characters at 65% maximum height (b) 150 characters at 50% maximum height

Figure 13: Examples with one upside-down character each. Can you find them?

(“Where’s Wally” for those outside Canada and the USA — a book that spent 93 weeks in the New York
Times Best Sellers List): we flip exactly one character upside-down in each design, and then the viewer can
try to find it. Figure 13 shows two examples.

We also tried other effects, like coloring one character differently, but this was too easy to pick out.
Other than drawing a new special character for this purpose, we found that vertical flipping produces results
that looked much like a character while still being visually distinctive.

Between the Folds

The final task for our software is to map these layouts onto the crease pattern, shown in Figure 14. Our
approach is to construct a rectangular layout for each wiggling strip of material between consecutive curves
(such as the one highlighted in yellow). The idea is simple: for each character in the layout, convert the 𝑥

coordinate into the distance along the strip (using angular coordinates within each circle), the 𝑦 coordinate
into the distance across the strip (using radial coordinates), and rotate the character according to the tangent
at that point. This conversion would be a Cartesian-to-polar mapping (shown by the cyan grid in Figure 14)
if we were using a single circle, but the piecewise-circular crease pattern makes it more complicated.

The first (incorrect) approach we tried is to divide the 𝑥 range into eight equal segments, and map each
range to the corresponding patch of concentric circles (outlined by the purple dashed lines in Figure 14).
Specifically, the first segment maps to the first patch; the second and third segments map to the second patch;
the fourth and fifth segments map to the third patch; and so on. Figure 15 shows an example result from



Figure 14: Crease pattern for each piece in our installation. Purple dots denote circle centers, and purple
dashed lines outline concentric circular pieces. Bounding rectangle dimensions: 9.43ft× 2.31ft.

Total curved crease and cut length: 31.4ft.

Figure 15: Treating each circle as an equal portion of the strip, with 1000 characters per strip (at 75%
maximum height). Characters are denser in areas of higher curvature (closer to circle centers).

Figure 16: Correctly distributed layout with 1000 characters per strip (at 75% maximum height).
Compare with Figure 15.

this approach, where the distribution of characters is subtly nonuniform (most obviously in the topmost and
bottommost strips). The problem is that the same angular range (and thus 𝑥 coordinates) has different lengths
on different circles, increasing with the radius. Thus we end up with characters more densely packed in areas
closer to circle centers, while each strip alternates between close and far and thus between dense and sparse.

The correct (uniform) approach is to distribute the 𝑥 range to different circles according to the pair of
radii given at the assigned 𝑦 coordinate. The messy part is that there are two radii involved, 𝑟1 for the circles
with centers at the bottom and 𝑟2 for the circles with centers at the top. Then we allocate 𝑥 coordinates as
follows: the initial interval of length 𝑟1 · 45◦ maps to the first circle; the next interval of length 𝑟2 · 90◦ maps
to the second circle; the next interval of length 𝑟1 · 90◦ maps to the third circle; and so on. Figure 16 shows
an example of the resulting distribution, with the same parameters as Figure 15; the result is noticeably more
uniform at the areas of high curvature (nearest the circle centers).



Hanging Out

The final installation, illustrated in Figure 1, follows essentially the algorithm described above. The only
difference is that we vertically flipped the character layouts in two of the four strips, so that the characters had
similar orientations after folding along the creases. We also flipped one character in each strip upside-down,
so each piece of paper has four “Where’s Waldo?”-style puzzles.

We printed each sheet using a Canon imagePROGRAF Pro-4100 Printer fed with 3.5ft-wide rolls of
Canon Matte Paper.2 Indeed, the near-infinite length of paper rolls is one of the main inspirations for this
project. We ended up choosing the 9.43ft × 2.31ft “two-wave” crease pattern of Figure 14 because it offered
enough length to do interesting folding, while not being so long that its weight would be difficult to support.

Paper rolls do not like to be fed back into a printer upside down (and most paper has a preferred side to
print on), yet we wanted our imagery to be double sided, with each character being visible from both sides.
We ended up printing each sheet twice (one in reflection), and stacking the two folded sheets on top of each
other, so that the front and back imagery matched up nearly exactly. Surprisingly, the adjacent curved folds
held together the two sheets rather well without any adhesive. In a few cases, the hanging weight was enough
for the two sheets to separate, which we resolved with a few staples.3

The next step was hanging the pieces, which required a way to connect monofilament (fishing line) to
the paper without causing the paper to rip. We found that one binder clip on either end of the folded sheets
was enough to hang the paper, presumably thanks to a combination of the curved creases and the two layers
of material. In some cases, we added a third clip, so that we could further control the folded form. Overall,
we found that hanging enabled the expression of several different shapes, though it was initially difficult to
predict how the forms would hang until we did so. (Luckily, it was easy to rehang until we liked the results.)

Summary and Conclusions

We plan to release an open-source version of our code so that users can upload their own set of images and
make their own orthographic or perspective layouts. Watch the installation website for updates.4

We plan to experiment with workshops for children, where they draw their own characters (monsters,
etc.), we scan them, the software immediately generates pleasing random layouts, and we can print them out.

Acknowledgements

Many thanks go to the Fitchburg Art Museum for inviting and housing this project. In particular, the
curator Lauren Szumita asked whether we could do any larger pieces than our usual ≈ 1ft scale, which we
misinterpreted as a requirement to go bigger, inspiring this project. Jesse Kenas-Collins constructed the
wooden trellis that we hung our pieces from, and played a major role in installation.

Many thanks also go to The Infrastructure Group at MIT CSAIL, in particular Jason Dorfman, for getting
the Canon poster printer working in time to make this installation possible.

2Funny construction story: Originally, we planned to print on an Epson SureColor T7270 Single Roll Edition Printer, but it
stopped working (no ink came through the printhead) exactly when we needed to start printing the final sheets. Luckily, the new
Canon printer arrived shortly thereafter and got installed just in time to save the day.

3Another funny construction story: Originally we thought that it would be best to staple each pair of sheets all along their
boundary, so we initially added staples every few inches. Later we realized that slight mismatches led to the paper buckling between
staples, which was unattractive. So we ended up removing all of the staples, and then adding a few where necessary after hanging.
Stapling and unstapling is an effective way to waste a couple of hours.

4https://erikdemaine.org/curved/HangingOut/

https://erikdemaine.org/curved/HangingOut/

