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We consider the separability of two point sets inside a polygon by means of chords or
geodesic lines. Specifically, given a set of red points and a set of blue points in the interior

of a polygon, we provide necessary and sufficient conditions for the existence of a chord
and for the existence of a geodesic path that separate the two sets; when they exist we
also derive efficient algorithms for their obtention. We also study the separation of the
two sets using the minimum number of pairwise non-crossing chords.

1. Introduction

Given two point sets R and B in the interior of a polygon (the red points and the

blue points, respectively), is there a chord separating R from B? This basic question

is the starting point for our paper, and one of several related problems we study.

Problems on separability of point sets and other geometric objects have gen-

erated a significant body of research in computational geometry. Many kinds of

separators have been considered, including lines 12, circles 3,4, convex polygons 7,

and wedges and strips 10. A thorough study is given in 16. The main motivations

underlying these different works arise in disciplines such as spatial data organiza-

tion, statistical analysis, and more generally, wherever methods for clustering or

classification are useful.

In the plane, an ideal paradigm of separability is by means of a single line,

whenever possible. (The analog in higher dimensions is a hyperplane, but we focus

here on two dimensions.) A line partitions the plane into two clean regions, and

gives an easy classification rule for any query point (the sidedness test). However,

if we constrain our working space to the interior of a polygon, an otherwise linearly

separable population of points may lie in many different cells (Figure 1, left). On

the other hand, the two point sets may be separable by just one chord of the poly-

gon, while no linear separation exists in the underlying plane without the polygon

boundaries (Figure 1, right).

Fig. 1. Left: red and blue points that are linearly separable in the plane but generate many regions
in the polygon. Right: a chord that separates point sets which cannot be separated with a line in
the plane.
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The study of basic geometric structures in the interior of a polygon naturally

leads to the study of geodesics (shortest paths) in the polygon. This topic has

also attracted a lot of attention. Some examples are the geodesic diameter 17, the

relative convex hull 19, the 1-center problem 14,18, the geodesic Voronoi diagrams
1,2,13, and most recently, geodesic ham-sandwich separators 5.

In Section 2 we study, both from the structural and computational viewpoint,

the two more natural ways to separate point sets in a polygon: by means of one

chord, and by means of a single geodesic line, i.e., a shortest path between two

boundary points. In fact, we prove that the necessary and sufficient conditions for

both kinds of separability are closely related. In both cases we obtain polynomial-

time algorithms to find a separator or report that none exists.

In Section 3 we study the problem of separating the two point sets using as few

non-crossing chords as possible. We show that the problem is polynomially solvable

when the polygon is combinatorially very simple, and that the problem becomes NP-

complete when the polygon may have holes. In between, there remains an intriguing

open problem.

Throughout this paper, R (the red points) and B (the blue points) are two given

finite sets of points inside a given polygon P . Their cardinalities are denoted by

r = |R| and b = |B|. The total number points in R∪B, plus the number of vertices

of the polygon P , is denoted by n. We let k denote the number of reflex vertices of

the polygon P .

2. Linear separability

Let C be a simple curve connecting two points on the boundary of a polygon P .

C decomposes P into two closed subsets C
+

and C
−

, with C
+
∪ C

−

= P and

C
+
∩ C

−

= C. We also write C+ = C
+
− C and C− = C

−

− C. We say that

C separates two sets R and B if R ⊆ Cα and B ⊆ Cβ , where α = +, β = − or

α = −, β = +. We say that C weakly separates two sets R and B if R ⊆ C
α

and

B ⊆ C
β
.

When the curve C is a geodesic, the sets C
+

and C
−

are called half-polygons.

The geodesic convex hull GH(S) (also called the relative convex hull) for a set S

of points inside a polygon P is the intersection of all half-polygons that contain S.

A set S is geodesically convex if S = GH(S).

Theorem 1. Two sets of points in a polygon P are separable by a chord if and

only if their geodesic convex hulls are disjoint.

Proof. Let C be a chord with endpoints p and q separating sets R and B in P . A

chord is a geodesic line, so by the definition of geodesic convex hulls, GH(R) ⊆ C
α

and GH(B) ⊆ C
β
, and so, GH(R) ∩ GH(B) ⊆ C. Moreover, since C does not

contain any points of R or B, GH(R) (resp. GH(B)) cannot contain p or q unless

that point is a reflex vertex in Cα (resp. Cβ), and GH(R) (resp. GH(B)) cannot

contain an interior point of C unless it contains both p and q. Note that p can only
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be a reflex vertex for at most one of Cα and Cβ . This implies that GH(R) and

GH(B) cannot intersect.

Now suppose GH(R) and GH(B) are disjoint. Let D be the shortest geodesic

with endpoints u ∈ GH(R) and v ∈ GH(B), let s be some line segment from D,

let ` be the bisector of s, and let m = s ∩ `. Define the chord C = (p, q) where

p and q are the intersections of ` and the boundary of P closest to m in both

directions. We claim that the chord C separates GH(R) and GH(B). Suppose

that on the contrary, the boundary of GH(R) intersects the segment mp, and

let p′ be the intersection closest to m. Let Q be the Jordan curve composed of

the portion of D from m to u, the boundary of GH(R) from u to p′, and the

segment from p′ to m. Note that the boundary of P does not intersect the interior

of the region surrounded by Q, and so the geodesics from m to u and from u

to p′ (which only intersect in u) are both concave. Consider the ray r from m,

orthogonal to the line up′, and intersecting that line in u′, and let u′′ be the first

intersection of r and the geodesic from u to p′. Since the geodesic from u to p′ is

concave, the geodesic distance from m to u is d(m, u) ≥ d(m, u′) > d(m, u′′), and

d(v, u) = d(v, m) + d(m, u) > d(v, m) + d(m, u′′) > d(v, u′′). This implies that D

was not the shortest geodesic from R to B, a contradiction.

Lemma 1. Given two disjoint geodesically convex polygons A and B in a polygon

P , the two points u ∈ A and v ∈ B that minimize the length of the geodesic path

between u and v can be found in O(n log n) time.

Proof. Let P ′ be the subpolygon GH(A∪B)−A−B, which can be computed in

O(n log n) time 19. The shortest geodesic path from any point in A to any point in

B must be entirely inside P ′, starting and ending at boundary points of P ′ shared

with A and B. The common boundary A′ between A and P ′ and the common

boundary B′ between B and P ′ are both concave chains of P ′. The boundary of

P ′ connects A′ and B′ using two other chains C and D. These chains C and D

may intersect along some path; they are concave wherever they do not intersect.

Let L be the set of supporting lines of all edges of C and D. The O(n) lines in L

subdivide the edges of A′ and B′ into O(n) sub-edges, which can be computed in

O(n log n) time by binary searching in each concave chain for each line. For any

sub-edge a of A′ and any sub-edge b of B′, we can compute in O(log n) time the

length d(a, b) of the shortest geodesic path between any point u ∈ a and any point

v ∈ b. First, in O(n) time, we preprocess P ′ into a data structure of Guibas and

Hershberger 9 supporting O(log n)-time queries for the length and first and last

edges of the geodesic path between two points u and v on the boundary of P ′. Now

the geodesic paths between any point u on the sub-edge a and any point v on the

sub-edge b have the same internal edges, so we can query any two such points u and

v in O(log n) time and then optimize the first and last edges in O(1) time. It can

be shown that the arc-length parameterization of the geodesic distance in P ′ from

a fixed point u on A′ to a point v moving at unit speed along the concave chain
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B′ is a convex function. This convexity for fixed u (and symmetrically for fixed v)

implies that every row and every column of the matrix d(a, b) over all sub-edges a

of A′ and b of B′ is unimodal and that a local minimum in the matrix is a global

minimum of the matrix. Therefore we can find the minimum distance in the matrix

(which is the desired shortest geodesic path length) via O(log2 n) queries using a

two-dimensional Fibonacci search. The Guibas-Hershberger data structure allows

us to report the geodesic path corresponding to the minimum matrix entry d(a, b)

in O(n) time.

Corollary 1. There is an O(n log n) algorithm that, given sets R of red points and

B of blue points in a simple polygon P , either finds a chord that separates R and

B or reports that no such chord exists.

Proof. Computing GH(R) and GH(B) can be done in O(n log n) time 19 and

verifying that they don’t intersect can be done within the same time bound. By the

previous lemma, we can find the shortest geodesic connecting GH(A) and GH(B)

in O(n log n) time. The separating chord can then be found in O(n) time.

Theorem 2. Two sets of points in a polygon P are weakly separable by a geodesic

line if and only if the interiors of their geodesic convex hulls are disjoint.

Proof. By the definition of a geodesic convex hull, if a geodesic line C weakly

separates R and B in P , then GH(R) ⊆ C
α

and GH(B) ⊆ C
β
, and so GH(R) and

GH(B) have disjoint interiors.

On the other hand, if GH(R) and GH(B) have disjoint interiors, then I =

GH(R) ∩ GH(B), if not empty, is a curve. Furthermore, it is a geodesic between

its two endpoints u and v. The boundaries of GH(R) and GH(B) are intersecting

on one side of u, and start with two disjoint line segments sα and sβ on the other

side. Draw a line segment from u along a ray bisecting the angle between sα and

sβ , until the first intersection with P , and do the same for v. The resulting curve I ′

is a geodesic line because it is the concatenation of three geodesics: I and two line

segments, and is locally optimal at both endpoints of I . We further claim it weakly

separates R and B. Indeed, suppose that the ray from u is intersected by GH(R),

and let u′ be the closest intersection to u. The segment uu′ is not intersected by

the boundary of P , so that segment must be contained in GH(R), but then uu′

must also be included in GH(B) since uu′ bisects the angle between sα and sβ , and

therefore uu′ ⊆ I , which is a contradiction.

Corollary 2. There is an O(n log n) algorithm that, given sets R of red points and

B of blue points in a simple polygon P , either finds a geodesic that weakly separates

R and B or reports that no such geodesic exists.

Proof. Computing GH(R) and GH(B) can be done in O(n log n) time, and verify-

ing that their interiors don’t intersect can be done within the same time bound using
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a line sweep algorithm. If there is a separating chord, we can find it in O(n log n)

time using the algorithm from Corollary 1. Otherwise, find I = GH(R) ∩ GH(B)

in O(n log n) time using a line sweep algorithm, and extend I as explained in The-

orem 2.

Theorem 3. Given sets R of red points and B of blue points in a simple polygon

P , deciding whether any geodesic (or any chord) in P separates r from B requires

Ω(n log n) time in the algebraic computation tree model.

Proof. We prove the lower bound by describing a linear-time reduction from the

integer set intersection problem: Given two sets X and Y of integers, determine

whether any integer lies in both sets.a Yao 20 proved that solving this problem

requires Ω(n log n) time in the algebraic computation tree model; the lower bound

applies even if one of the sets is given in sorted order. Let X be a set of n integers,

and let Y be a sorted sequence of n integers. We construct a simple polygon P with

O(n) edges as follows. The polygon is a rectangle centered along the x-axis, with

a thin crack of width 1/8, mostly along the x-axis. For every integer y ∈ Y , the

crack has a square bump of width 1/2 and height 1 centered at the point (y, 1/2).

Next, we transform Y into a set of n blue points {(y, 1/3) | y ∈ Y }. Finally, we

transform X into a set of n + 4 red points; a point at (x, 2/3) for each x ∈ X ,

plus two additional red points near the bottom corners of the large rectangle. The

reduction can be performed in linear time in the algebraic computation tree model.

If X and Y are disjoint, then all the non-corner red points are above the crack.

In this case, the red and blue points can be separated by a geodesic. In fact, by

making a few small adjustments to the ends of the crack, we can guarantee that

there actually is a separating chord; see Figure 2.

On the other hand, if X and Y are not disjoint, then one of the bumps in the

crack has both a red point r and a blue point b immediately below it. Any geodesic

that separates these two points must pass below r and above b; however, every

separating geodesic is above both of the bottom corner red points. It follows that

the red and blue points cannot be separated by any geodesic in P .

3. Separability by non-crossing chords

We consider next a natural generalization of one of the problems studied in Sec-

tion 2: to separate the two point sets using as few non-crossing chords as possible.

If crossings were allowed and the points were placed closely together, the solution

would consist of a minimum set of lines separating the sets in the plane, and finding

such a set is known to be NP-hard 8.

aWe can avoid the restriction to integer sets by replacing the small fractions in our construction
with formal infinitesimals; however, this change would limit our lower bound to algebraic decision

trees.
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1 2 43 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 2. The result of our reduction from X = {3, 4, 7, 9, 14, 16} and Y = 〈1, 5, 8, 12, 15〉.

More precisely, we say that a set of chords weakly separates R and B if the open

regions of the polygon bounded by the chords each contain only points from at

most one of R or B, but not both. A set of chords strictly separates R and B if the

closed regions of the polygons bounded by the chords contain only points from R

or B but not both. We show that the problem is polynomially solvable when P is

very simple, namely a pair of parallel lines or a triangle, and becomes NP-complete

when P may have holes. In between, there is an intriguing open problem on which

we comment at the end of the paper.

3.1. Separating points inside a strip

Let R and B be sets of red and blue points in a vertical strip. We assume all

points are not collinear on a vertical line. This case is easily solved, e.g. in the strict

separation case by adding a horizontal chord at every color alternation. Theorem

1 implies that if R and B are separable by a chord, then they have disjoint convex

hulls. In this case, R and B can be weakly separated by a chord that passes through

one red point and one blue point, and this canonical separating chord can be found

in O(n) time using linear programming 12. In the more general case where more

than one chord is required to separate the red and blue points, we define a canonical

set of separating chords as follows. Say that a chord is pinned if it passes through a

point in R ∪B and trapped if it passes through two points in R ∪B. A fan is a set

of chords with a common endpoint, called its apex. A canonical fan is a fan where

every chord is pinned and at least one chord is trapped. Finally, a set of chords

that weakly separate R∪B is canonical if it consists of a sequence of canonical fans

whose apexes lie on alternate sides of the strip. See Figure 3.

Lemma 2. Let R and B be sets of red and blue points in a strip. For any set

of non-crossing chords that weakly separate R and B, there is a canonical set of

non-crossing chords that weakly separate R and B into the same subsets.
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Fig. 3. Left: red and blue points in a strip, separated by non-crossing chords. Right: a canonical
weak separation into the same red and blue subsets; thicker chords are trapped.

Proof. We describe an algorithm to make canonical any weakly-separating set C

of non-crossing chords. The algorithm proceeds in two phases. In the first phase, we

move each chord in turn, from lowest to highest. Each chord is translated downward

as far as possible until it touches either a point in R∪B or an endpoint of the next

lower chord. In the latter case, we rotate the chord around the common endpoint

until it touches a point in R∪B. At the end of this phase, every chord is pinned; if

the pinned chord contains exactly one point in R ∪B, we call that point the pivot.

In the second phase, the algorithm maintains an active fan of chords with a

common endpoint on one side of the strip. The chords below the active fan (if any)

belong to an alternating sequence of canonical fans; the apex of the active fan (if

any) lies on the opposite side of the strip from the highest canonical fan. Initially,

the active fan consists of just the lowest chord; we can choose either endpoint as the

apex. We lift the apex of the active fan, maintaining contact between each chord

in the fan and its pivot point, until one of the following events occurs:

(1) The top chord in the active fan touches an endpoint of the next higher chord.

In this case, we add the next higher chord to the active fan and continue.

(2) The bottom chord in the active fan touches the apex of the next lower canonical

fan. In this case, we freeze the lowest chord, removing it from the active fan

and adding it to the next lower fan. If the active fan is now empty, we use the

next higher chord as the new active fan.

(3) A chord in the active fan touches a second point in R ∪ B. (This includes the

case where two chords in the fan coincide, and the case where the chord initially

contains at least two colored points.) In this case, that chord is now trapped.

We freeze the active fan, and the next higher chord (if any) becomes the new

active fan, with its apex on the opposite side of the strip from the old active

fan’s apex.
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The process ends when the topmost chord is frozen, at which point the entire set

of chords is canonical.

Theorem 4. A minimal set of non-crossing chords that weakly separate a set of

red points from a set of blue points in an infinite strip can be computed in O(n5)

time.

Proof. The previous lemma implies that it is sufficient to search for a minimal

canonical set of non-crossing chords. We compute such a set by considering all

possible sequences of non-crossing trapped chords, using a straightforward dynamic

programming algorithm. As we show below, for each such sequence, the minimum

number of additional chords that must be added to weakly separate the red and blue

points can be computed in linear time, after a global preprocessing stage. For any

two non-crossing trapped chords t− and t+, where t− is below t+, let T (t−, t+, left)

denote the minimum number of non-crossing chords that weakly separate the red

and blue points between t− and t+, where every chord shares either the left endpoint

of t− or the non-left endpoint of t+. We define T (t−, t+, right) analogously. See

Figure 4.

Fig. 4. T (t−, t+, left) = 6 and T (t−, t+, right) = 8.

We can easily compute T (t−, t+, left) by drawing a chord through every point in

the trapezoid, either from the bottom left corner or from the top non-left corner—

only one of these two chords lies entirely within the strip—and then discarding from

bottom to top any chord whose removal does not create an open region containing

points of both colors. With no preprocessing, this computation requires O(n log n)

time to sort points angularly around the opposite corners of the trapezoid, plus

O(n) time to scan through the sorted list. We can speed this up by computing

the arrangement of lines dual to R ∪B in an O(n2)-time preprocessing phase. The

angular order of R ∪ B around any point p is identical to the order in which the

lines dual to R ∪ B intersect the line p∗ dual to p; the Zone Theorem implies that
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we can compute this order in O(n) time by simply walking around the boundary

of the zone of p∗. A similar algorithm computes T (t−, t+, right) in linear time. Let

T (t−, t+) = min{T (t−, t+, left), T (t−, t+, right)}.

Now for any trapped chord t, let C(t) denote the size of the minimum canonical

set of chords that weakly separate the red and blue points on or above t. Here, the

set is constrained to contain chord t, but t is not included in the count. Clearly,

C(t) = 0 if all the points above t have the same color (in particular, if there are no

points above t). Otherwise, we have the recurrence

C(t) = 1 + min
t′

(

T (t, t′) + C(t′)
)

where t′ ranges over all trapped chords whose interior lies entirely above t. For

each trapped chord t, the function C(t) depends on O(n2) other trapped chords t′,

and each T (t, t′) can be evaluated in time O(n). Thus, not counting recursion, we

can compute C(t) in O(n3) time. Since there are O(n2) trapped chords t, we can

compute C(t) for all t in O(n5) time by straightforward dynamic programming.

Finally, the minimum number of non-crossing chords that separate R from B is

C(−∞) where −∞ denotes a symbolic chord infinitely far below all of the points.

Our algorithm requires only slight modifications if we desire a minimal set of

chords that strictly separate the red and blue points, where no point in R ∪ B

lies on a chord. Instead of using the points themselves to define canonical chord

sets, we associate each point p with two perturbed points p[ = p − (0, ε) and

p] = p + (0, ε), where ε is a symbolic infinitesimal. Now a pinned chord passes

through at least one symbolic point of the form p], but none of the form p[. A

trapped chord passes through exactly one p] and exactly one q[, where no points of

R∪B lie on the open segment (p, q). A chord passing through p[ and q] represents a

chord that lies arbitrarily close to a chord containing p and q, but that lies strictly

above q and strictly below p and contains no points of R ∪ B. Notice that when

several points p1, . . . , pk are collinear, a separating set of chords for them may

result in a canonical chord set that contains several symbolic chords of the form

pi, pi+1. These symbolic chords represent real chords that are each arbitrarily close

to the chord through all the p1, . . . , pk. Nevertheless, the symbolic chords represent

a sequence of distinct non-crossing real chords that can trap points from p1, . . . pk

between adjacent chords. The algorithm looks for sequences of symbolic chords

that separate original points, but is otherwise unchanged. The running time of the

algorithm remains the same: all legal trapped chords and the orderings of points

on chords is recorded in O(n2) time during the preprocessing phase.

3.2. Separating points in a triangle

Now suppose the points lie inside a triangle. If the optimal set of separating chords

has a simple linear structure, then a straightforward generalization of our strip

algorithm can find it in O(n5) time—we simply treat two edges of the triangle as one
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side of the “strip”, with the third edge forming the other side. However, the optimal

separating set could have a tree-like structure instead, with a single central region

bounded by three chords and three (possibly empty) subsets of triangle edges. In

this case, more effort is required, in part because we cannot assume that any of these

three chords passes through two points. Figure 5 shows a set of red and blue points

separated by three non-crossing chords; if we require some chord to pass through

two points, then at least four chords are required. To find an optimal solution of

Fig. 5. Separating points in a triangle. There is no separating set of three chords where one chord
hits points of both colors.

this form, we must modify our definition of “canonical” separating sets. We still

require that the chords comprise three sequences of alternating fans, where each

fan contains either a trapped chord or a bounding chord of the central region. The

central region is bounded by three chords, which can be either trapped or merely

pinned. However, any pinned chord must share an endpoint with an adjacent chord,

and two pinned chords can only share an endpoint if all three central chords are

pinned and form a triangle, as in Figure 5.

Theorem 5. A minimal set of non-crossing chords that weakly separate a set of

red points from a set of blue points in a triangle can be computed in O(n6) time.

Proof. The algorithm begins by computing the optimal strip-like solution in O(n5)

time, and only then considers tree-like solutions. There are O(n3) pinned triangles.

We can compute the optimal decomposition outside any pinned triangle in O(n3)

time, by determining the trapped chord closest to each pinned triangle edge; the

best decomposition beyond that trapped chord was already computed during the

strip-like phase of the algorithm. To handle the case where the central region has a

trapped bounding chord, we introduce a pair of ghost chords. These ghost chords

form a triangle with the trapped chord, and exactly one of the ghost chords passes
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through an input point. There are O(n3) ghost chords, and we can compute the

optimal decomposition outside each ghost chord in O(n3) time, exactly as we did

for trapped triangle edges. (The ghost chords do not actually contribute to the cost

of the solution.) Finally, for any trapped chord, we can find the best pair of ghost

chords in O(n) time.

For any constant t, a similar dynamic programming algorithm can be used to

separate red and blue points in any simple t-gon, or any polygon with holes with

a total of t edges, in time nO(t). As t increases, the algorithm considers chords

determined by larger subsets of input points. Since the algorithm is inefficient even

for very small values of t, we omit further details.

3.3. Polygons with holes

Theorem 6. Finding the minimal number of non-intersecting chords that separate

blue from red points in a polygon with holes is NP-hard.

Proof. Let Exp(x) be a boolean expression in conjunctive normal form with n

variables and m clauses such that each clause has three literals. Let GExp be the

graph (V, E), where V consists of the variables and clauses of Exp(x), and (xi, cj) ∈

E if and only if variable xi occurs in clause cj . If GExp is planar, then deciding

whether there is a assignment of true and false values for x such that Exp(x) is

true is known as the planar 3SAT problem. If we also require that each clause has

exactly one true literal, the problem is known as planar 1-in-3SAT. Laroche 11

proved that planar 1-in-3SAT is NP-complete. We prove our theorem by describing

a polynomial-time reduction from this problem.

We first show how to create a polygon P and a set of blue and red points from

a planar embedding of the graph GExp. Figure 6 shows the encoding of a vari-

able. We imagine that the boundary of the variable gadget is oriented clockwise.

The inside of the variable is the connected portion of the boundary that bounds a

hole; the remainder of the boundary is the outside. There are exactly two minimal

sets of chords that separate the blue and red points within each variable gadget;

these correspond to assigning the values true and false to the variable. The true

setting consists of chords that from the inside of the variable gadget go in clock-

wise direction across to the outside; in the false setting, the chords are oriented

counterclockwise. Figure 7 shows two close-ups of part of a variable, one set to true

and one set to false. We assume that the true and false settings each consist of k

chords. Notice that any other set of chords that separate the red and blue points

in a variable gadget requires more than k chords.

Clauses are encoded as equilateral triangles that meet their three variables in the

corners as shown in Figure 8. A bump is placed on each side of a triangle to prevent

chords from intersecting more than one variable gadget. A variable gadget meets

a clause gadget on its outside boundary. At the place where they touch, there is a
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xivariable xi

inside

outside

xi

xi

xi

xi

xi

Fig. 6. A variable contained in six clauses; black and white dots represent blue and red points
respectively.

little connection between the variable and the clause. If a clause contains a variable

xi, then the gadget for variable xi approaches the triangle with an angle of 30◦. If a

clause contains x̄i, then the gadget for variable xi approaches the triangle with an

angle of 90◦. Since GExp is planar, the variable and clause gadgets can be connected

to form a polygon P with holes.

Notice that if the gadget of xi is set to true in a clause containing xi, or if the

gadget of xi is set to false in a clause containing x̄i, then two parallel chords from

xi’s gadget cross the triangle. These two parallel chords separate the three blue

points in the center of triangle from the remaining red points in the triangle.

We now show that Exp(x) can be satisfied with exactly one true literal per

clause if and only if the blue and red points in P can be separated by exactly kn

non-intersecting chords.

First, suppose Exp(x) can be satisfied with exactly one true literal per clause.

We can separate the blue from the red points in each variable xi with k chords, de-

pending on the truth value of xi. Since each clause has exactly one true literal, only

the corresponding variable has two parallel chords that pass through the triangle.

So we have separated all blue from all red points in the polygon using kn chords.

On the other hand, suppose kn chords suffice to separate the blue and red

points. Each variable requires at least k separating chords, and the shape of the

clause gadget imposes the constraint that chords intersect no more than one variable

gadget. This implies that there are exactly k chords per variable. Therefore each

variable is set to true or false. The blue points at the center of each clause gadget

are separated from the red points in that gadget, which implies that each clause
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outside

inside
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setting

outside

inside

true

setting

xi

xi

Fig. 7. True and false settings of a variable.

contains exactly one true literal.

We still have to show that the size of the number of edges of the polygon and

the number of points inside is polynomial in n and m. Since GExp is planar, it has

a planar embedding with straight line segments on an O(n) × O(n) unit grid 6,15.

Thus the length of each edge is O(n+m). Break each edge near the clause endpoint

so that the incoming edges of each clause form angles of 120 degrees. The clause

vertices are then easy to draw using a tiny clause gadget with the openings aligned

with incoming edges. The variable vertices are represented by a point in the hole

of the variable gadget, and the interior part of the variable is wrapped around the

edges in clockwise order. The width of the variable, i.e. the distance between the

inside and outside boundaries, is a small constant < 1. The number of edges of the

polygon is O(n + m), and the length of every edge is O(n + m). The number of
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xi

xh

xj

Fig. 8. The clause (x̄h ∨ xi ∨ x̄j).

points in every edge is proportional to the length of the edge, so the total number

of points is O((n + m)2).

We conclude this section by remarking that between the results described in

Theorems 4, 5 and 6 there is a gap that raises an intriguing question:

Open Problem 1. What is the complexity of finding a minimal set of non-crossing

chords that weakly separate two point sets contained in the interior of

(a) a convex k-gon? (with k as part of the input)

(b) a disk?

(c) a simple polygon?
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