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Abstract. We give polynomial-time constant-factor approximation al-
gorithms for the treewidth and branchwidth of any H-minor-free graph
for a given graph H with crossing number at most 1. The approximation
factors are 1.5 for treewidth and 2.25 for branchwidth. In particular, our
result directly applies to classes of nonplanar graphs such as Ks-minor-
free graphs and K3 s-minor-free graphs. Along the way, we present a
polynomial-time algorithm to decompose H-minor-free graphs into pla-
nar graphs and graphs of treewidth at most cy (a constant dependent
on H) using clique sums. This result has several applications in design-
ing fully polynomial-time approximation schemes and fixed-parameter
algorithms for many NP-complete problems on these graphs.

1 Introduction

Treewidth plays an important role in the complexity of several problems in graph
theory. The notion was first defined by Robertson and Seymour in [RS84] and
served as one of the cornerstones of their lengthy proof of the Wagner conjec-
ture, now known as the Graph Minors Theorem. (For a survey, see [RS85].)
Treewidth also has several applications in algorithmic graph theory. In partic-
ular; a wide range of otherwise-intractable combinatorial problems are polyno-
mially solvable, often linearly solvable, when restricted to graphs of bounded
treewidth [ACP87,Bod93].

Roughly speaking, the treewidth of a graph is the minimum k such that the
graph can be “decomposed” into a tree structure of bags, with each vertex of
graph spread over a connected subtree of bags, so that edges only connect two
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vertices occupying a common bag, and at most k& 4 1 vertices occupy each bag.
(For the precise definition, see Section 2.)

Much research has been done on computing and approximating the treewidth
of a graph. Computing treewidth is NP-complete even if we restrict the input
graph to graphs of bounded degree [BT97], cocomparability graphs [ACP87, HM94],
bipartite graphs [Klo93], or the complements of bipartite graphs [ACP87]. On the
other hand, treewidth can be computed exactly in polynomial time for chordal
graphs, permutation graphs [BKK95], circular-arc graphs [SSR94], circle graphs
[K1093], and distance-hereditary graphs [BDKO0].

From the approximation viewpoint, Bodlaender et al. [BGHK95] gave an
O(log n)-approximation algorithm for treewidth on general graphs. A famous
open problem is whether treewidth can be approximated within constant fac-
tor. Treewidth can be approximated within constant factor on AT-free graphs
[BT01] (see also [BKMT]) and on planar graphs. The approximation for planar
graphs is a consequence of the polynomial-time algorithm given by Seymour and
Thomas [ST94] for computing the parameter branchwidth, whose value approxi-
mates treewidth within a factor of 1.5. To our knowledge, until now it remained
open whether treewidth could be approximated within a constant factor for other
kinds of graphs.

In this paper, we make a significant step in this direction. We prove that, if
H is a graph that can be drawn in the plane with a single crossing (a single-
crossing graph), then there is a polynomial-time algorithm that computes the
treewidth of any H-minor-free graph. The two simplest examples of such graph
classes are Ks-minor-free graphs and K3 3-minor-free graphs.

Our result is based on a structural characterization of the graphs excluding
a single-crossing graph as a minor. This characterization allows us to decom-
pose such a graph into planar graphs and graphs of small treewidth according
to clique sums. This decomposition theorem is a generalization of the current
decomposition results for graphs excluding special single-crossing graph such
as K33 [Asa85] and K5 [KM92]. We also show how this decomposition can be
computed in polynomial time.

Our decomposition theorem has two main applications. First, we show how
the tree decomposition and treewidth of each component in the decomposition
can be combined in order to obtain an approximation for the whole input graph.
Second, we show how the constructive decomposition can be applied to obtain
fully polynomial-time schemes and fixed-parameter algorithms for a wide variety
of NP-complete problems on these graphs.

This paper is organized as follows. First, in Section 2, we introduce the termi-
nology used throughout the paper, and formally define the parameters treewidth
and branchwidth. In Section 3, we introduce the concept of clique-sum graphs
and prove several results on the structure of graphs excluding single-crossing
graphs as minors. The main approximation algorithm is described in Section 4.
In Section 5, we present several applications of clique-sum decompositions in
designing algorithms for these graphs. Finally, in Section 6, we conclude with
some remarks and open problems.



2 Background

2.1 Preliminaries

All the graphs in this paper are undirected without loops or multiple edges. The
reader is referred to standard references for appropriate background [BM76].

Our graph terminology is as follows. A graph G is represented by G = (V, E),
where V' (or V(G)) is the set of vertices and E (or E(G)) is the set of edges. We
denote an edge e between u and v by {u,v}. We define n to be the number of
vertices of a graph when this is clear from context.

The (disjoint) union of two disjoint graphs G and Ga, G1 UGy>, is the graph
G with merged vertex and edge sets: V(G) = V(G1) U V(G2) and E(G) =
E(Gy)UE(Gs).

One way of describing classes of graphs is by using minors, introduced as
follows. Contracting an edge e = {u, v} is the operation of replacing both v and
v by a single vertex w whose neighbors are all vertices that were neighbors of
u or v, except u and v themselves. A graph G is a minor of a graph H if H
can be obtained from a subgraph of G by contracting edges. A graph class C is
a minor-closed class if any minor of any graph in C is also a member of C. A
minor-closed graph class C is H-minor-free it H ¢ C.

For example, a planar graph is a graph excluding both K3 3 and K5 as minors.

2.2 Treewidth

The notion of treewidth was introduced by Robertson and Seymour [RS86] and
plays an important role in their fundamental work on graph minors. To define
this notion, first we consider the representation of a graph as a tree, which
is the basis of our algorithms in this paper. A tree decomposition of a graph
G = (V, E), denoted by TD(G), is a pair (x,T) in which T'= (I, F) is a tree
and x = {x;|i € I} is a family of subsets of V(G) such that: (1) U;c; xi = V5
(2) for each edge e = {u,v} € E there exists an ¢ € I such that both u and
v belong to x;; and (3) for all v € V, the set of nodes {i € Ilv € x;} forms a
connected subtree of T. To distinguish between vertices of the original graph G
and vertices of T in TD(G), we call vertices of T nodes and their corresponding
Xi’s bags. The maximum size of a bag in TD(G) minus one is called the width
of the tree decomposition. The treewidth of a graph G (tw(G)) is the minimum
width over all possible tree decompositions of G.

2.3 Branchwidth

A branch decomposition of a graph G is a pair (T,7), where T is a tree with
vertices of degree 1 or 3 and 7 is a bijection from the set of leaves of T' to E(G).
The order of an edge e in T is the number of vertices v € V(G) such that there
are leaves t1,to in T in different components of T(V(T), E(T) — e) with 7(¢1)
and 7(t2) both containing v as an endpoint. The width of (T, ) is the maximum
order over all edges of T, and the branchwidth of G is the minimum width over



all branch decompositions of G. The following result implies that branchwidth
is a 1.5-approximation on treewidth:

Theorem 1 ([RS91], Section 5). For any graph G with m edges, there exists
an O(m?)-time algorithm that

1. given a branch decomposition (T,7) of G of width < k+ 1, constructs a tree
decomposition (x,T) of G that has width < %k‘; and

2. given a tree decomposition (x,T) of G that has treewidth k+ 1, constructs a
branch decomposition (T,7) of G of width < k.

While the complexity of treewidth on planar graphs remains open, the branch-
width of a planar graph can be computed in polynomial time:

Theorem 2 ([ST94], Sections 7 and 9). One can construct an algorithm
that, given a planar graph G,

1. computes in O(n3) time the branchwidth of G; and
2. computes in O(n®) time a branch decomposition of G with optimal width.

Combining Theorems 1 and 2, we obtain a polynomial-time 1.5-approximation
for treewidth in planar graphs:

Theorem 3. One can construct an algorithm that, given a planar graph G,

1. computes in O(n®) time a value k with k < tw(G) +1 < 2k; and
2. computes in O(n®) time a tree decomposition of G with width k.

This approximation algorithm will be one of two “base cases” in our de-
velopment in Section 4 of a 1.5-approximation algorithm for nonplanar graphs
excluding a single-crossing graph as a minor.

3 Computing Clique-Sum Decompositions for
Graphs Excluding a Single-Crossing-Graph Minor

This section describes the general framework of our results, using the key tool
of cliqgue-sums; see [HNRTO01,Hajo01].

3.1 Clique Sums

Suppose G and G are graphs with disjoint vertex-sets and k > 0 is an integer.
For i = 1,2, let W; C V(G;) form a clique of size k and let G (i = 1,2) be
obtained from G; by deleting some (possibly no) edges from G;[W;] with both
endpoints in W;. Consider a bijection h : W7 — W,. We define a k-sum G of
G1 and Gg, denoted by G = G @ G or simply by G = G1 @ Gs, to be the
graph obtained from the union of G and G} by identifying w with h(w) for all
w € Wi. The images of the vertices of Wy and W5 in G; @ G2 form the join
set.

In the rest of this section, when we refer to a vertex v of G in G or G4, we
mean the corresponding vertex of v in G; or G (or both). It is worth mentioning
that @ is not a well-defined operator and it can have a set of possible results.
See Figure 1 for an example of a 5-sum operation.



join set

G=G1®G,

Fig. 1. Example of 5-sum of two graphs.

3.2 Connection to Treewidth

The following lemma shows how the treewidth changes when we apply a clique-
sum operation, which will play an important role in our approximation algo-
rithms in Section 4. This lemma is mentioned in [HNRTO01] without proof. For
the sake of completeness, we present the proof here.

Lemma 1 ([HNRTO1]). For any two graphs G and H, tw(G @ H) <
max{tw(Q), tw(H)}.

Proof. Let W be the set of vertices of G and H identified during the @ operation.
Since W is a clique in G, in every tree decomposition of G, there exists a node
a such that W is a subset of y, [BM93]. Similarly, the same is true for W
and a node o’ of each tree decomposition of H. Hence, we can construct a tree
decomposition of G and a tree decomposition of H and add an edge between «
and o’. O

3.3 Computing Clique-Sum Decompositions

The main theorem of this section is an algorithmic version of the following exis-
tential theorem of Robertson and Seymour:

Theorem 4 ([RS93]). For any single-crossing graph H, there is an integer
cg > 4 (depending only on H) such that every graph with no minor isomorphic
to H can be obtained by 0-, 1-, 2- or 3-sum of planar graphs and graphs of
treewidth at most cp.



We use Theorem 4 in our constructive algorithm. For a graph G = (V| E), we
call a subset S of V(G) a k-cut if the induced subgraph G[V — S] is disconnected
and |S| = k. A k-cut is strong if G — S has more than two connected components,
or it has two connected components and each component has more than one
vertex. This definition is less strict than the notion of strong cuts introduced
in [KM92], where a similar (but consequently weaker) version of Lemma 2 is
obtained. Let S C V(G) be a cut that separates G into h > 2 components
Gi1, -+ ,Gp. For 1 < i < h, we denote by G; U K(C) the graph obtained from
G[V(G;) U C] by adding an edge between any pair of nonadjacent vertices in
C. The graphs G; U K(C), 1 < i < k, are called the augmented components
induced by C. Theorem 5 below describes a constructive algorithm to obtain
a clique-sum decomposition of a graph G as in Theorem 4 with the additional
property that the decomposition graphs are minors of the original graph G. In
this sense, the result is even stronger than Theorem 4. This additional property,
that each graph in the clique-sum series is a minor of the original graph, is
crucial for designing approximation algorithms in the next section; Theorem 4
alone would not suffice. First we illustrate the important influence of strong cuts
on augmented components:

Lemma 2. Let C be a strong 3-cut of a 3-connected graph G = (V, E), and
let G1,Ga,--- ,Gy, denote the h induced components of G|V — C|. Then each
augmented component of G induced by C, G; U K(C), is a minor of G.

Proof. Suppose C' = {x,y, z}. First consider the case that C' disconnects the
graph into at least 3 components. By symmetry, it suffices show that G; UK (C)
is a minor of GG. Contract all edges of G2 and G3 to obtain super-vertices y’
and z’. Because G is 3-connected, both y’ and 2’ are adjacent to all vertices
in C. Now contract edges {y,y'} and {z,2'} to obtain super-vertices y” and
2", respectively. Then z, 3", and 2" form a clique, so we have arrived at the
augmented component G; U K(C) via contractions. Next consider the case in
which G[V — C] has only two components G; and Gz, and both have at least
two vertices. Again it suffices to show that G; U K(C) is a minor of G. First
suppose that Gs is a tree. Because G is 3-connected, there is a vertex z’ in Gs
that neighbors z, and similarly a vertex 2z’ in G5 that neighbors z. Now contract
every other vertex of G5 arbitrarily to either =’ or 2/, to obtain super-vertices z”
and z”. Because G is connected, there is an edge between z” and z”. Because
G- has no cycle, there cannot be more than one edge between the components
corresponding to super-vertices ' and z”. Because G is 3-connected, there is an
edge between y and either z” or 2", say x”. Again because G is 3-connected, z”
is connected to a vertex of C' other than z. If z” is adjacent to y, contract the
edges {z",x} and {z”, 2}, and if 2" is adjacent to z, contract the edges {z",y}
and {2, z}, to form a clique on the vertices of C. Finally suppose that G5 has
a cycle C'. We claim that there are three vertex-disjoint paths connecting three
vertices of C’ to three vertices of C' in G5. By contracting these paths and then
contracting edges of C’ to form a triangle, we have a clique on the vertices of
C as desired. To prove the claim, augment the graph G by adding a vertex v
connected to every vertex in C, and by adding a vertex vs connected to every



vertex in C’. Because |C| = 3 and |C'| > 3, the augmented graph is still vertex
3-connected. Therefore there exist at least three vertex-disjoint paths from v; to
vg. Each of these paths must be in G2, begin by entering a vertex of C, and end
by leaving a vertex of C’, and these vertices of C and C’ must be different among
the three paths (because they are vertex-disjoint). Thus, if we remove the first
vertex vy and last vertex vo from each path, we obtain the desired paths. a

Theorem 5. For any graph G excluding a single-crossing graph H as a minor,
we can construct in O(n*) time a series of clique-sum operations G = G1 Gy @
<~ ® Gy, where each G, 1 <1i < m, is a minor of G and is either a planar graph
or a graph of treewidth at most cgy. Here each @ is a 0-, 1-, 2- or 3-sum.

Proof. The algorithm works basically as follows. Given a graph G, compute its
connectivity. If it is disconnected, consider each of its connected components
separately. If it has a 1-cut or 2-cut, recursively apply the algorithm on the
augmented components induced by that l-cut or 2-cut. If its connectivity is
at least three, find a strong 3-cut and recursively apply the algorithm on the
augmented components induced by that strong 3-cut. If the graph is 3-connected
but has no strong 3-cut, then we claim that it is either planar or has treewidth
at most cg.

We first prove the correctness of the algorithm above, and later fill in the
algorithmic details and analyze the running time. If G has a 1l-cut or 2-cut,
then each augmented component is a minor of G, and thus by Theorem 4 we
can recurse on each augmented component. The same holds for strong 3-cuts
if G is 3-connected, because Theorem 2 implies that the property of excluding
graph H as a minor is inherited by all its augmented components. Now suppose
that the graph G is 3-connected yet it has no strong 3-cut. It remains to show
that either the treewidth of G is greater than cy or that G is planar. Suppose
for contradiction that neither of these properties hold. By Theorem 4, G can
be obtained by 3-sums of a sequence of elementary graphs C = (Jy,...,J;).
(Because G is 3-connected, we have no k-sums for k < 2.) We claim that one of
the graphs in C must be a planar graph with at least five vertices. If this were
not the case, then all the graphs in C would have treewidth at most cy so, by
Lemma 1, G would also have treewidth < cg, which is a contradiction. Notice
also that we can not have more than one graph in C with at least five vertices
because we do not have strong 3-cuts. Therefore, C contains a planar graph with
at least 5 vertices and all the other graphs in C are K,’s. We claim that G
itself must be planar, establishing a contradiction. Suppose to the contrary that,
during the clique-sum operations forming G, there is a 3-sum G’ = G' © K,
with join set C such that G’ is planar but G” is not planar. Consider a planar
embedding of G’. Because C is a triangle in G’ and G’ & K} is not planar, there
are some vertices inside triangle C' and some vertices outside triangle C'. Thus
G" — C has at least three components so C is a strong 3-cut in G”. Because G”
is a graph in the clique-sum sequence of G, C' is also a strong 3-cut in G, which
is again a contradiction.

To analyze the running time of the algorithm, first we claim that, for a H-
minor-free graph G where H is single-crossing, we have |E(G)| = O(|V(G))).



This claim follows because the number of edges in planar graphs and graphs
of treewidth at most cy is a linear function in the number of vertices, and the
total number of vertices of graphs in a clique-sum sequence forming G is linear in
|V (G)| (we have linear number of k-sums and k < 3). In linear time we can obtain
all 1-cuts [Tar72] and we can obtain all 2-cuts using the algorithms of Hopcroft
and Tarjan [HT73] or Miller and Ramachandran [MR92]. The number of 3-cuts in
a 3-connected graph is O(n?) and we can obtain all 3-cuts in O(n?) time [KR91].
We can check whether each 3-cut is strong in O(n) time using a depth-first
search. All other operations including checking planarity and having treewidth
at most ¢y can be performed in linear time [Wil84,Bod96]. Now, if the algorithm
makes no recursive calls, the running time of the algorithm, T'(n), is O(n). If it
makes recursive calls for a 1-cut, we have that T(n) =T(n1)+T(n —ny +1) +
O(n), ni > 2, where n; and n — n; + 1 are the sizes of the two augmented
components. (We only split the graph into two 2-connected components at once,
possibly leaving the same 1-cut for the recursive calls.) Similarly, for recursive
calls for a 2-cut, we have T'(n) = T(n1) + T(n — n1 +2) + O(n), ny > 3.
For recursive calls for a strong 3-cut with exactly two components, we have
T(n) =T(n1) +T(n—n1+3)+0(n>), ni > 4. Finally, if we have recursive
calls for a strong 3-cut with at least three components, we have that T'(n) =
T(n1)+T(ng)+T(n—n1—na+6)+0(n3), 4<ny,na,n—n;—na+6<n-2,
where n1, no, and n — ny — ny + 6 are the sizes of the augmented components.
(Again, we only split the graph into three 3-connected components, possibly
leaving the same 3-cut for the recursive calls.) Solving this recurrence concludes
a worst-case running time of O(n?). O

We can also parallelize this algorithm to run in O(log?n) time using an
approach similar to that described by Kezdy and McGuinness [KM92]. The
details are omitted from this paper.

3.4 Related Work

Theorems 2 and 5 generalize a characterization of K3 s-minor-free graphs and
Ks-minor-free graphs by Wagner [Wag37]. He proved that a graph has no minor
isomorphic to K3 3 if and only if it can be obtained from planar graphs and Ky
by 0-, 1-, and 2-sums. He also showed that a graph has no minor isomorphic to
K5 if and only if it can be obtained from planar graphs and Vg by 0-, 1-, 2-,
and 3-sums. Here Vg denotes the graph obtained from a cycle of length 8 by
joining each pair of diagonally opposite vertices by an edge. We note that both
K5 and Vg have treewidth 4, i.e., cg = 4. Constructive algorithms for obtaining
such clique-sum series have also been developed. Asano [Asa85] showed how
to construct in O(n) time a series of clique-sum operations for K3 s-minor-free
graphs. Kézdy and McGuinness [KM92] presented an O(n?)-time algorithm to
construct such a clique-sum series for K5-minor-free graphs.



4 Approximating Treewidth

We are now ready to prove our final result, a 1.5-approximation algorithm on
treewidth:

Theorem 6. For any single-crossing graph H, we can construct an algorithm
that, given an H-minor-free graph as input, outputs in O(n®) time a tree decom-
position of G of width k where tw(G) < k+1 < 3tw(G).

Proof. The algorithm consists of the following four steps:

Step 1: Let G be a graph excluding a single-crossing graph H. By Theorem
5, we can obtain a clique-sum decomposition G = G1 ® G2 @ - -+ ® G, where
each G;, 1 <1i < m, is a minor of G and is either a planar graph or a graph of
treewidth at most cgr. According to the same theorem, this step requires O(n?)
time. Let B be the set of bounded treewidth components and P be the set of
planar components: B={i |1 <i<m, tw(G;) <cy}, P={1,...,m} — B.
Step 2: By Theorem 3, we can construct, for any i € P, a tree decomposition
D; of G; with width k; and such that

ki <tw(Gy)+1< 3k forallicP. (1)

The construction of each of these tree decompositions requires O(|V (G;)|°) time.
Asm =0(n)and >, ., ., [V(G;)| = O(n), the total time for this step is O(n®).
Step 3: Using Bodlaender’s algorithm in [Bod96], for any i € B, we can obtain a
tree decomposition of G; with minimum width &;, in linear time where the hidden
constant depends only on cg. Combining (1) with the fact that tw(G;) = k; for
each ¢ € B, we obtain

ki <tw(G;)+1< 3k forallie{l,...,m}. (2)

Step 4: Now that we have tree decompositions D; of each G;, we glue them
together using the construction given in the proof of Lemma 1. In this way,
we obtain a tree decomposition of G that has size k = max{k; | 1 < i < m}.
Combining this equality with (2), we have

k <max{tw(G;) |i=1,...,m}+1< 3k (3)

The details of implementation of this step in O(n*) time is similar to the details
described by Demaine et al. [DHT02] and hence omitted.

Finally, we prove that the algorithm is a 1.5-approximation. By Lemma 1,
we have that tw(G) < max{tw(G;) | ¢ = 1,...,m}. By Theorem 5, each G; is
a minor of G and therefore tw(G;) < tw(G). Thus, tw(G) = max{tw(G;) | i =
1,...,m} and from (3) we conclude that k < tw(G) +1 < %k and the theorem
follows. O

Notice that, in the theorem above, if we just want to output the value k
without the corresponding tree decomposition, then we just make use of Theo-
rem 3(1) in Step 2 and skip Step 4, and the overall running time drops to O(n?).
Using the same approach as Theorem 6, one can prove a potentially stronger
theorem:



Theorem 7. If we can compute the treewidth of any planar graph in polynomial
time, then we can compute the treewidth of any H-minor-free graph, where H 1is
single-crossing, in polynomial time.

Proof. We just use the polynomial-time algorithm for computing treewidth of
planar graphs in Step 2 of the algorithm described in the proof of Theorem 6. O

5 Other Applications of Constructing Clique-Sum
Decompositions

In this section, we show that the constructive algorithm described in Section 5
has many other important applications in algorithm design for the class of graphs
excluding a single-crossing graph as a minor. Roughly speaking, because both
planar graphs and graphs of bounded treewidth have good algorithmic proper-
ties, clique-sum decompositions into these graphs enable the design of efficient
algorithms for many NP-complete problems.

5.1 Polynomial-Time Approximation Schemes (PTASs)

Much work designs PTASs for NP-complete problems restricted to certain spe-
cial graphs. Lipton and Tarjan [LT80] were the first who proved various NP-
optimization problems have PTASs over planar graphs. Alon et al. [AST90]
generalized Lipton and Tarjan’s ideas to graphs excluding a fixed minor. Be-
cause these PTASs were impractical [CNS82], Baker [Bak94] developed practi-
cal PTASs for the problems considered by Lipton and Tarjan and Alon et al.
Eppstein [Epp00] showed that Baker’s technique can be extended by replacing
“bounded outerplanarity” with “bounded local treewidth.” Intuitively, a graph
has bounded local treewidth if the treewidth of an r-neighborhood (all vertices of
distance at most r) of each vertex v € V(G) is a function of r, r € N, and not
the number of vertices. Unfortunately, Eppstein’s algorithms are impractical for
nonplanar graphs. Hajiaghayi et al. [HNRT01,Haj01] designed practical PTASs
for both minimization and maximization problems on graphs excluding one of
K5 or K33 as a minor, which is a special class of graphs with bounded local
treewidth. Indeed, they proved the following more general theorem:

Theorem 8 ([HNRTO01,Haj01]). Given the clique-sum series of an H-minor-
free graph G, where H is a single-crossing graph, there are PTASs with approxi-
mation ratio 1+1/k (or 1+2/k) running in O(c*n) time (c is a small constant)
on graph G for hereditary mazimization problems (see [Yan78] for exact defini-
tions) such as mazimum independent set and other problems such as mazimum
triangle matching, maximum H-matching, mazimum tile salvage, minimum ver-
tex cover, minimum dominating set, minimum edge-dominating set, and sub-
graph isomorphism for a fized pattern.

Applying Theorem 5, we obtain the following corollary:



Corollary 1. There are PTASs with approzimation ratio 1 + 1/k (or 1+ 2/k)
with running time O(ckn +n*) for all problems mentioned in Theorem 8 on any
H-minor-free graph H where H is single-crossing.

5.2 Fixed-Parameter Algorithms (FPTs)

Developing fast algorithms for NP-hard problems is an important issue. Recently,
Downey and Fellows [DF99] introduced a new approach to cope with this NP-
hardness, called fixed-parameter tractability. For many NP-complete problems,
the inherent combinatorial explosion can be attributed to a certain aspect of the
problem, a parameter. The parameter is often an integer and small in practice.
The running times of simple algorithms may be exponential in the parameter but
polynomial in the rest of the problem size. For example, it has been shown that k-
vertex cover (finding a vertex cover of size k) has an algorithm with running time
O(kn + 1.271%) [CKJ99] and hence this problem is fixed-parameter tractable.
Alber et al. [ABFN00] demonstrated a solution to the planar k-dominating set in
time O(46V3% ). This result was the first nontrivial results for the parameterized
version of an NP-hard problem where the exponent of the exponential term
grows sublinearly in the parameter (see also [KP02] for a recent improvement
of the time bound of [ABFNO0O] to 0(227\/En)). Using this result, others could
obtain exponential speedup of fixed parameter algorithms for many NP-complete
problems on planar graphs (see e.g. [KC00,CKL01,KLL01,AFNO01]). Recently,
Demaine et al. [DHT02] extended these results to many NP-complete problems
on graphs excluding either K5 or K33 as a minor. In fact, they proved the
following general theorem:

Theorem 9 ([DHTO02]). Given the clique-sum series of an H-minor-free graph

G, where H is a single-crossing graph, there are algorithms that in 0(227‘/En)
time decide whether graph G has a subset of size k dominating set, dominating set
with property P, vertex cover, edge-dominating set, minimum maximal matching,
mazximum independent set, clique-transversal set, kernel, feedback vertex set and
a series of vertex removal properties (see [DHTO02] for exact definitions).

Again, applying Theorem 5, we obtain the following corollary:

Corollary 2. There are algorithms that in O(227ﬁn+n4) time decide whether
any H-minor-free graph G, where H is single-crossing, has a subset of size k
with one of the properties mentioned in Theorem 9.

6 Conclusions and Future Work

In this paper, we obtained a polynomial-time algorithm to construct a clique-
sum decomposition for H-minor-free graphs, where H is a single-crossing graph.
As mentioned above, this polynomial-time algorithm has many applications in
designing approximation algorithms and fixed-parameter algorithms for these
kinds of graphs [Hajol,HNRTO01,DHTO02]. Also, using this result, we obtained



a 1.5-approximation algorithm for treewidth on these graphs. Here we present
several open problems that are possible extensions to this paper.

One topic of interest is finding characterization of other kinds of graphs such
as graphs excluding a double-crossing graph (or a graph with a bounded number
of crossings) as a minor. We suspect that we can obtain such characterizations
using k-sums for £ > 3. Designing polynomial-time algorithms to construct such
decompositions would be instructive.

It would also be interesting to find other problems than those mentioned by
Hajiaghayi et al. [Hajo1,HNRT01,DHTO02] for which the technique of obtaining
clique-sum decomposition can be applied. We think that this approach can be
applied for many other NP-complete problems that have good (approximation)
algorithms for planar graphs and graphs of bounded treewidth.

From Theorem 2, the treewidth is a 1.5-approximation on the branchwidth.
A direct consequence of this fact and our result is the existence of a 2.25-
approximation for the branchwidth of the graphs excluding a single-crossing
graph. One open problem is how one can use clique-sum decomposition to ob-
tain a better approximation or an exact algorithm for the branchwidth of this
graph class.
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