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Abstract

We consider the following general correlation-clustering problem [1]: given a graph with
real nonnegative edge weights and a 〈+〉/〈−〉 edge labeling, partition the vertices into clusters
to minimize the total weight of cut 〈+〉 edges and uncut 〈−〉 edges. Thus, 〈+〉 edges with
large weights (representing strong correlations between endpoints) encourage those endpoints
to belong to a common cluster while 〈−〉 edges with large weights encourage the endpoints
to belong to different clusters. In contrast to most clustering problems, correlation clustering
specifies neither the desired number of clusters nor a distance threshold for clustering; both of
these parameters are effectively chosen to be the best possible by the problem definition.

Correlation clustering was introduced by Bansal, Blum, and Chawla [1], motivated by both
document clustering and agnostic learning. They proved NP-hardness and gave constant-factor
approximation algorithms for the special case in which the graph is complete (full information)
and every edge has the same weight. We give an O(log n)-approximation algorithm for the
general case based on a linear-programming rounding and the “region-growing” technique. We
also prove that this linear program has a gap of Ω(log n), and therefore our approximation is
tight under this approach. We also give an O(r3)-approximation algorithm for Kr,r-minor-free
graphs. On the other hand, we show that the problem is equivalent to minimum multicut, and
therefore APX-hard and difficult to approximate better than Θ(logn).

1 Introduction

Clustering objects into groups is a common task that arises in many applications such as data
mining, web analysis, computational biology, facility location, data compression, marketing, ma-
chine learning, pattern recognition, and computer vision. Clustering algorithms for these and other
objectives have been heavily investigated in the literature. For partial surveys, see e.g. [8, 14, 19,
20, 21, 25].

In a theoretical setting, the objects are usually viewed as points in either a metric space (typically
finite) or a general distance matrix, or as vertices in a graph. Typical objectives include minimizing
the maximum diameter of a cluster (k-clustering) [11], minimizing the average distance between
pairs of clustered points (k-clustering sum) [24], minimizing the maximum distance to a “centroid
object” chosen for each cluster (k-center) [11], minimizing the average distance to such a centroid
object (k-median) [13], minimizing the average squared distance to an arbitrary centroid point
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(k-means) [14], and maximizing the sum of distances between pairs of objects in different clusters
(maximum k-cut) [17]. These objectives interpret the distance between points as a measure of their
dissimilarity: the larger the distance, the more dissimilar the objects. Another line of clustering
algorithms intreprets the distance or weights between pairs of points as a measure of their similarity:
the larger the weight, the more similar the objects. In this case, the typical objective is to find
a k-clustering that minimizes the sum of weights between pairs of objects in different clusters
(minimum k-cut) [17]. All of these clustering problems are parameterized by the desired number
k of clusters. Without such a restriction, these clustering objective functions would be optimized
when k = n (every object is in a separate cluster) or when k = 1 (all objects belong to a single
cluster).

In the correlation-clustering problem introduced by Bansal, Blum, and Chawla [1], the under-
lying model is that objects can be truly categorized, and we are given probabilities about pairs of
objects belonging to common categories. For example, the multiset of objects might consist of all
authors of English literature, and two authors belong to the same category if they correspond to
the same real person. This task would be easy if authors published papers consistently under the
same name. However, some authors might publish under several different names such as William
Shakespeare, W. Shakespeare, Bill Shakespeare, Sir Francis Bacon, Edward de Vere, and Queen
Elizabeth I 1. Given some confidence about the similarity and dissimilarity of the names, our goal
is to cluster the objects to maximize the probability of correctness. There are two main objective
functions for this problem, that of minimizing disagreements and that of maximizing agreements
between the input estimates and the output clustering. The decision versions of these two opti-
mization problems are identical, and known to be NP-complete [1]. However, they differ in their
approximability.

As we consider both similarity and dissimilarity measures in our problem, it is in a sense
a generalization of the typical clustering objectives mentioned above. In fact, an appropriate
interpretation of our problem instance suggests that our objective is a combination of the minimum
k-clustering sum and minimum k-cut clustering objectives. An interesting property of our problem
is that the number k of clusters is no longer a parameter of the input; there is some “ideal” k which
the algorithm must find. Another clustering problem with this property is location area design, a
problem arising in cell phone network design. As formulated by Bejerano et al. [2], this problem
attempts to minimize the sum of the squared sizes of the clusters plus the weight of the cut induced
by the clustering. The similarities between these two problems allow us to apply many of the same
techniques.

1.1 Our Contributions

In this paper, we focus on the objective of minimizing disagreements in (weighted) general graphs.
We give an O(log n)-approximation algorithm for weighted general graphs and an O(r3)-approximation
algorithm for weighted graphs excluding the complete bipartite graph Kr,r as a minor (e.g., graphs
embeddable in surfaces of genus Θ(r2)). Our O(log n) approximation is based on rounding a lin-
ear program using the region growing technique introduced in the seminal paper of Leighton and
Rao [17] on multicommodity max-flow min-cut theorems. Using ideas developed in Bejerano et
al. [2], we are able to prove that this rounding technique yields a good approximation. Their paper
also inspires our O(r3) approximation which uses a rounding technique introduced by Tardos and
Vazirani [27] in a paper on max-flow min-multicut ratio and based on a lemma of Klein, Plotkin,

1Some scholars believe William Shakespeare was actually a pen name for one of the wealthier and more renowned
contemporaries of the Elizabethan era. Common candidates for the true authorship of Shakespeare’s works include
Sir Francis Bacon, Edward de Vere, and even, on occasion, Queen Elizabeth I [23].
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and Rao [16]. We further prove that the gap in the linear program can be Ω(log n), and therefore
our bounds are tight for any algorithm based on rounding this linear program. We also prove
that our problem is APX-hard because it is equivalent to the APX-hard problem minimum mul-
ticut [5], for which the current best approximation is O(log k) for a certain parameter k [9]. Any
o(log n)-approximation algorithm for our problem would require improving the state-of-the-art for
approximating minimum multicut. This equivalence also implies that any O(log k) algorithm for
minimum multicut yields an O(log n) for correlation clustering. Our results are summarized in
Table 1.

Problem class Approximation Hardness Equivalence

Unweighted complete graphs 4 log2 n
Unweighted general graphs O(log n) APX-hard Unweighted multicut
Weighted general graphs O(log n) APX-hard Weighted multicut

Table 1: Our contributions.

We remark that even for unweighted complete graphs, our (more general) algorithm has a better
approximation ratio than the constant-factor approximation algorithm of [1] for n ≤ 1081 ≈ 2270,
a rough upper bound on the number of particles in the known universe. This is because their
constant factor is approximately 20,000, whereas our approximation factor is smaller than 4 log2 n.

Most of our results were obtained simultaneously and independently by Charikar et al. [3]. The
results of their paper are detailed in the next section.

1.2 Related Work

The only previous work on the correlation-clustering problem is that of Bansal et al. [1]. Their
paper considers correlation clustering in an unweighted complete graph, i.e., every pair of objects
has an estimate of either “similar” or “dissimilar”. For minimizing disagreements, they give a
constant-factor approximation via a combinatorial algorithm. For maximizing agreements, they
give a polynomial-time approximation scheme (PTAS). The limitation of these two algorithms is
that they assume the input graph is complete, while in many applications, estimate information is
incomplete. Table 2 summarizes the results of their paper.

Problem class Approximation Hardness

Unweighted complete graphs c ≈ 20,000 NP-hard
Unweighted general graphs Open NP-hard
Weighted general graphs Open APX-hard

Table 2: Previous results on minimizing disagreements from [1].

The constant-factor algorithm of Bansal et al. [1] for unweighted complete graphs is combina-
torial. It iteratively “cleans” clusters until every cluster C is δ-clean (i.e., for every vertex v ∈ C, v
has at least (1−δ)|C| plus neighbors in C and at most δ|C| plus neighbors outside C). They bound
the approximation factor of their algorithm by counting the number of “bad” triangles (triangles
with two 〈+〉 edges and one 〈−〉 edge) in a δ-clean clustering and use the existence of these bad
triangles to lower bound OPT. Complete graphs have many triangles, and the counting arguments
for counting bad triangles rely heavily on this fact. When we generalize the problem to graphs that
are not necessarily complete, bad triangles no longer form a good lower bound on OPT. It may be
possible to find a combinatorial algorithm for this problem that bounds the approximation factor

3



by counting bad cycles (cycles with exactly one minus edge). However, in this paper, we formulate
the problem as a linear program and use the region-growing technique to round it.

Simultaneously, and independent of our work, Charikar et al. [3] gave several algorithmic and
hardness results for the correlation clustering problem. They studied both the minimization and
maximization variants of the problem. For minimizing disagreements, they also formulated the
problem as a linear program and used the region-growing technique to round it. For complete
graphs, they prove that this approach gives a factor 4 approximation. For general graphs, their
O(log n) approximation is identical to ours. For both results, they investigate the integrality gap
of the linear-programming formulation, finding examples with gaps of 2 and Ω(log n) respectively.
For maximizing agreements, the authors give a factor 0.7664 approximation in general graphs. As
for hardness results, they prove APX-hardness of minimizing disagreements in complete graphs
and maximizing agreements in general graphs. They also note that minimizing disaggreements in
general graphs is as hard as the minimum multicut problem.

Independent of Charikar et al. [3], the paper of Swamy [26] gives a 0.7666-approximation algo-
rithm for the problem of maximizing agreements in general graphs. Recently, Charikar and Wirth [4]
studied the problem of maximizing the correlation, or weight of agreements minus disagreements,
of a clustering. Their paper details an Ω(1/ log n) approximation for this problem.

1.3 Paper Structure

The rest of this paper is organized as follows. Section 2 formalizes the correlation-clustering problem
and some necessary notation. Section 3 presents explicit approximation algorithms for the problem
in general and Kr,r-minor-free graphs. Section 4 proves that the problem is equivalent to the
minimum multicut problem, thus yielding an APX-hardness result and another implicit O(log n)
algorithm. Section 5 discusses some applications of the correlation-clustering problem formulation.
We conclude with open problems in Section 6.

2 Preliminaries

2.1 Problem Definition

Bansal, Blum, and Chawla [1] present the following clustering problem. We are given a graph on
n vertices, where every edge (u, v) is labelled either 〈+〉 or 〈−〉 according to whether u and v have
been deemed to be similar or dissimilar. In addition, each edge has a weight ce ∈ [0,∞) which
can be interpreted as a confidence measure of the similarity or dissimilarity of the edge’s endpoints
(higher weight denotes higher confidence).2 The goal is to produce a partition of the vertices (a
clustering) that agrees as much as possible with the edge labels (see, for example, Figure 1). More
precisely, we want a clustering that maximizes the weight of agreements: the weight of 〈+〉 edges
within clusters plus the weight of 〈−〉 edges between clusters. Alternatively, the clustering should
minimize the weight of disagreements: the weight of 〈−〉 edges inside clusters plus the weight of
〈+〉 edges between clusters. Although the optimal solution to these two problems are the same,
they differ in their approximability.

In this paper, we focus on the problem of minimizing disagreements. In the rest of this paper
when we refer to the “correlation-clustering problem” or “the clustering problem” we mean the
problem of minimizing disagreements. We also say “positive edge” when referring to an edge
labelled 〈+〉 and “negative edge” when referring to an edge labelled 〈−〉. Note that the terminology

2For example, if there is a function f(u, v) that outputs the probability of u and v being similar, then a natural

assignment of weight to edge e = (u, v) is ce = | log f(u,v)
1−f(u,v)

| [1].
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Figure 1: Two clustering examples for unweighted and weighted (general) graphs. In the unweighted
case we give an optimal clustering with two errors: one error on an edge labelled 〈+〉 and one error
on an edge labelled 〈−〉. For the weighted case we get a different optimal clustering with three
errors on 〈+〉 edges and total weight 5.

“positive” and “negative” here refers to the edge label and not the weight; edge weights are always
nonnegative regardless of the label.

2.2 Notation

Let G = (V,E) be a graph on n vertices with edge weights ce ≥ 0. Let e(u, v) denote the label
(〈+〉, 〈−〉) of the edge (u, v). Let E〈+〉 be the set of positive edges and let G〈+〉 be the graph induced
by E〈+〉, E〈+〉 = {(u, v) | e(u, v) = 〈+〉}, G〈+〉 = (V,E〈+〉). Likewise we define E〈−〉 and G〈−〉 for
negative edges.

In general, for a clustering S = {S1, . . . , Sk}, let C(v) be the set of vertices in the same cluster
as v. We call an edge (u, v) a positive mistake if e(u, v) = 〈+〉 and yet u /∈ C(v). We call an edge
(u, v) a negative mistake if e(u, v) = 〈−〉 and u ∈ C(v). The number of mistakes of a clustering S

is the sum of positive and negative mistakes. The weight of the clustering is the sum of the weights
of mistaken edges in S. We introduce the following notation for the weight of a clustering S:

w(S) = wp(S) + wm(S),

wp(S) =
∑

{ce : e = (u, v) ∈ E〈+〉, u /∈ C(v)},
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wm(S) =
∑

{ce : e = (u, v) ∈ E〈−〉, u ∈ C(v)}.

We refer to the optimal clustering as OPT and its weight or cost as w(OPT). For a general set of
edges T ⊂ E, we define the weight of T to be the sum of the weights in T , w(T ) =

∑

e∈T ce. For a
graph G = (V,E) and a set of edges T ⊂ E we define the graph G \ T to be the graph (V,E \ T ).

3 O(log n) Approximation

In this section, we use a linear-programming formulation of this problem to design an approximation
algorithm. The algorithm first solves the linear program. The resulting fractional values are
interpreted as distances between vertices; close vertices are most likely similar, far vertices are
most likely dissimilar. The algorithm then uses region-growing techniques to group close vertices
and thus round the fractional variables. Using ideas from Bejerano et al. [2], we are able to show that
this approach yields an O(log n) approximation. We also present a modification to this approach
that yields an O(r3) approximation for Kr,r-minor-free graphs.

3.1 Linear-Programming Formulation

Consider assigning a zero-one variable xuv to each pair of vertices (hence xuv = xvu). When
(u, v) ∈ E, we sometimes write xuv as xe where it is understood that e = (u, v). Given a clustering,
set xuv = 0 if u and v are in a common cluster, and xuv = 1 otherwise. To express w(S) in this
notation, notice that 1 − xe is 1 if edge e is within a cluster and 0 if edge e is between clusters.
Thus

w(S) =
∑

e∈E〈−〉

ce(1 − xe) +
∑

e∈E〈+〉

cexe.

Our goal is to find a valid assignment of xuv’s to minimize this cost. An assignment of xuv’s is valid
(corresponds to a clustering) if xuv ∈ {0, 1} and the xuv’s satisfy the triangle inequality.

We relax this integer program to the following linear program:

minimize
∑

e∈E〈−〉

ce(1 − xe) +
∑

e∈E〈+〉

cexe

subject to xuv ∈ [0, 1]

xuv + xvw ≥ xuw

xuv = xvu

We will round this linear program to get an O(log n) approximation for our problem. This is in
fact the best approximation factor that we can hope for with this linear program because it has an
Ω(log n) integrality gap.

Theorem 3.1 The integrality gap of the above linear program is Ω(log n) in the worst case.

Proof: Recall that a d-regular graph G = (V,E) is a (d, c)-expander if, for every subset of vertices
U of size at most n/2, |N(U)| ≥ c|U | where N(U) is the set of vertices in V \ U adjacent to
vertices in U . Consider a (d, c)-expander G′ for some constants c and d, whose existence is shown
in e.g. [22]. To construct our example G, set the weight of every edge in G′ to 1 and its label
to 〈+〉. For each vertex v in G, add an edge of weight nd/2 to all neighbors u whose distance
from v is at least (logd(n/2) − 1)/2. Set the label of these edges to 〈−〉. Notice since there are at
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most nd/2 edges in G′, the weight of a single 〈−〉 edge is at least the total weight of all 〈+〉 edges.
Therefore, the optimal clustering S must cut all 〈−〉 edges, and so the diameters of the resulting
clusters must be at most logd(n/2)− 1. Because the vertices of G′ have bounded degree d, the size
of the cluster of diameter r is bounded by dr+1. Therefore, the clusters of the optimal clustering
have size at most n/2. By the expansion property of G′, the number of 〈+〉 edges we must cut is
at least (c

∑

S∈S
|S|)/2 = (cn)/2, and so the weight of the optimal clustering is Ω(n).

On the other hand, assigning xe = 2/(logd(n/2) − 1) for 〈+〉 edges and xe = 1 for 〈−〉 edges
is a feasible fractional solution of value at most (dn/2) × (2/(logd(n/2) − 1)), and so the weight of
the optimal fractional solution is O(n/ log n). The theorem follows. 2

3.2 Rounding in General Graphs

Region growing. We iteratively grow balls of at most some fixed radius (computed according
to the fractional xuv values) around nodes of the graph until all nodes are included in some ball.
These balls define the clusters in the final approximate solution. As high xuv values hint that u
and v should be in separate clusters, this approach seems plausible. The fixed radius guarantees
an approximation ratio on disagreements within clusters while the region-growing technique itself
guarantees an approximation ratio on disagreements between clusters.

First we present some notation that we need to define the algorithm. A ball B(u, r) of radius r
around node u consists of all nodes v such that xuv ≤ r, the subgraph induced by these nodes, and
the fraction (r − xuv)/xvw of edges (v,w) with only endpoint v ∈ B(u, r). The cut of a set S of
nodes, denoted by cut(S), is the weight of the positive edges with exactly one endpoint in S, i.e.,

cut(S) =
∑

|{v,w}∩S|=1, (v,w)∈E〈+〉

cvw.

The cut of a ball is the cut induced by the set of vertices included in the ball. The volume of a set
S of nodes, denoted by vol(S), is the weighted distance of the edges with both endpoints in S, i.e.,

vol(S) =
∑

{v,w}⊂S, (v,w)∈E〈+〉

cvwxvw.

Finally, the volume of a ball is the volume of B(u, r) including the fractional weighted distance of
positive edges leaving B(u, r). In other words, if (v,w) ∈ E〈+〉 is a cut positive edge of ball B(u, r)
with v ∈ B(u, r) and w /∈ B(u, r), then (v,w) contributes cvw · (r − xuv) weight to the volume of
ball B(u, r). For technical reasons, we also include an initial volume I to the volume of every ball
(i.e., ball B(u, 0) has volume I).

Algorithm. We can now present the algorithm for rounding a fractional solution FRAC to an
integral solution SOL. Suppose the volume of the entire graph is F , and thus wp(FRAC) = F . Let
the initial volume I of the balls defined in the algorithm be F/n, and let c be some constant which
we determine later.

Algorithm Round

1. Pick any node u in G.

2. Initialize r to 0.
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3. Grow r by min{(duv − r) > 0 : v /∈ B(u, r)} so that B(u, r) includes another entire edge, and
repeat until cut(B(u, r)) ≤ c ln(n + 1) × vol(B(u, r)).

4. Output the vertices in B(u, r) as one of the clusters in S.

5. Remove vertices in B(u, r) (and incident edges) from G.

6. Repeat Steps 1–5 until G is empty.

This algorithm clearly runs in polynomial time and terminates with a solution that satisfies the
constraints. We must show that the resulting cost is not much more than the original fractional
cost. Throughout the analysis section, we refer to the optimal integral solution as OPT. We also
use FRAC(xuv) and SOL(xuv) to denote the fractional and rounded solution of the variable xuv in
the linear program.

Positive edges. The termination condition on the region-growing procedure guarantees an O(log n)
approximation to the cost of positive edges (between clusters). Let B be the set of balls found by
our algorithm in step 3. Then,

wp(SOL) =
∑

(u,v)∈E〈+〉

cuv SOL(xuv)

= 1
2

∑

B∈B

cut(B)

≤ c
2 ln(n + 1) ×

∑

B∈B

vol(B)

≤ c
2 ln(n + 1) ×





∑

(u,v)∈E〈+〉

cuv FRAC(xuv) +
∑

B∈B

F

n





≤ c
2 ln(n + 1) ×

(

wp(FRAC) + F
)

≤ c ln(n + 1) × wp(FRAC)

where the fourth line follows from the fact that the balls found by the algorithm are disjoint.
The rest of our analysis hinges on the fact that the balls returned by this algorithm have radius

at most 1/c. This fact follows from the following known lemma [28]:

Lemma 3.2 For any vertex u and family of balls B(u, r), the condition cut(B(u, r)) ≤ c ln(n +
1) × vol(B(u, r)) is achieved for some r ≤ 1/c.

Negative edges. As in Bejerano et al. [2], we can use this radius guarantee to bound the remain-
ing component of our objective function. We see that our solution gives a c

c−2 -approximation to
the cost of negative edges (within clusters). Again, let B be the set of balls found by our algorithm
in step 3. Then,

wm(FRAC) =
∑

(u,v)∈E〈−〉

cuv(1 − FRAC(xuv))

≥
∑

B∈B

∑

(u,v)∈B∩E〈−〉

cuv(1 − FRAC(xuv))

≥
∑

B∈B

∑

(u,v)∈B∩E〈−〉

cuv(1 − 2/c)

8



≥ (1 − 2/c)
∑

B∈B

∑

(u,v)∈B∩E〈−〉

cuv

= c−2
c

wm(SOL)

where the third line follows from the triangle inequality and the 1/c bound on the radius of the
balls. The approximation ratio c

c−2 is O(1) provided c > 2.

Overall approximation. Combining these results, we pay a total of

w(SOL) = wp(SOL) + wm(SOL)

≤ c ln(n + 1) × wp(OPT) +

(

c

c − 2

)

× wm(OPT )

≤ max

{

c ln(n + 1),
c

c − 2

}

w(OPT)

and thus we have an O(ln n) approximation, where the lead constant, c, is just slightly larger than 2.

3.3 Rounding in Kr,r-Minor-Free Graphs

In Kr,r-minor-free graphs, we can use a theorem of Klein et al. [16] to round our linear program in
a way that guarantees an O(r3) approximation to the cost of disagreements between clusters. The
clusters produced by this rounding have radius at most 1/c, and thus the rest of the results from
the previous section follow trivially. The theorem states that, in graphs with unit-length edges,
there is an algorithm to find a “small” cut such that the remaining graph has “small” connected
components:

Theorem 3.3 [16] In a graph G with weight u on the edges which satisfy the triangle inequality,
one can find in polynomial time either a Kr,r minor or an edge cut of weight O(rU/δ) whose removal
yields connected components of weak diameter3 O(r2δ) where U is the total weight of all edges in G.

As in the case of the region-growing technique, this theorem allows us to cluster the graph
cheaply, subject to some radius guarantee. As this clustering cost is independent of n, this technique
is typically applied in place of the region-growing technique to get better approximations for Kr,r-
minor-free graphs. (See, for example, Tardos and Vazirani [27] or Bejerano et al. [2].) In particular,
this implies constant-factor approximations for various clustering problems on planar graphs.

The idea is as follows. Given a Kr,r-minor-free graph G with weights ce and edge lengths xe as
defined by the linear program, we subdivide each edge e ∈ E〈+〉(G) into a chain of ⌈kxe⌉ edges of
the same weight ce for some appropriate k, yielding a new graph G′. (Note that we do not include
the negative edges of G in G′.) We apply Theorem 3.3 to G′, getting an edge cut F ′ which maps to
an edge cut F in G of at most the same weight. This creates the natural correspondence between
the resulting components of G′ and G. Note two nodes at distance d in G are at distance at least
kd in G′. Hence, if we take δ = O(k/(cr2)), for a sufficient setting of the constants the components
in G will have diameter at most 2/c.

For any constant c > 2, we can bound the weight of the negative mistakes as in Section 3.2 by
( c

c−2)wm(FRAC). The weight of the positive mistakes is simply the weight of the cut F ′, and so,

3The weak diameter of a connected component in a modified graph is the maximum distance between two vertices
in that connected component as measured in the original graph. For our purposes, distances are computed according
to the xu,v which satisfy the triangle inequality and are defined on all pairs of vertices, so the weak diameter equals
the diameter.
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by Theorem 3.3, we just need to bound the total weight U ′ of the graph G′. Let U =
∑

e∈E〈+〉(G) ce

be the total weight of positive edges in G and recall vol(G) =
∑

e∈E〈+〉(G) cexe. Then

U ′ =
∑

e∈G′

ce

=
∑

e∈E〈+〉(G)

⌈kxe⌉ce

≤
∑

e∈E〈+〉(G)

(kxe + 1)ce

= k vol(G) + U.

By Theorem 3.3, the weight of F , which equals the weight of F ′, is O(rU ′/δ) = O(r3(k vol(G) +
U)/k). Taking k = U/ vol(G), this becomes O(r3 vol(G)) and is thus an O(r3) approximation of
the cost of disagreements between clusters, as desired. The size of G′ may be pseudopolynomial
in the size of G. However, the algorithm of Klein et al. [16] consists of r breath-first searches of
G′, and these can be implemented without explicitly subdividing G. Thus, the algorithm runs in
polynomial time.

4 Relation to Multicut

In this section, we prove that the correlation-clustering problem is equivalent to the multicut
problem, thus yielding another O(log n) approximation for our problem as well as some hardness
results.

Definition 4.1 The weighted multicut problem is the following problem: Given an undirected
graph G, a weight function w on the edges of G, and a collection of k pairs of distinct vertices
(si, ti) of G, find a minimum weight set of edges of G whose removal disconnects every si from the
corresponding ti.

The multicut problem was first stated by Hu in 1963 [12]. For k = 1, the problem coincides of
course with the ordinary min-cut problem. For k = 2, it can be also solved in polynomial time by
two applications of a max flow algorithm [31]. The problem was proven NP-hard and APX-hard
for any k ≥ 3 in by Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis [5]. The best
known approximation ratio for weighted multicut in general graphs is O(log k) [9] . For planar
graphs, Tardos and Vazirani [27] give an approximate max-flow min-cut theorem and an algorithm
with a constant approximation ratio. For trees, Garg, Vazirani, and Yannakakis give an algorithm
with an approximation ratio of 2 [10].

4.1 Reduction from Correlation Clustering to Weighted Multicut

We now show that finding an optimal clustering is equivalent to finding a minimum-weight edge
set that covers all erroneous cycles. An erroneous cycle is a simple cycle containing exactly one
negative edge. An edge covers a cycle if the edge is contained in the cycle, i.e., removing the edge
breaks the cycle. Figure 2 illustrates the equivalence.

Guided by this observation, we define a multicut problem derived from our original graph by
replacing the negative edges with source-sink pairs (and some other required changes). We show
that a solution to the newly formed multicut problem induces a solution to the clustering problem
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Original Graph G

Clustering A Clustering B

<+> Labeled edge

<-> Labeled edge

Figure 2: Two optimal clusterings for G. For both of these clusterings we have removed two edges
(different edges) so as to eliminate all the erroneous cycles in G. After the edges were removed
every connected component of G〈+〉 is a cluster. Note that the two clusterings are consistent; no
positive edges connect two clusters and no negative edges connect vertices within the same cluster.

with the same weight, and that optimal solution to the multicut problem induces an optimal solution
to the clustering problem.

These reductions imply that the O(log k)-approximation algorithm for the multicut problem
[9] induces an O(log n)-approximation algorithm for the correlation-clustering problem. We prove
this for weighted general graphs, which implies the same result for unweighted general graphs. We
start by proving two simple lemmata. We call a clustering a consistent clustering if it contains no
mistakes, i.e., if there are no cut positive edges or uncut negative edges.

Lemma 4.2 A graph contains no erroneous cycles if and only if it has a consistent clustering.

Proof: Let G be a graph with no erroneous cycles, and let S be the set of connected components
of G〈+〉. We argue that S is a consistent clustering. Assume that (u, v) is a negative mistake in S,
i.e., e(u, v) = 〈−〉 and u ∈ C(v). Because u and v belong to the same cluster, they are on the
same connected component of G〈+〉. It follows that there is a simple path of positive edges from
u to v. This path, combined with the negative edge (u, v), creates an erroneous cycle. From the
construction of S (the connected components of G〈+〉) it is obvious that S contains no positive
mistakes either, and so S is a consistent clustering.

Let S be a consistent clustering on a graph G. We claim that G contains no erroneous cycle.
Assume (v1, v2, . . . , vk) is erroneous cycle of size k. Without loss of generality we let (v1, v2) be the
negative edge in the cycle. If v1 ∈ C(v2) then we have a negative mistake which means S is not
consistent. If v1 /∈ C(v2) then there must exist a point 1 ≤ i ≤ k − 1 along the cycle such that
vi /∈ C(vi+1) which in turn means that the edge (vi, vi+1) is a positive mistake. 2

Lemma 4.3 Let F be a set of edges of minimum weight such that G \ F contains no erroneous
cycles and T be a set of edges on which an optimal clustering makes mistakes. Then the weight of
F equals the weight of T .
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Proof: Let S be a clustering on G, and let T be the set of mistakes made by this clustering. Then
S is a consistent clustering on G \ T , and so the result follows from Lemma 4.2. 2

We give a reduction from the problem of correlation clustering to the weighted multicut prob-
lem. The reduction translates an instance of unweighted correlation clustering into an instance of
unweighted graph multicut, and an instance of weighted correlation clustering into an instance of
weighted graph multicut. Refer to Figure 3 for an example.

Transformed graph H

S 1

T 1

S 2

S 3

T2

T3

<+> Labeled edge

Source-sink pair

New Vertices

Figure 3: The original graph from Figure 2 after the transformation.

Given a weighted graph G whose edges are labelled {〈+〉, 〈−〉}, we construct a new graph HG

and a collection of source-sink pairs SG = {〈si, ti〉} as follows:

• For every negative edge (u, v) ∈ E〈−〉 we introduce a new vertex v cu,v, a new edge (v cu,v, u)
with weight equal to that of (u, v), and a source-sink pair 〈v cu,v, v〉.

• Let Vnew denote the set of new vertices, Enew, the set of new edges, and SG, the set of source-
sink pairs. Let V

′
= V ∪ Vnew, E

′
= E〈+〉 ∪Enew, HG = (V

′
, E

′
). The weight of the edges in

E〈+〉 remains unchanged. We now have a multicut problem on (HG, SG).

We claim that any solution to the multicut problem implies a solution to the correlation-clustering
problem with the exact same value, and that an approximate solution to the former gives an
approximate solution to the latter.

Theorem 4.4 (HG, SG) has a cut of weight W if and only if G has a clustering of weight W , and
we can easily construct one from the other. In particular, the optimal clustering in G of weight W
implies an optimal multicut in (HG, SG) of weight W and vice versa.

The proof follows from the following two lemmas:

Lemma 4.5 Let S be a clustering on G with weight W . Then there exists a multicut T ′ in (HG, SG)
with weight W .

Proof: Let S be a clustering of G with weight W , where T is the set of mistakes made by S

(w(T ) = W ). Let T ′ = (T ∩ G〈+〉) ∪ {(v cu,v , u) | (u, v) ∈ T ∩ G〈−〉}. Note that w(T ) = w(T ′). We
now argue that T ′ is a multicut. Assume not; then there exists a pair (v cu,v, v) ∈ SG and a path
from v cu,v to u that contains no edge from T ′. By construction, this implies that there exists a path
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from u to v in G〈+〉 \ T which, together with the negative edge (u, v), forms an erroneous cycle in
G \ T . This is a contradiction since, by definition of T , G \ T has a clustering with no mistakes.
Note that the proof is constructive. 2

Lemma 4.6 If T ′ is a multicut in (HG, SG) of weight W , then there exists a clustering S in G of
weight W .

Proof: We construct a set T from the cut T ′ by replacing all edges in T ′ that are in Enew with the
corresponding negative edges in G, and define a clustering S by taking every connected component
of G〈+〉 \T as a cluster. Note that T has the same total weight as T ′. We argue that T is precisely
the set of mistakes of S, and thus the weight of S is W . In otherwords, it suffices to prove that
S is a consistent clustering on G \ T . Assume not; then there exists an erroneous cycle in G \ T
(Lemma 4.2). Let (u, v) be the negative edge along this cycle. Then it follows that there is a path
from v cu,v to v in HG which does not traverse any edge in T ′. But the pair 〈vu,v, v〉 are a source-sink
pair which is in contradiction to T ′ being a multicut. 2

We have presented a mapping f from an instance x of the correlation-clustering problem to an
instance f(x) of the multicut problem. We have also presented a mapping g from a feasible solution
of f(x) (multicut problem) to a feasible solution of x (the clustering problem) such that the value
of the solution does not change. This means that if s is a solution to the multicut problem f(x)
such that w(s) = O(α · w(OPT(Multicut))) then g(s) is a solution to the clustering problem such
that w(g(s)) = α ·w(OPT(Clustering)). We can now use the approximation algorithm of [9] to get
an O(log k) approximation solution to the multicut problem (k is the number of source-sink pairs)
which translates into an O(log |E〈−〉|) ≤ O(log n2) = O(log n) solution to the clustering problem.
Note that this result holds for both weighted and unweighted graphs and that the reduction of the
unweighted correlation-clustering problem results in a multicut problem with unit capacities and
demands.

4.2 Reduction from Multicut to Correlation Clustering

In the previous section we showed that every correlation-clustering problem can be presented (and
approximately solved) as a multicut problem. We now show that the opposite is true as well, that
every instance of the multicut problem can be transformed to an instance of a correlation-clustering
problem, and that transformation has the following properties: any solution to the correlation-
clustering problem induces a solution to the multicut problem with lower or equal weight, and an
optimal solution to the correlation-clustering problem induces an optimal solution to the multicut
problem.

In the previous section we could use one reduction for the weighted version and the unweighted
version. Here we present two slightly different reductions from unweighted multicut to unweighted
correlation clustering and from weighted multicut to weighted correlation clustering.

4.2.1 Reduction from Weighted Multicut to Weighted Correlation Clustering

Given a multicut problem instance: an undirected graph H, a weight function w on the edges of
H, w : E → R+, and a collection of k pairs of distinct vertices S = {〈si, ti〉, . . . , 〈sk, tk〉)} of H, we
construct a correlation-clustering problem as follows:

• We start with GH = H, all edge weights are preserved and all edges labelled 〈+〉.

• In addition, for every source-sink pair 〈si, ti〉 we add to GH a negative edge ei = (si, ti) with
weight w(ei) =

∑

e∈H w(e) + 1.
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Our transformation is polynomial, adds at most O(n2) edges, and increases the largest weight in
the graph by a multiplicative factor of at most O(n2).

Theorem 4.7 A clustering on GH with weight W induces a multicut on (H,S) with weight at
most W . Similarly, a multicut in (H,S) with weight W induces a clustering on GH with weight W .

Proof: Let S be a clustering on GH of weight W . If S contains no negative mistakes, then the set
of positive mistakes T is a multicut on H of weight W . If S contains a negative mistake, say (u, v),
take one of the endpoints (u or v) and place it in a cluster of its own, thus eliminating this mistake.
Because every negative edge has weight at least the sum of all positive edges, the gain by splitting
the cluster exceeds the loss introduced by new positive mistakes. Therefore the new clustering S

′

on G has weight W ′ < W , and contains no negative mistakes. Thus, the set of positive mistakes
T ′ is a multicut on H of weight at most W .

Now let T denote a multicut in (H,S) of weight W and define clustering S on GH as the
connected components of G〈+〉 \ T . Note that S contains no negative mistakes and so has weight
w(T ) = W . 2

Corollary 4.8 An optimal clustering in GH induces an optimal multicut in (H,S).

Proof: This follows directly from the statements in the above lemma. 2

4.2.2 Reduction from Unweighted Multicut to Unweighted Correlation Clustering

Given an unweighted multicut problem instance: an undirected graph H and a collection of k
pairs of distinct vertices S = {〈si, ti〉, . . . , 〈sk, tk〉} of H, we construct an unweighted correlation-
clustering problem as follows; refer to Figure 4.

• For every v such that 〈v, u〉 ∈ S or 〈u, v〉 ∈ S (i.e., v is either a source or a sink), we add n−1
new vertices and connect those vertices and v in a clique with positive edges (weight 1). We
denote this clique by Qv.

• For every pair 〈si, ti〉 ∈ S, we connect all vertices of Qsi
to ti and all vertices of Qti to si

using edges labelled 〈−〉.

• Other vertices of H are added to the vertex set of GH , and edges of H are added to the edge
set of GH and labelled 〈+〉.

Our goal is to emulate the previous argument for weighted general graphs in the context of
unweighted graphs. We do so by replacing the single edge of high weight with many unweighted
negative edges. Our transformation is polynomial time, adds at most n2 vertices and at most O(n3)
edges.

Lemma 4.9 Given a clustering C on G, we can construct another clustering C ′ on G such that
C ′ is pure and w(C ′) ≤ w(C).

Proof: For every Qv that is split amongst two or more cluster we take all vertices of Qv to form a
new cluster. By doing so we may be adding up to n − 1 new mistakes, (positive mistakes, positive
edges adjacent to v in original graph). Merging these vertices into one cluster component reduces
the number of errors by at least n − 1.
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Original Multicut problem Transformed graph G

S 1

T 1

S 2

S 3

T2

T3

Figure 4: Transformation from the unit-capacity multicut problem (on the left) to the unweighted
correlation-clustering problem (on the right).

If two Qv and Qw are in the same cluster component, we can move one of them into a cluster of
its own. As before, we may be introducing as many as n−1 new positive mistakes but simultaneously
eliminating 2n negative mistakes. 2

Theorem 4.10 A clustering on GH with weight W induces a multicut on (H,S) with weight ≤
W . An optimal clustering in G of weight W induces an optimal multicut for (H,S) of weight W .

Proof: We call a clustering pure if all vertices that belong to the same Qv are in the same cluster,
and that if 〈v,w〉 ∈ S then Qv and Qw are in different clusters. The following proposition states
that we can “fix” any clustering to be a pure clustering without increasing its weight.

Given a clustering C on GH we first “fix” it using the technique of Lemma 4.9 to obtain a pure
clustering C

′
. Any mistake for pure clustering must be a positive mistake, the only negative edges

are between clusters.
Let T be the set of positive mistakes for C ′, we now show that T is a multicut on (H,S). No

source-sink pair are in the same cluster because the clustering is pure and removing the edges of T
disconnects every source/sink pair. Thus, T is a multicut for (H,S).

Let OPT be the optimal clustering on G. Without loss of generality, we can assume that OPT
is pure (otherwise, by Lemma 4.9, we can construct another clustering with no higher cost) and
therefore induces a multicut on (H,S). Let T denote the minimum multicut in (H,S). T induces
a pure-clustering on G as follows: take the connected component of G〈+〉 \ T as clusters and for
every terminal v ∈ S add every node in Qv to the cluster containing vertices v. It can be easily
seen that this gives a pure clustering, and that the only mistakes on the clustering are the edges
in T . The result follows. 2
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4.3 Remarks

The two-way reduction we just presented proves that the correlation-clustering problem and the
multicut problem are essentially identical. This reduction also allows us to transfer hardness-of-
approximation results from one problem to the other. Because the multicut problem is APX-hard
and remains APX-hard even in the unweighted case, the unweighted correlation-clustering problem
is also APX-hard.

An interesting observation comes from the constant-factor approximation for the correlation
clustering problem on the unweighted complete graph from [1]. This result implies that the corre-
sponding unweighted multicut problem, in which every pair 〈u, v〉 of nodes is either an edge or a
source-sink pair, has a constant-factor approximation.

On the other hand, correlation-clustering problems where G〈+〉 is a planar graph or has a tree
structure has a constant-factor approximation (as follows from [27, 10]).

5 Use of Correlation Clustering

In this section we motivate correlation clustering by describing several clustering situations where
it is useful.

5.1 When We Have Attraction/Rejection Data

The correlation-clustering approach gives us a natural and unique way to solve problems that
have more than one distance measure or problems that need to balance between two possible
contradicting measures. For example, suppose we have a set of guests, each of whom has preferences
for people they would like to sit with and for people they would prefer to avoid. We must group
the guests into tables in a way that enhances amicability of the atmosphere. Using the correlation-
clustering setting we can solve this problem and get a provable approximation bound.

5.2 As a Way of Solving Constraint-Clustering Problems

There has been a great deal of work on solving a clustering problem subject to constraints [18, 29,
30, 15]. In a constraint clustering problem we have the following inputs:

1. A set of objects, a distance measure between them, and an objective function to be minimized
(the traditional clustering setting)

2. A set of pairwise constraints among the objects.

One seeks a clustering that minimizes the objective function and satisfies the set of constraints
simultaneously. One common approach to address constraint-clustering problems is to use a clus-
tering/search algorithm (e.g., k-means [18], k-median, hierarchal clustering) in the space of all
feasible clusterings (those respecting the constraint). This approach treats the constraints as hard
and consistent (must and can be simultaneously satisfied), and assumes that one can search through
the space of feasible constraints [29, 30, 15].

We suggest a different approach: instead of treating a constraint-clustering problem as an
unconstrained clustering problem in a trimmed search space, we look at the problem as a soft
constraint satisfaction problem. We convert the distance between any two items into a constraint,
combine this set of constraints with the original set of constraints and solve the resulting constraint
satisfaction problem. Restructuring the problem as a constant satisfaction problem allows us to
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use the correlation-clustering algorithm and get a provable approximation result as opposed to the
search heuristics used in previous constrained clustering algorithms.

5.3 As a Way to Determine the Number of Clusters

Traditional clustering methods use positive distance or similarity measures and seek to minimize
the distance or maximize the similarity of elements within the same cluster. To avoid the problem of
converging to the trivial solutions of putting all elements in the same cluster (maximize similarity)
or putting each element in a cluster of his own (minimize distances within a cluster) one usually
limits the number of clusters. (E.g., k-means, k-median, etc).

Correlation clustering suggests a different approach. Given a distance measure, we set a thresh-
old, where all distances below the threshold represent attraction (the elements are close, they should
be in the same cluster) and distance above the threshold represents rejection (the elements are far
apart, they should not be in the same cluster). We create a graph were each item is a node and
between any two elements we have an edge. We label these edges 〈+〉 if the distance between the
elements is below the threshold and 〈−〉 if it is above the threshold. We set the weight of the edge
according to the original distance between the elements; small distances become a positive labelled
edges with large weight, whereas large distance become negative labelled edges of large weight. We
now solve the correlation-clustering problem on the resulting graph.

One advantage of this approach is that choosing a threshold can be much more meaningful then
choosing the number of clusters. The threshold is a property of the distance measure; it is just
our observation of “near” and “far”. It is independent of the actual data, and therefore, unlike
an arbitrary number of clusters, k, may have a “real” meaning. Another possible advantage of
this approach is that the correlation-clustering algorithm can also handle outliers easily. Outliers
will usually get a cluster of their own, and when the algorithm ends we can simply discard small
isolated clusters.

5.4 When We Have Only Partial Pairwise Measures

Most k-based algorithms assume points are positioned in a metric space, or at least that we have
a known weight for every pair of items. This is usually not the case in real world problems.
When using the correlation-clustering framework we can work with any subset of pairwise distance
measure and just omit the unknown relations from the graph.

6 Conclusion

In this paper, we have investigated the problem of minimizing disagreements in the correlation-
clustering problem. We gave an O(log n) approximation for general graphs, an O(r3) approximation
for Kr,r-minor-free graphs, and showed that the natural linear-programming formulation upon
which these algorithms are based has a gap of Ω(log n) in general graphs. We also showed that this
problem is equivalent minimum multicut, yielding another implicit O(log n) approximation as well
as an APX-hardness result.

A natural extension of this work would be to improve the approximation factor for minimizing
disagreements. Given our hardness result and the history of the minimum-multicut problem, this
goal is probably very difficult. Another option is to improve the lower bound, but for the same
reason, this goal is probably very difficult. On the other hand, one might try to design an alternate
O(log n)-approximation algorithm that is combinatorial, perhaps by counting erroneous cycles in a
cycle cover of the graph.
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Another interesting direction is to explore other objective functions of the correlation-clustering
problem. Bansal et al. [1] give a polynomial-time approximation scheme (PTAS) for maximizing
agreements in unweighted complete graphs. For weighted general graphs, one of two trivial clus-
terings (every vertex in a distinct cluster or all vertices in a single cluster) is a 1/2 approximation.
Recently, Swamy [26] gave a 0.7666-approximation algorithm for the unweighted general graphs
based on semidefinite programming. It would be interesting to obtain better approximations, in
particular a PTAS, for general graphs. Bansal et al. [1] also mention the objective of maximizing
agreements minus disagreements. This objective is of particular practical interest. However, there
are no known approximation algorithms for this objective, even for complete graphs.

Finally, it would be interesting to apply the techniques presented here to other problems. The
region-growing technique and Klein et al. [16] rounding technique both provide a radius guarantee on
the output clusters. Many papers have used this radius guarantee to demonstrate that the solution
is feasible, i.e., satisfies the constraints. Inspired by Bejerano et al. [2], we also use the radius
guarantee to bound the approximation factor. This idea might be applicable to other problems.
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