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ABSTRACT
We prove that any graph excluding a fixed minor can have its
edges partitioned into a desired number k of color classes such that
contracting the edges in any one color class results in a graph of
treewidth linear in k. This result is a natural finale to research in
contraction decomposition, generalizing previous such decomposi-
tions for planar and bounded-genus graphs, and solving the main
open problem in this area (posed at SODA 2007). Our decompo-
sition can be computed in polynomial time, resulting in a general
framework for approximation algorithms, particularly PTASs (with
k ≈ 1/ε), and fixed-parameter algorithms, for problems closed
under contractions in graphs excluding a fixed minor. For exam-
ple, our approximation framework gives the first PTAS for TSP in
weightedH-minor-free graphs, solving a decade-old open problem
of Grohe; and gives another fixed-parameter algorithm for k-cut in
H-minor-free graphs, which was an open problem of Downey et al.
even for planar graphs.

To obtain our contraction decompositions, we develop new graph
structure theory to realize virtual edges in the clique-sum decom-
position by actual paths in the graph, enabling the use of the pow-
erful Robertson–Seymour Graph Minor decomposition theorem in
the context of edge contractions (without edge deletions). This re-
quires careful construction of paths to avoid blowup in the number
of required paths beyond 3. Along the way, we strengthen and sim-
plify contraction decompositions for bounded-genus graphs, so that
the partition is determined by a simple radial ball growth indepen-
dent of handles, starting from a set of vertices instead of just one,
as long as this set is tight in a certain sense. We show that this tight-
ness property holds for a constant number of approximately short-
est paths in the surface, introducing several new concepts such as
dives and rainbows.
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1. INTRODUCTION
Graph decompositions—partitioning of graphs into smaller

pieces—is a fundamental way to design graph algorithms. One
of the most famous such decompositions is Lipton and Tarjan’s
divide-and-conquer separator decomposition for planar graphs
[30], generalized to arbitrary graphs via sparsest cut [3, 29]. The
main technique in these decompositions is to find relatively small
cuts in the graph that minimize the interaction between the pieces.
To make the pieces relatively small, the decompositions cut the
graph into many pieces.

An alternative approach is to partition the graph into a small
number of computationally simpler (but not necessarily small)
pieces, allowing large interaction between the pieces. For instance,
we can solve many optimization problems efficiently on graphs
of bounded treewidth. If a graph can be partitioned into a small
number s of bounded-treewidth pieces, then in many cases, each
piece gives a lower/upper bound on the optimal solution for the
entire graph, so solving the problem exactly in each piece gives
an s-approximation to the problem. Many NP-hard optimization
problems are now solved in practice using dynamic programming
on low-treewidth graphs—see, e.g., [7, 1, 36]—so such a partition
into bounded-treewidth graphs may also be practical. This decom-
position approach has been successfully used to obtain constant-
factor approximations for many graph problems, such as a 2-
approximation for graph coloring in any odd-H-minor-free graph
family [11] (a generalization of H-minor-free graphs), whereas on
general graphs the problem is inapproximable within n1−ε for any
ε > 0 unless ZPP = NP [19].

A generalization of this decomposition approach leads to PTASs
for many minimization and maximization problems, such as vertex
cover, minimum color sum, and hereditary problems such as inde-
pendent set and max-clique [4, 18, 12]. The idea is to partition the
vertices or edges of the graph into a small number k of pieces such
that deleting any one of the pieces results in a bounded-treewidth
graph (where the bound depends on k). Such a decomposition is
known for planar graphs [4], bounded-genus graphs [18], apex-
minor-free graphs [18], and H-minor-free graphs [15, 12]. How-



ever, this decomposition approach is effectively limited to prob-
lems whose optimal solution only improves when deleting edges
or vertices from the graph. Bidimensionality theory [10] highlights
contracted-closed problems, whose optimal solution only improves
when contracting edges (but not necessarily when deleting edges),
including classic problems such as dominating set (and its varia-
tions), minimum chordal completion, and the Traveling Salesman
Problem (TSP).

These applications lead to the notion of contraction decompo-
sition: partitioning the edges of a graph into a small number k of
color classes such that contracting any one of the color classes re-
sults in a bounded-treewidth graph (where again the bound depends
on k). Klein [26, 27] proved the first such result for planar graphs
with a variation of contraction called compression (deletion in the
dual graph). Demaine, Hajiaghayi, and Mohar [13] generalized
contraction decomposition to graphs of bounded genus, or slightly
more generally, “h-almost-embeddable” graphs.

The major open problem posed in that paper is generalizing this
result to graphs excluding a fixed graph H as a minor, i.e., H-
minor-free graphs. The seminal Robertson–Seymour Graph Minor
decomposition theorem [32] states that all such graphs are clique-
sums of h-almost-embeddable graphs. As described in [13], how-
ever, clique-sums are extremely difficult to work with in contrac-
tion decompositions because some of the edges in the join set of
a clique sum are virtual: these edges are not in the actual graph,
but appear in the individual (h-almost-embeddable) pieces. If we
keep these virtual edges when applying the decomposition to each
piece, the partition may assign some of these virtual edges to be
contracted in certain cases, but the edges cannot actually be con-
tracted because they do not exist in the actual graph. On the other
hand, if we delete these virtual edges before applying the contrac-
tion decomposition, we still obtain that the pieces have bounded
treewidth after contracting one of the classes, but it becomes im-
possible to join together these tree decompositions, because the
join set no longer forms a clique and thus it is no longer contained
in a single bag in each tree decomposition. A naïve combination
of these tree decompositions causes a blowup in treewidth propor-
tional to the number of clique-sum operations, which can be arbi-
trarily large. In contrast, this problem does not arise if we only
delete edges within a color class as in [12], instead of contracting
them, because the virtual edges can be deleted (indeed, they must
be deleted, but this can only help), whereas they cannot be con-
tracted. Indeed, as we show in this paper, new ideas are required to
surmount these and other difficulties.

1.1 Our Results
The main result of this paper is that contraction decomposition

is possible for H-minor-free graphs. This result is perhaps the ul-
timate in a series of contraction decompositions [26, 27, 13], and
nicely parallels the deletion decomposition ofH-minor-free graphs
[15, 12].

THEOREM 1. For any fixed graph H , there is a constant cH
such that, for any integer k ≥ 1, every H-minor-free graph G can
have its edges partitioned into k + 1 color classes such that con-
tracting any one of the color classes results in a graph of treewidth
at most cHk. Furthermore, such a partition can be found in poly-
nomial time.

Let us emphasize that the treewidth we obtain in Theorem 1 is
linear in k, which is best possible dependence on k. This optimal
dependence is important in our algorithmic applications below.

To show Theorem 1, we need several new insights and prove
several new structural results. In particular, we strengthen the deep

Graph Minor decomposition theorem of Robertson and Seymour
by realizing the virtual edges involved in clique-sums by paths of
real edges. This enables us to strengthen the induction hypothesis
regarding edge partitions of h-almost-embeddable graphs, to avoid
any blowup in the number of required paths beyond 3.

Along the way, in Section 3 we substantially strengthen and sim-
plify contraction decompositions for bounded-genus graphs [13].
Specifically, we show that the partition can be computed by a sim-
ple radial breadth-first ball growth that is independent of both han-
dles in the surface and special faces that we want to avoid contract-
ing. Furthermore, we show that the breadth-first growth can start
from a set of vertices instead of just one, as long as this set is tight
in the sense that they induce a constant number of components of
bounded treewidth.

We use our improved bounded-genus contraction decomposition
to find three suitable paths to realize the virtual edges in a clique-
sum, in the form of a τ̄ structure (pronounced “te structure”). We
construct each of the three paths to follow an approximately short-
est path in the radial graph. This idea of using radially approxi-
mately shortest paths is crucial because, as we show in Section 4,
it implies that their union is tight in the sense above. This prop-
erty allows us to obtain a good bound on treewidth using our im-
proved bounded-genus contraction decomposition. To prove that a
union of constantly many radially approximately shortest paths is
tight, we introduce several new structural concepts such as dives
and rainbows (Section 4.1), which seem interesting in their own
right.

1.2 Algorithmic Applications
With the decomposition result in hand, we obtain the following

general PTASs.

THEOREM 2. Consider a minimization problem P on weighted
graphs that is closed under contractions, solvable in polynomial
time on graphs of bounded treewidth, and satisfying the following
properties:

1. There is a polynomial-time algorithm that, given a weighted
H-minor-free graph (G,w) and constant δ > 0, computes
anH-minor-free graphG′ such that OPT(G′) ≥ α ·w(G′),
for some constant α > 0 (possibly depending on δ), and any
c-approximate solution to G′ can be converted into a (1 +
δ) c-approximate solution to G in polynomial time. (G′ is
called a (δ, α)-spanner of G.)

2. There is a polynomial-time algorithm that, given a subset S
of edges of a weighted graph (G,w), and given an optimal
solution for G/S, constructs a solution for G of value at
most OPT(G/S) + β w(S) for some constant β > 0.

For any fixed minor H , and for any fixed 0 < ε ≤ 1, there is
a polynomial-time (1 + ε)-approximation algorithm for problem
P in H-minor-free graphs. Furthermore, if α grows as a function
of n, then the running time becomes bounded by a polynomial times
the cost of solving the problem on graphs of treewidth O(α).

In particular Theorem 2 gives us PTASs for unweighted TSP
and minimum-size c-edge-connected submultigraph1, because ev-
eryH-minor-free graph serves as its own unweighted spanner. TSP
is a classic problem that has served as a testbed for almost every

1This problem allows using multiple copies of an edge in the input
graph—hence submultigraph—but the solution must pay for every
copy.



new algorithmic idea over the past 50 years, and it has been con-
sidered extensively in planar graphs and its generalizations, start-
ing with a PTAS for unweighted planar graphs [21] and a PTAS for
weighted planar graphs [2] (since improved to linear time [26]).

In fact we can obtain a PTAS for TSP in weighted H-minor-free
graphs, solving the main open problem posed in a seminal paper of
Grohe [23]. For a weighted graph G excluding H as a minor (with
|V (H)| = h), we have two properties:

1. for any ε > 0, Grigni and Sissokho [22] give a polynomial-
time algorithm to find a spanning subgraph (i.e., a spanner)
approximating all shortest-path distances within a factor of
1 + ε, and with total edge weight at most O((h

√
log h ·

logn)/ε) times the weight of a minimum spanning tree; and

2. Dorn, Fomin, and Thilikos [16] show that, ifG has treewidth
at most k, then there is a 2f(h) kn-time algorithm to find an
optimal-weight TSP for some function f(h); see also [33].

Now we can apply Theorem 2 with α = O((h
√

log h·logn)/ε) =
O(logn) for constant h and ε. Thus we obtain a polynomial-time
(1 + ε)-approximation for TSP in weighted H-minor-free graphs.

Theorem 1 also has several applications to obtaining fixed-
parameter (exact) algorithms on H-minor-free graphs. For ex-
ample, Kawarabayashi and Thorup [24] recently obtained a fixed-
parameter algorithm with running time O(2kn) for the k-cut prob-
lem in planar graphs, where the goal is to remove a minimum num-
ber of edges in an undirected planar graph in order to form at least
k connected components. This result solves the main open problem
of Downey et al. [17]; in contrast, the problem is W [1]-hard (and
thus unlikely to have such a fixed-parameter algorithm) for general
graphs [20].

Using our contraction-decomposition theorem (Theorem 1), we
show that it is easy to obtain a fixed-parameter algorithm for k-
cut in graphs excluding a fixed minor H . Our proof is indeed an
extension of Kawarabayashi and Thorup’s proof for planar graphs.
Because each H-minor-free graph has a vertex of degree at most
O(|V (H)|

p
lg |V (H)|) (see, e.g., [28, 34]), we know that the so-

lution to the k-cut problem on H-minor-free graphs has size at
most chk for some constant ch depending on h = |H|. Now if
we use our contraction decomposition to partition the edges into
k = chk+1 sets, at least one of the sets does not have any intersec-
tion with the optimum. Now by guessing this set among the chk+1
sets and contracting its edges, we are left with a graph of treewidth
at most O(k) in which we can solve the k-cut problem exactly
in time 2Õ(k)n. Because the running time of our contraction-
decomposition theorem is in nO(1) for fixed h, we obtain a fixed-
parameter algorithm with overall running time 2Õ(k)n+ nO(1).

We expect that several of the recent spanner results (as required
by Theorem 2) for subset TSP [27], Steiner tree [9, 8], Steiner for-
est [5], and prize-collecting TSP and Steiner tree [6], for planar and
bounded-genus graphs, extend to H-minor-free graphs as well. In
this way, Theorem 2 will immediately result in PTASs for these
problems in H-minor-free graphs.

2. OVERVIEW OF ALGORITHM
We now give an overview of our proof of Theorem 1. We

first apply the seminal Graph Minor decomposition theorem to
G, resulting in a clique-sum decomposition of G into h-almost-
embeddable pieces. Recall that h-almost-embeddable graphs are
bounded-genus graphs plus a bounded number of “vortices” and
“apices”; refer to Appendix A for definitions.

As mentioned above, we can find a desired edge-coloring in each
piece Gi. Thus, when we contract a single color class in each

of the pieces, we obtain a tree decomposition of bounded width.
Now suppose a pieceGi is clique-summed with a child piece in the
clique-sum decomposition. In order to glue these two tree decom-
positions together, we need the following key additional property.

Key Property: After contracting one color class, we
obtain a tree decompositionW (of width at most cHk)
in the resulting graph, which has the property that the
join set between any piece Gj and each child piece of
Gj is contained in a single piece of W . Moreover, the
apex vertex setAj of any pieceGj is also contained in
a single piece of W .

Note that the join set may involve either

1. two consecutive pieces of a vortex and apex vertex setAj , or

2. at most three vertices in a face of a piece Gj and apex vertex
set Aj .

In order to show the contraction-decomposition theorem with
this property, we have to add some virtual edges in the bounded-
genus part. Intuitively, vortices and apices are easy to handle when
we construct the above tree decomposition W (we adapt the idea
by Grohe [23] to deal with vortices and apices). However, in order
to make sure that all the vertices (in the bounded-genus part) that
are involved in a join set between some two pieces, are contained in
a single piece of the tree decomposition W , we need to add virtual
edges to the bounded-genus part.

Let us focus on one piece Gi of the clique-sum decomposition,
and see what we shall do for virtual edges. So Gi is an h-almost-
embeddable graph. If there is some child piece G′ of Gi such that
G′∩Gi involves the bounded-genus part ofGi, then we add all the
missing edges inG′∩Gi. By the seminal Graph Minor decomposi-
tion theorem, |G′∩Gi| ≤ 3, and the virtual edges can be embedded
into the bounded-genus part of Gi. Hereafter, we assume that Gi

contains all these virtual edges. These virtual edges indeed allow
us to prove thatGi has a desired (k+1)-edge-coloring with the key
property. This is done in Section 5, where we compute a τ̄ structure
as described in Section 1.1.

Let us show how to proceed with our proof for the contraction-
decomposition theorem. We have a rooted tree decomposition such
that each piece is h-almost-embeddable graph. We begin with the
root piece (which is the base case). It is not hard for the root piece
to get a desired (k + 1)-edge-coloring with the key property.

Suppose, inductively, that all the ancestor pieces of Gi plus
Gi have a desired (k + 1)-edge-coloring as in our contraction-
decomposition theorem, with our key property.

Let a, b, c be three vertices of Gi that consist of a facial triangle
in the bounded-genus part of Gi. Let e1 = ab, e2 = bc and e3 =
ca. Let us observe that some of (or all of) e1, e2, e3 may be virtual
edges.

We now consider a child piece Gi+1 of Gi. Ideally, we want
to obtain the contraction-decomposition theorem forGi+1 with the
above key property. Then after contracting one edge-color class, we
would like to glue two tree decompositions W from all the ances-
tors of Gi (together with Gi), and W ′ from Gi+1 together, to get a
tree decomposition of bounded width. This is possible because by
the key property, the join set between the piece Gi and each child
piece of Gi is contained in a single piece of W , and moreover, the
apex set Ai+1 of Gi+1 that contains the join set between Gi and
Gi+1, is contained in a single piece of W ′. Thus we can glue two
tree decompositions W and W ′ together at the join set Gi ∩Gi+1.

However, there is an issue that the edges ab, bc, ca may be “vir-
tual", i.e., some of ab, bc, ca may not be in the actual graph, but



appear only inGi. Thus ifGi∩Gi+1 involves the edges ab, bc, ca,
we have to make sure that those edges are actually contracted in
Gi+1 when we contract some of ab, bc, ca in Gi. In order to do
that, we need to find at most three paths in Gi+1 before we apply
our contraction-decomposition theorem with the key property to
Gi+1. More precisely, we shall find three paths P ′1, P ′2, P ′3 inGi+1

(in fact, these paths are allowed to go through descendant pieces of
Gi+1) such that P ′1 connects a and b, P ′2 connects b and c, and P ′3
connects c and a, and P ′1, P ′2, P ′3 are edge-disjoint. 2

Having found the paths P ′1, P ′2, P ′3 in Gi+1, we can make our
most important point.

We shall precolor all the edges of P ′1 whose color is the same
as that of ab in Gi. We do the same thing for P ′2, P ′3. Then our
contraction-decomposition theorem has to be modified as follows:

We have to allow the precoloring of P ′1, P
′
2, P

′
3.

In other words, the conclusion of the contraction-
decomposition theorem still holds under the condition
that all the edges of P ′1, P ′2, P ′3 are precolored. In ad-
dition, it also has to satisfy the key property.

The proof of this modification diverges substantially from the
arguments in [13]; see Section 3. Instead of handling handles in
the surface and special faces separately at the end, we argue that
a simple radial breadth-first coloring suffices, essentially replacing
algorithmic complexity with analysis complexity. We also show
that an entire set of vertices can serve as a root for the breadth-first
search, provided that set is sufficiently “tight”.

This precoloring guarantees us that when we contract the edge
ab or bc or ca in Gi, although these edges may be virtual, they
have to be contracted in Gi+1 because we have to contract the cor-
responding path in P ′1, P ′2, P ′3 into a single point.

Thus if we could get a tree decomposition W ′ of Gi+1 that
satisfies the above assertion too (i.e, a (k + 1)-edge-coloring of
Gi+1 with the key property and the above assertion), then we could
glue two tree decompositions W and W ′ together at the join set
Gi ∩ Gi+1, to obtain one single tree decomposition of bounded
treewidth (and the virtual edges are not a problem as we saw).

However, we have to make sure of the following:

We only need to find at most three edge-disjoint paths
in any children of Gi+1.

As far as we can see, there are two issues here.
The first issue is that the paths P ′1, P ′2, P ′3 may go into a child

piece G′ of Gi+1 that is only attached to a vortex and the apices of
Gi+1 (let us call this child piece ofGi+1 type 1). We want the paths
P ′1, P

′
2, P

′
3 so that each goes into G′−Gi+1 at most once. In order

to do that, we shall find the paths P ′1, P ′2, P ′3 in the bounded-genus
part of Gi+1 as much as possible. We shall prove that when the
path P ′j first reaches the bounded-genus part of Gi+1, it never goes
into any vortex, except possibly at the end. In addition, we shall
prove that the bounded-genus part of all (but at most one special
piece) of the child pieces of Gi+1 of type 1 can hit at most two
of the paths P ′1, P ′2, P ′3. Since these child pieces do not involve
any virtual edge of Gi+1, thus we just need to find at most two
edge-disjoint paths in the bounded-genus part of these child pieces
of type 1 when we apply the inductive argument. In the special
2In fact, we do not really require all three paths to be edge-disjoint.
By overcoming one technical issue, we just requite that two of
P ′1, P

′
2, P

′
3 are edge-disjoint. Intuitively, we manage to show that

there is always a desired (k + 1)-edge-coloring in Gi, satisfying
the key property, such that two of e1, e2, e3 receive the same color.

child piece of type 1, we may need to find three edge-disjoint paths
when we apply our inductive argument. Therefore, we have to find
at most three edge-disjoint paths in the child pieces ofGi+1 of type
1.

There is one special case though. Some of the paths P ′1, P ′2, P ′3
may go through only vortices, and do not go into the bounded-
genus part of any piece. In this case, we do not have any issue with
virtual edges (because these paths do not pass through any virtual
edges of any piece), and hence, we can just color the edges of these
paths without creating any problem in the bounded-genus part of
any piece.

The second issue is concerning some child pieces of Gi+1 that
involve the bounded-genus part of Gi+1 (let us call these child
pieces of Gi+1 type 2). Since we have to add the virtual edges
in the bounded-genus part of Gi+1, this means that we may need
to find the corresponding (at most three) edge-disjoint paths in all
the child pieces of Gi+1 of type 2. On the other hand, if some of
the paths P ′1, P ′2, P ′3 goes through some of the child pieces ofGi+1

of type 2, we also need to find this path in some child piece G′

of type 2, in addition to at most three edge-disjoint paths (that are
needed because of the virtual edges in the bounded-genus part of
Gi+1). This means that we may need to find not only at most three
edge-disjoint paths in the child piece G′ of Gi+1, but also one or
more paths. This may be a big issue, because we may not be able
to bound the number of edge-disjoint paths that we need to find
in some piece of the clique-sum decomposition of H-minor-free
graphs.

In order to resolve this problem, we shall prove the following.

We shall prove that the above three edge-disjoint paths
P ′1, P

′
2, P

′
3 can go into at most five special child pieces

of Gi+1, among all the child pieces of Gi+1 of type 2.

In other words, all (but at most five special) child
pieces of Gi+1 of type 2 can only hit the paths
P ′1, P

′
2, P

′
3 in the bounded-genus part of Gi+1. (hence

these child pieces of Gi+1 hit the paths P ′1, P ′2, P ′3 at
their apices only, and in addition, the paths P ′1, P ′2, P ′3
do not contain any edge in these child pieces of Gi+1,
except for some edges that are also present in Gi+1,
including at most three virtual edges.).

In order to show this claim, intuitively, once some of the paths
P ′1, P

′
2, P

′
3 go into a child piece of Gi+1 of type 2, either we can

find some of the paths P ′1, P ′2, P ′3 in this piece, or else some of the
paths P ′1, P ′2, P ′3 go through this piece to the bounded-genus part
of Gi+1. Moreover, in the second case, once the paths P ′1, P ′2, P ′3
reach the bounded-genus part of Gi+1, they never go into the child
pieces of Gi+1 of type 2, except possibly for the end of the paths.
As mentioned above, we then find the paths P ′1, P ′2, P ′3 in the
bounded-genus part of Gi+1 as much as possible. In this way, we
can show that there are at most five special child pieces of Gi+1 as
above.

We then delete the vertices that are both in one of these at most
five special child pieces and in the bounded-genus part of Gi+1,
from the bounded-genus part of Gi+1 (thus we delete at most 15
vertices from the bounded-genus part ofGi+1), and put them to the
apex vertex set Ai+1. Therefore, each of these at most five special
child pieces is now only attached to the resulting apex vertex set
Ai+1 of Gi+1. This way, we are guaranteed that we only need
to find at most three edge-disjoint paths in any child piece of the
resulting graph of Gi+1, because in these special child pieces of
Gi+1, there are no virtual edges of Gi+1, and other child pieces of
Gi+1 of type 2 would not give rise to any trouble, as claimed.



We have one more small issue. After the above modification of
Gi+1, we need to keep the h-almost-embeddable structure inGi+1.
This is not hard, and will be taken care in Appendix B.

3. CONTRACTION DECOMPOSITION
FOR BOUNDED-GENUS GRAPHS,
IMPROVED

In this section, we develop both simpler and stronger forms of the
contraction decomposition for bounded-genus graphs from [13].
The new coloring algorithm is simple, essentially just a breadth-
first search. This makes the coloring oblivious to which faces are
“special”, and does not treat handles specially. This simplification
complicates the analysis, but makes it easy to show that the algo-
rithm has additional properties, in particular, that every face has at
most two distinct colors (which we need later on). On the strength-
ening side, we show that the new coloring algorithm works when
rooted at a more general set than just a single vertex (which we also
need later on).

3.1 Radial Coloring
For a graphG 2-cell embedded in some surface, the radial graph

R = R(G) has a vertex for every vertex of G and for every face
of G, and we label them the same: V (R) = V (G)∪ F (G). R(G)
is bipartite with this bipartition. Two vertices v ∈ V (G) and f ∈
F (G) are adjacent in R(G) if their corresponding vertex v and
face f are incident. A radial path is a path in the radial graph. The
radial distance between two vertices v, w in G (or R(G)) is the
length of the shortest radial path between v andw. Define the radial
distance between a vertex v and a vertex set S to be the minimum
radial distance between v and a vertex in S.

The radial coloring from a root set R of vertices is defined as
follows. For i ≥ 0, define vertex layer i to consist of all vertices of
G at radial distance 2i from R. (In particular, vertex layer 0 is R.)
In other words, this layer decomposition can be seen as a breadth-
first search in the radial graph (discarding the levels corresponding
to faces) from the root vertices in R. For i > 0, define face layer
i to consist of all faces of G at radial distance 2i − 1 from R. For
i > 0, define edge layer i to consist of all edges that first appear
in face layer i, that is, they are edges of faces in face layer i but
not faces in face layer < i. The radial coloring from root R defines
color class i, for 1 ≤ i ≤ k, to be the union of all edge layers j ≡ i
(mod k).

For i > 0, define ball i to be the union of the closure of face
layers 1, 2, . . . , i; also define ball 0 to consist of the vertices in R.
For i ≥ 0, define vertex boundary layer i to consist of all vertices
on the boundary of ball i, which is a subset of vertex layer i. Define
edge boundary layer i to consist of all edges on the boundary of
ball i, which is a subset of edge layer i. Thus, vertex boundary
layer i and edge boundary layer i form a disjoint union of closed
walks (being the boundary of closed regions).

Call a rootR (t, c)-tight, for a monotone function t and integer c,
if (1) the treewidth of the induced subgraph on the union of vertex
layers 0, 1, . . . , r is at most t(r), and (2) the number of connected
components in the induced subgraph G[R] is at most c.

One simple case is when R is a single vertex; then R is (t, 1)-
tight for a linear function t, by linear local treewidth in bounded-
genus graphs [18]. Another example of a (t, 1)-tight root is when
R consists of the vertices of a single face. Examples of (t′, O(1))-
tight roots are when R consists of a constant number k of vertices
(or the vertices of a constant number k of faces), with the function
t′(r) = O(k) · t(r).

LEMMA 3. The radial coloring can be computed in polynomial
time.

LEMMA 4. Any face has at most two different colors (and layer
numbers) on its edges.

We are now ready to prove the main theorem of this section:
radial coloring in a bounded-genus graph from a tight root forms
the desired contraction decomposition. Note that the coloring is
oblivious to the choice of the q special faces.

THEOREM 5. For every graph G of fixed (orientable) genus g,
and for any integer k ≥ 2, the radial coloring from a (t, c)-tight
root R partitions the edges of G into k color classes such that
contracting any one color class results in a graph of treewidth
O((c+ g)k + t(k)).

Furthermore, if we mark as special all edges among vertices in
R and all edges of q faces of G, then the radial coloring from a
(t, c)-tight rootR partitions the nonspecial edges ofG into k color
classes such that contracting all (nonspecial) edges in one color
class results in a graph of treewidth O((c+ g)qk + t(k)).

Proof: First we prove the first claim of the theorem (without special
edges); later we describe the modifications necessary for the second
claim (with special edges).

Consider the graph G′ resulting from contracting one color
class i, which consists of edge layers i, i + k, i + 2k, . . . . In par-
ticular, contracting edge layer i+ jk contracts edge boundary layer
i+ jk (which is a subset), each connected component of which is a
closed walk. Thus, each closed walk inG contracts to a single point
inG′, called articulation points. ConstructG′′ by splitting each ar-
ticulation point into two vertices, one connected to the neighbors
in G with smaller layer numbers, and the other connected to the
neighbors in G with larger layer numbers. We call the connected
components ofG′′ blobs. Each blob consists of an interval of k+1
layer numbers i + jk, . . . , i + (j + 1)k, where only the incident
articulation points have the two extreme layer numbers. Define
a directed acyclic graph B with a vertex for each blob, and one
edge for each articulation point, connecting the two blobs with the
two copies of the articulation point, with the edge directed from
the layer interval of smaller numbers to the layer interval of larger
numbers. A root blob is a blob containing a connected component
of G[R]; these blobs correspond to the source vertices in B.

First we claim that the in-degree of each blob in B is at most
c+ g. When a blob has in-degree k, it corresponds to k frontiers of
the breadth-first search (corresponding to the decontractions of the
k articulation points) merging into one frontier. Initially we start
with c frontiers, one per connected component of G[R]. Frontiers
can split, but if split frontiers later remerge, we form a handle, and
this can happen only g times. Thus the in-degree k is at most c+g.

Second we claim that each nonroot blob has radial diameter
O(k(g + c)). By the breadth-first layer numbering, every vertex
in the blob has radial distance at most 2k from the at most c + g
articulation points corresponding to the incoming edges inB. Thus
we can partition the blob into at most c + g chunks, where every
vertex in chunk i is within radial distance 2k of the ith incoming
articulation point. Hence chunk i has radial diameter at most 4k:
radial distance 2k to get from any vertex to the ith incoming artic-
ulation point, and radial distance 2k to get from there to any other
vertex in the chunk. By definition, the blob is connected, so the
chunks are connected together by edges in the blob. In the worst
case, these connections from a path, resulting in an overall blob
diameter of at most (4k + 1)(c+ g).



Third we claim that we can remove g edges in B to remove all
cycles from B (ignoring edge orientations). Essentially we just
remove one edge per handle.

Define G′′′ by starting from G′ and splitting into two just the
g articulation points necessary to make B acyclic (splitting in the
same way as for G′′). Because the new blob graph B′ is acyclic,
G′′′ can be written as a tree of clique 1-sums of its constituent
blobs. The radial diameter of each nonroot blob is O(k(c+ g)) by
the second claim. By Eppstein [18], the treewidth of each nonroot
blob is proportional to its radial diameter, so is alsoO(k(c+g)). By
tightness, the treewidth of the union of the root blobs is t(i) ≤ t(k).
The treewidth of a clique-sum is the maximum of the treewidths of
the terms [14], so the treewidth of G′′′ is O(k(c+ g) + t(k)).

Given a tree decomposition of G′′′, we can modify it into a tree
decomposition of G′ by adding, to all bags in the tree decompo-
sition, each of the g articulation points that we split. (Also we
remove the two copies of these articulation points from the bags in
which they appear.) This modification increases the treewidth by
an additive g, so the bound remains O(k(c+ g) + t(k)).

Finally we turn to the second claim of the theorem, with special
edges. Marking the edges among vertices in R as special only pre-
vents some edge contractions within the root blobs, because they
all have layer number 0. But the argument above required no con-
tractions to happen within the root blobs, so the root blobs still have
bounded treewidth as desired. Marking the edges of q faces inG as
special will prevent some closed walks of edge layers i + jk from
contracting to single articulation points. By Lemma 4, each of the
q faces lies in at most two edge layers; in fact, the two edge layer
numbers are consecutive, so only one will be of the form i + jk
(because k ≥ 2). Let J be the set of j values for which edge
layer i + jk contains a special edges. Because |J | ≤ q, there ex-
ists an integer x ∈ {0, 1, . . . , q} for which q 6≡ j (mod q + 1)
for all j ∈ J . Now consider edge layers i + k(x + j(q + 1))
for j = 0, 1, . . . , which by construction contain no special edges.
These layers form a subset of the edge layers i+ jk, with a regular
spacing of k(q+ 1) instead of k. Thus we can apply the arguments
above but with k replaced by k(q + 1) (and i replaced by i + kx)
and obtain a treewidth bound of O(k(q + 1)(c+ g) + t(k)). 2

4. SHORTEST PATHS ARE TIGHT
In this section, we prove that the union of a constant number of

radial shortest paths is a valid root for radial coloring:

THEOREM 6. The vertices visited by c radial shortest paths in
a bounded-genus graph G is (t, c)-tight, where t(r) = O(r). The
same result holds if each radial path is within an additive constant
of shortest.

To prove this theorem, we need to show that a radius-r radial
neighborhood of the paths has small treewidth, or equivalently, has
no large wall. The proof is by contradiction: if we had a large
wall, then the paths must travel deep into the wall (called a “dive”),
which translates into a series of possible shortcuts for the path
(called a “rainbow”), which eventually causes a contradiction. The
new concepts of dives and rainbows may be of independent interest,
and we turn to them now.

4.1 Dives and Rainbows
We define an “r-dive” as follows. Suppose H is a planar graph

that contains an 2r-wall. Let C1, . . . , Cr be vertex-disjoint cycles
in the plane graphH . LetDi be the disc in the plane with boundary
Ci. We say that they are concentric if we have the property that

Dr ⊆ Dr−1 ⊆ · · · ⊆ D1. Consider the radial graph of H . An
r-dive is a radial path within the disc D1, with both endpoints in
C1, and with at least one vertex in Ck for some k ≥ r.

Given a radial path P , an r-rainbow on P consists of r vertex-
disjoint paths P1, P2, . . . , Pr in H , all on the same side of P ,
where xi, yi are the endpoints of Pi (and thus being vertices, not
faces, ofH), so that xr, xr−1, . . . , x1, y1, y2, . . . , yr appear in this
order along P .

LEMMA 7. Given an r-dive P , we can construct an r-rainbow
on P .

Proof: We construct r paths P1, P2, . . . , Pr , forming an r-
rainbow, using subpaths of the cyclesC1, C2, . . . , Cr , respectively.

To do so, we map the dive to a subscripted balanced-parenthesis
expression by following along the path P , writing (i each time the
dive enters Di, and writing )i each time the dive exits Di. Each
instance of (i or )i corresponds to a vertex of Ci where the path P
enters or exitsDi. By planarity of the containing graphH and thus
the path P , the subscripted parenthesis string is indeed balanced
(with matching subscripts). Furthermore, by nesting, planarity, and
vertex-disjointness of the cycles, the parent pair (i· · · )i immedi-
ately containing a child pair (j · · · )j must have j = i + 1 (levels
cannot be skipped).

Now we take the parenthesis pair (q· · · )q with maximum sub-
script q, as well as its parent pair (q−1· · · )q−1, grandparent pair
(q−2· · · )q−2, etc., to its outermost ancestor (1· · · )1. We obtain a
balanced-parenthesis substructure (1· · · (2· · · (q· · · )q · · · )2 · · · )1.
Each pair (i· · · )i defines two interior-disjoint paths along Ci be-
tween the corresponding entrance and exit points onCi. We choose
Pi among these two paths consistently for all i, say, always con-
necting from the entrance on the right side of P to the exit on the
left side of P (where left and right are defined by planarity and an
arbitrary orientation of P ).

Finally we show that these paths P1, P2, . . . , Pr form an r-
rainbow on P . We have constructed the Pi’s to lie all on the same
side of P . Disjointness of the Pi’s follows because Ci’s are vertex-
disjoint, and each Pi is a subpath of Ci. The desired order of end-
points follows from the nesting of the Ci’s. 2

LEMMA 8. Let P be a radial shortest path in the surface, and
suppose it has an (cr)-rainbow for c > 16. Then there is a
wall W of size at least 1

4
cr in the planar graph Q bounded by

xcr, P, x 1
2 cr+1, P 1

2 cr, y 1
2 cr+1, P, ycr, Pcr such that the radial dis-

tance between W and P is more than 2r. Note that this region is
on the same side of P as the rainbow paths P1, P2, . . . , Pcr .

Proof: Because subpaths of (radial) shortest paths are (radial)
shortest paths, a subpath ofP is a radial shortest path from any xi to
any yj . In particular, vertices xi−1, xi−2, . . . , x1, y1, y2, . . . , yj−1

appear along that subpath. Because the xi’s and yj’s are all dis-
tinct (by vertex-disjointness of the rainbow paths), and must be in-
tervened by faces in the radial subpath of P , the radial distance
between xi and yj must be at least 2(i+ j − 1).

We claim that there are at least cr vertex-disjoint paths in Q
between Pcr and P 1

2 cr+1. For otherwise, by Menger’s Theorem,
there is a radial path C across Q, separating Pcr from P 1

2 cr+1,
that hits at most cr − 1 vertices in Q. Because Q is bounded by
four sides—Pcr , P 1

2 cr+1, and two subpaths of P—while the radial
path C separates the first two sides, the endpoints of C must lie
along P , say between xi and xi+1 (inclusive) and between yj and
yj+1 (inclusive), respectively. Thus the radial path C offers a po-
tential shortcut for P . The (radial) length of C is at most 2[cr− 1],



yet by the argument above we know that the radial distance be-
tween the endpoints is at least 2(i + j − 1) ≥ 2[cr + 1] (because
i, j ≥ 1

2
cr+1). This contradicts the assumption that P is a radially

shortest path, proving the claim.
Now we combine the 1

2
cr vertex-disjoint paths

P 1
2 cr+1, P 1

2 cr+2, . . . , Pcr with the cr vertex-disjoint paths
between P 1

2 cr+1 and Pcr (from the previous claim) to form a

subdivided 1
2
cr × cr grid in Q. By dropping alternating portions

of the cr vertex-disjoint paths, we form a 1
2
cr × 1

2
cr wall in Q.

Finally we pick the central 1
4
cr × 1

4
cr subwall W of this wall,

so that the distance between W and P is at least 1
8
cr > 2r for

c > 16. This proves the lemma. 2

4.2 Tightness of Shortest Paths
Proof of Theorem 6: First we consider the case that all c paths
are radially shortest; at the end we will extend to the approximately
shortest case. Let R be the union of the vertices in the c given
radial shortest paths, which clearly induces at most c connected
components. LetG′ denote the induced subgraph ofG on the union
of vertex layers 0, 1, . . . , r in the radial coloring. It remains to show
that G′ has treewidth O(r).

If G′ has treewidth w, then it has a wall of size Ω(w). In fact,
becauseG and henceG′ has genus at most g,G′ must have a planar
wall of size Ω(w/

√
g): all parts of the graph G′ contained within

the outer boundary of the wall form a planar graph. This result was
proved by Mohar [31] and Thomassen [35, Proposition 3.1].

We can modify this planar wall into another planar wall of size
Ω(w/

√
g) with the property that all the endpoints of the shortest

paths, and radius-2r radial neighborhoods around them, are outside
the wall. Namely, annihilate from the wall the r rows and columns
above, below, left, and right of each such endpoint, and choose the
largest subwall that remains. Each of these annihilations loses an
additive 2r + 1 rows and columns and then a multiplicative factor
of 2 in the wall size. Repeating for each of the 2c endpoints, if we
started with a wall of size d22c4r, then we will still have a wall of
size d r. Because every point in G′ and hence the wall is within
radial distance 2r of a vertex on one of the c shortest paths, but we
removed from the wall the radius-2r radial neighborhoods of the
2c endpoints of these paths, we now have every vertex of the wall
within radial distance 2r of a non-endpoint vertex of one of the c
shortest paths.

The contents of the outside face of the planar wall of size d r
determine a planar graph H with 1

2
d r concentric vertex-disjoint

cycles. Consider a shortest path P1 that comes within radial dis-
tance 2r of the center vertex of the wall. Because this path has both
endpoints outsideH , it forms a ( 1

2
d−1)r-dive inH . By Lemma 7,

we obtain a ( 1
2
d − 1)r-rainbow on the path Pi. By Lemma 8, we

obtain a wall W1 far from P1 with treewidth Ω(r). We again know
that some path, call it P2, must dive deep into the wall W1 in or-
der for those vertices to be covered by the radius-k neighborhood
of the paths. Thus we can repeat this process (find nested cycles
in the wall, construct a dive, construct a rainbow, and find a safe
region) for P2 constrained within W1. (We do not repeat the ini-
tial constant-factor culling necessary to get the endpoints outside
of the wall; we just do that once at the beginning.) This results
in a smaller wall W2 far from both P1 (being a subgraph of W1)
and P2. Then we repeat for P3, P4, . . . , Pc constrained to previous
walls. For each of these steps, we lose a multiplicative 1

4
in the size

of the wall. Set d sufficiently large so that the final wall Wc has
positive size. Thus we get a vertex (in Wc) that is far from all c
shortest paths. But this contradicts that we are in G′.

Finally we describe the necessary changes to this argument for
the approximately shortest case. Given a radial path that is within
an additive a of shortest, every subpath is also within an additive a
of shortest; thus we still have the hereditary property crucial to the
proof of Lemma 8. By trimming the wall in Lemma 8 smaller by an
additive O(a), we can not only find shortcuts to a radially shortest
path, but find a shortcut that is more than a shorter than a given
path, and thus contradict being within an additive a of shortest.
Therefore the theorem holds. 2

5. KEY THEOREM
Given five vertices a1, b1, a2, b2, c1 in the bounded-genus part

G̃ of an h-almost-embeddable graph G, define a τ̄ structure (pro-
nounced “te structure”) on a1, b1, a2, b2, c1 to be three internally
edge disjoint paths P1, P2, P3 in G̃, where P1 is a path from a1 to
b1, P2 is a path from a2 to b2, and P3 is a path from c1 to a vertex
of P1. In fact, we will be interested in τ̄ structures when a1 and
a2 are neighbors of a common apex a, and similarly b1 and b2 are
neighbors of a common apex b, and c1 is a neighbor of an apex c, in
order to form paths that replace virtual edges among apices a, b, c.

With a slightly abuse of the notation, sometimes the τ̄ struc-
ture with respect to a1, a2, b1, b2, c means that all the vertices of
a1, a2, b1, b2, c are in the bounded-genus part G̃ of G, and there
are edge-disjoint paths P1, P2, P3 in G̃, such that P1 and P2 are
paths joining a1, a2 and b1, b2, and P3 is a path from c to a vertex
of P1 other than a.

THEOREM 9 (KEY THEOREM). Suppose we are given an h-
almost-embeddable graph G and five vertices a1, a2, b1, b2, c1 in
the bounded-genus part of G. Then we can compute a τ̄ structure
P1, P2, P3 on a1, a2, b1, b2, c1 and a partition of G’s edges into k
color classes plus one class of special (colorless) edges such that
(1) all edges in P1∪P2∪P3, and all edges between pairs of apices,
are special; and (2) contracting all (nonspecial) edges in one color
class results in a graph with a tree decomposition W having the
following properties:

(a) the width of W is at most f(k, h),
(b) every apex of G is in every bag of W ,
(c) any two consecutive bags of a vortex appear in a common

bag in W , and
(d) every triangle in the bounded-genus part of G has its edges

colored by only one or two colors.
Proof: We construct a “shortest” τ̄ structure P1, P2, P3 on
a1, a2, b1, b2, c1 in the bounded-genus part G̃ (where all apices and
vortices have been removed) as follows. First we compute a short-
est radial path R1 from a1 to b1 and a shortest radial path R2 from
a2 to b2. If paths R1 and R2 properly cross,3 we can uncross
them into paths R′1 and R′2 by rerouting each crossing such that
|R1| + |R2| = |R′1| + |R′2|. If R1 and R2 have an even number
of proper crossings, then R′1 is a radial path from a1 to b1 and R′2
is a radial path from a2 to b2. If R1 and R2 have an odd number of
proper crossings, then R′1 is a radial path from a1 to b2 and R′2 is a
radial path from a2 to b1. Let R′′1 be a shortest radial path between
the endpoints of R′1, and let R′′2 be a shortest radial path between
the endpoints of R′2. Clearly |R′′1 | ≤ |R′1| and |R′′2 | ≤ |R′2|. In the
case of an even number of proper crossings, we can let R′′1 = R1

and R′′2 = R2, so we also have |R′′1 | + |R′′2 | = |R′1| + |R′2|. If
|R′′1 | + |R′′2 | = |R′1| + |R′2|, then |R′′1 | = |R′1| and |R′′1 | = |R′1|,
so in fact R′1 and R′2 are shortest radial paths between their end-
points. In the case of an odd number of proper crossings, we
3Radial paths R1 and R2 properly cross if they visit a common
face f with R1 = . . . , v1, f, w1, . . . and R2 = . . . , v2, f, w2, . . .
and v1, v2, w1, w2 appear in cyclic order around face f .



can have |R′′1 | + |R′′2 | < |R′1| + |R′2|. If R′′1 and R′′2 properly
cross, we again perform uncrossing. If R′′1 and R′′2 have an even
number of proper crossings, we obtain radial paths R′′′1 and R′′′2
with the same endpoints as R′′1 and R′′2 , respectively, such that
|R′′′1 | + |R′′′2 | = |R′′1 | + |R′′2 |, |R′′1 | ≤ |R′′′1 |, and |R′′2 | ≤ |R′′′2 ,
so |R′′1 | = |R′′′1 | and |R′′2 | = |R′′′2 . Thus R′′′1 and R′′′3 are also
shortest radial paths between their endpoints. If R′′1 and R′′2 have
an odd number of proper crossings, we obtain radial paths R′′′1 and
R′′′2 with the same endpoints as R1 and R2, respectively, such that
|R′′′1 |+ |R′′′2 | = |R′′1 |+ |R′′2 |. Because R1 and R2 were the short-
est such paths, we have |R1| ≤ |R′′′1 | and |R2| ≤ |R′′′2 |. But then
|R′′′1 | + |R′′′2 | = |R′′1 | + |R′′2 | < |R′1| + |R′2| = |R1| + |R2| ≤
|R′′′1 |+ |R′′′2 |, a contradiction.

Thus, in all cases, by possibly swapping the labels of b1 and b2,
we can find a shortest radial path R1 from a1 to b1 and a shortest
radial path R2 from a2 to b2 such that R1 and R2 do not properly
cross.

Next, we define R3 to be the shortest radial path from c1 to any
vertex on eitherR1 orR2 (including their endpoints a1, b1, a2, b2).

We construct paths P1, P2, P3 inG by walking around the radial
paths R1, R2, R3. For i ∈ {1, 2}, there are two possible paths
Pi = ai, . . . , bi in G̃ that walk around radial path Ri, visiting each
vertex of G in Ri and walking around either the left or right side
of each face of G in Ri. Because Ri is a shortest radial path, it
repeats no faces, so the resulting paths repeat no edges. If R1 and
R2 touch, then they touch on only one side, and we choose P1 and
P2 to traverse the other sides, guaranteeing edge disjointness. IfR1

and R2 are disjoint, we choose the sides for P1 and P2 arbitrarily.
Next, we choose P3 to walk around R3 on any side, and once it
reaches a face shared by R1 and R3, we continue P3 around that
face until it reaches a vertex of P1 or P2. By suitable swapping of
labels, we can assume that P3 ends at a vertex of P1, which implies
that R3’s endpoint other than c1 is on R1.

Thus we have paths P1, P2, and P3 forming a τ̄ structure such
that each path Pi visits the same faces as the corresponding shortest
radial paths Ri.

Now we modify the bounded-genus part G̃ to “represent”
each vortex by a cycle (similar in spirit to Grohe [23, Propo-
sition 10]). More precisely, for a vortex attached to G̃ at ver-
tices v0, v1, . . . , vk−1 in order around a face of G̃, we add edges
{vi, v(i+1) mod k} for i ∈ {0, 1, . . . , k − 1}, forming a new face.
Let G′ denote this modification of G̃ with a new face for each vor-
tex, and mark these new faces special.

This change involves addition of edges, so cannot decrease any
radial distance. Furthermore, the modification increases the radial
distance by at most an additive 4 per vortex, replacing a visit of
the face containing v0, v1, . . . , vk−1 with a visit of at most three
faces in G′. In this way, we can modify radial paths R1, R2, R3 in
G̃ to form radial paths R′1, R2, R3 in G′ to be still approximately
shortest, within an additive 4h of the shortest possible length.

By Theorem 6, R′1 ∪ R′2 ∪ R′3 is (t, 2)-tight in G′ for t(r) =
O(r). Because path Pi is always within radial distance O(1) of
R′i, we also have that P1∪P2∪P3 is (t′, 2)-tight inG′ for t′(r) =
O(r).

Now we apply Theorem 5, with P1 ∪ P2 ∪ P3 as the root for
the radial coloring in G′, and with the previously mentioned vortex
faces marked special. Thus contracting G′ along all nonspecial
edges in one color class results in a graph with a tree decomposition
of width O((h + h)hk + t(k)) = O(h2k). By Lemma 4, the
coloring satisfies Property (d).

Given such a partition of the edges of G′, we can extend the par-
tition to the original graph G (with vortices and apices), by making
all edges in G but not G′ special. Now if we contract the edges in

one color class in G′, we obtain a tree decomposition with Prop-
erties (a), (b), and (d). We can extend this tree decomposition to
the corresponding contraction of G (with the same color class of
edges contracted) by adding all apices to all bags, thus satisfying
Property (b), and replacing each occurrence of vi in the tree de-
composition with the entire bag from the path decomposition of
the vortex. It is easy to see that Properties (a), (b), and (d) are pre-
served. We also obtain Property (c) because {vi, vi+1} is an edge
in G′, so both vi and vi+1 appear in a common bag in the tree de-
composition for G′, and thus the corresponding bags of the vortex
appear in a common bag in the tree decomposition for G.

The width of the decomposition increases by a factor of O(h):
we lose an additive h from adding each apex to each bag, and lose
at most a multiplicative h from exploding each vi into a bag of size
at most h. Thus we satisfy Property (a). 2
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APPENDIX
A. GRAPH MINOR DECOMPOSITION

This section describes the Robertson-Seymour decomposition theorem
characterizing the structure of H-minor-free graphs and the relevant basic
concepts. There are some overlaps in the previous section, but for reader’s
convenience, we present all notations and definitions here.

A separation (A,B) is such thatG = A∪B,A−B 6= ∅,B−A 6= ∅,
and there are no edges between A − B and B − A. The order of the
separation (A,B) is |A ∩B|.

Let us recall some definition concerning tree decomposition and
treewidth. To distinguish between vertices of the original graph G and
vertices of T in the tree decomposition, we call vertices of T nodes and
their corresponding χi’s bags. The width of the tree decomposition is the
maximum size of a bag in χ minus 1. The treewidth of a graph G, denoted
tw(G), is the minimum width over all possible tree decompositions of G.
A tree decomposition is called a path decomposition if T = (I, F ) is a
path. The pathwidth of a graph G, denoted pw(G), is the minimum width
over all possible path decompositions of G.

Second, we need a basic notion of embedding.
A surface Σ is a compact 2-manifold, without boundary. In this paper,

an embedding refers to a 2-cell embedding, i.e., a drawing of the vertices
and edges of the graph as points and arcs in a surface such that every face
(region outlined by edges) is homeomorphic to a disk. A line in Σ is subset
homeomorphic to [0, 1]. An O-arc is a subset of Σ homeomorphic to a
circle. Let G be a graph 2-cell embedded in Σ, i.e., every region in the
embedding is homeomorphic to a disc. To simplify notations we do not
distinguish between a vertex of G and the point of Σ used in the drawing
to represent the vertex or between an edge and the line representing it. We
also consider G as the union of the points corresponding to its vertices and



edges. That way, a subgraph H of G can be seen as a graph H where H ⊆
G. We call by region ofG any connected component of Σ−E(G)−V (G).
(Every region is an open set.) We use the notation V (G), E(G), andR(G)
for the set of the vertices, edges and regions of G.

If ∆ ⊆ Σ, then ∆ denotes the closure of ∆, and the boundary of ∆ is
bor(∆) = ∆ ∩ Σ−∆. An edge e (a vertex v) is incident with a region r
if e ⊆ bor(r) (v ∈ bor(r)).

A subset of Σ meeting the drawing only in vertices of G is called G-
normal. If anO-arc isG-normal then we call it noose. The length of a noose
is the number of its vertices. ∆ ⊆ Σ is an open disc if it is homeomorphic
to {(x, y) : x2 + y2 < 1}. We say that a disc D is bounded by a noose N
ifN = bor(D). A graphG 2-cell embedded in a connected surface Σ is θ-
representative if every noose of length < θ is contractable (null-homotopic
in Σ).

At a high level, the deep decomposition theorem of Robertson and Sey-
mour [32, Theorem 1.3] says that, for every graph H , every H-minor-free
graph can be expressed as a “tree structure” of pieces, where each piece is a
graph that can be drawn in a surface in whichH cannot be drawn, except for
a bounded number of “apex” vertices and a bounded number of “local areas
of non-planarity” called “vortices”. Here the bounds depend only onH . To
make this theorem precise, we need to define each of the notions in quotes.

Each piece in the decomposition is “h-almost-embeddable” in a
bounded-genus surface where h is a constant depending on the excluded
minor H . Roughly speaking, a graph G is h-almost embeddable in a sur-
face S if there exists a set X of size at most h of vertices, called apex
vertices or apices, such that G −X can be obtained from a graph G0 em-
bedded in S by attaching at most h graphs of pathwidth at most h to G0

within h faces in an orderly way. More precisely, a graphG is h-almost em-
beddable in S if there exists a vertex set X of size at most h (the apices or
the apex vertex set) such thatG−X can be written asG0∪G1∪· · ·∪Gh,
where

1. G0 has an embedding in S;

2. the graphs Gi, called vortices, are pairwise disjoint;

3. there are faces F1, . . . , Fh of G0 in S, and there are pairwise dis-
joint disks D1, . . . , Dh in S, such that for i = 1, . . . , h, Di ⊂ Fi

and Ui := V (G0) ∩ V (Gi) = V (G0) ∩ Di (the vertices in Ui

are sometimes called society vertices and the disks D1, . . . , Dh are
sometimes called cuffs); and

4. the graphGi has a path decomposition (Bu)u∈Ui
of width less than

h, such that u ∈ Bu for all u ∈ Ui. The sets Bu are ordered by the
ordering of their indices u as points along the boundary cycle of face
Fi in G0.

The pieces of the decomposition are combined according to “clique-
sum” operations, a notion which goes back to characterizations of K3,3-
minor-free and K5-minor-free graphs by Wagner [37] and serves as an im-
portant tool in the Graph Minor Theory. Suppose G1 and G2 are graphs
with disjoint vertex sets and let k ≥ 0 be an integer. For i = 1, 2, let
Wi ⊆ V (Gi) form a clique of size k and let G′i be obtained from Gi

by deleting some (possibly no) edges from the induced subgraph Gi[Wi]
with both endpoints in Wi. Consider a bijection h : W1 → W2. We de-
fine a k-sum G of G1 and G2, denoted by G = G1 ⊕k G2 or simply by
G = G1 ⊕ G2, to be the graph obtained from the union of G′1 and G′2
by identifying w with h(w) for all w ∈ W1. The images of the vertices
of W1 and W2 in G1 ⊕k G2 form the join set. We sometime call the join
set virtual clique because of the above construction. Note that each vertex
v of G has a corresponding vertex in G1 or G2 or both. Also, ⊕ is not a
well-defined operator: it can have a set of possible results.

Now we can finally state a precise form of the decomposition theorem:

THEOREM 10. [32, Theorem 1.3] For every graph H , there exists an
integer h ≥ 0 depending only on |V (H)| such that every H-minor-free
graph can be obtained by at most h-sums of graphs that are h-almost-
embeddable in some surfaces in which H cannot be embedded.

In particular, if H is fixed, any surface in which H cannot be embedded
has bounded genus. Thus, the summands in the theorem are h-almost-
embeddable in bounded-genus surfaces.

A polynomial-time algorithm for computing the structure guaranteed by
this theorem is obtained in [12]. Recently, an easier O(n3) algorithm is
found in [25].

One of the most important results concerning the treewidth is existence
of grid minor or a wall. An r-wall is a graph which is isomorphic to a

subdivision of the graph Wr with vertex set V (Wr) = {(i, j) | 1 ≤ i ≤
r, 1 ≤ j ≤ r} in which two vertices (i, j) and (i′, j′) are adjacent if and
only if one of the following possibilities holds:

(1) i′ = i and j′ ∈ {j − 1, j + 1}.
(2) j′ = j and i′ = i+ (−1)i+j .
We can also define an (a× b)-wall in a natural way. It is easy to see that

ifG has an (a×b)-wall, then it has an (a×b)-grid minor, and conversely, if
G has an (a×b)-grid minor, then it has an (a/2×b)-wall. Let us recall that
the (a× b)-grid is the Cartesian product of paths Pa2Pb. The (4×5)-grid
and the (8× 5)-wall are shown in Figure 1.

Figure 1: The (4 × 5)-grid and the (8 × 5)-wall

Finally, let us define canonical cycles C1, . . . , Ck in a 2k-wall W . We
now delete vertices of degree 1 in W . Then Ck is an outer face boundary.
Inductively, we can define Ci, which is the outer face boundary obtained
by W by deleting all the cycles Ck, . . . , Ci+1.

Let H be an r-wall in G. If G is embedded in a surface S, then we say
that the wall H is flat if the outer cycle of H bounds a disk in S and H is
contained in this disk. The following theorem was proved by Thomassen
[35].

THEOREM 11. For every r and g, if a graph G is embedded in a sur-
face of Euler genus at most g and has treewidth at least 6rg3, then G
contains a flat r-wall. Hence, if there is no flat r-wall, then the treewidth of
G is at most 6rg3.

B. MODIFYING THE CLIQUE-SUM DE-
COMPOSITION

We use the following strengthened forms of Theorem 10:

THEOREM 12. The clique-sum decomposition of Theorem 10, written
as G1 ⊕ G2 ⊕ · · · ⊕ Gk , has the additional property that the join set of
each clique-sum betweenG1⊕G2⊕· · ·⊕Gi−1 andGi is a subset of the
apex vertex set Ai in Gi. Furthermore, the join set between the piece Gi

and its child piece Gi+1 contains at most three vertices from the bounded-
genus part of Gi (where the bounded-genus part of Gi is obtained from
Gi by excluding Ai and all the vortices of Gi, but including all the society
vertices of the vortices). Moreover,

(I) if Gi+1 involves the bounded-genus part of Gi, then it is properly
attached to Gi, and

(II) for a fixed constant l, if we replace h in the definition of clique-sum
decomposition by f(h, l) (for some function f of h, l), then we can
make the representativity of the bounded-genus part of Gi (for all i)
at least l.

THEOREM 13. The clique-sum decomposition of Theorem 12, written
as G1 ⊕G2 ⊕ · · · ⊕Gk , has the following additional properties:

Let Gi be a piece. If we take at most five special child pieces
of Gi that involve the bounded-genus part of Gi, and

1. we delete all the vertices that are contained both in one of
these at most five special child pieces and in the bounded-
genus part of Gi, and then

2. we put them to the apex vertex set Ai of Gi,
then we still have the structure as in Theorem 12 (with l re-
placed by l − 15 in (II)).

Note that we would put at most 15 vertices to the apex vertex set Ai of Gi,
since each child piece of Gi contains at most three vertices that are in the
bounded-genus part of Gi.
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