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1. INTRODUCTION

A fundamental family of problems at the intersection between computer science and
operations research is network design. This area of research has become increasingly
important given the continued growth of computer networks such as the Internet.
Traditionally, we want to find a minimum-cost (sub)network that satisfies some
specified property such as k-connectivity or connectivity on terminals (as in the
classic Steiner tree problem). This goal captures the (possibly incremental) creation
cost of the network, but does not incorporate the cost of actually using the network.
In contrast, network routing has the goal of optimizing the usage cost of the network,
but assumes that the network has already been created.

Network creation games attempt to unify the network design and network routing
problems by modeling both creation and usage costs. In general, the game is played
on a host graph, where each node is an independent agent (player), and the goal
is to create a network from a subgraph of the host graph. Collectively, the nodes
decide which edges of the host graph are worth creating as links in the network.
Every link has the same creation cost α. (Equivalently, links have creation costs of
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α and ∞, depending on whether they are edges of the host graph.) In addition to
these creation costs, each node incurs a usage cost equal to the sum of distances to
all other nodes in the network. Equivalently, if we divide the cost (and thus α) by
the number n of nodes, the usage cost for each node is its average distance to all
other nodes. (This natural cost model has been used in, e.g., contribution games
and network-formation games.)

There are several versions of the network creation game that vary how links are
purchased. In the unilateral model—introduced by Fabrikant, Luthra, Maneva,
Papadimitriou, and Shenker [2003]—every node (player) can locally decide to pur-
chase any edge incident to the node in the host graph, at a cost of α. In the bilateral
model—introduced by Corbo and Parkes [2005]—both endpoints of an edge must
agree before they can create a link between them, and the two nodes share the α
creation cost equally. In the cooperative model—introduced by Albers, Eilts, Even-
Dar, Mansour, and Roditty [2006]—any node can purchase any amount of any edge
in the host graph, and a link gets created when the total purchased amount is at
least α.

To model the dominant behavior of large-scale networking scenarios such as the
Internet, we consider the case where every node (player) selfishly tries to minimize
its own creation and usage cost [Jackson 2003; Fabrikant et al. 2003; Albers et al.
2006; Corbo and Parkes 2005]. This game-theoretic setting naturally leads to the
various kinds of equilibria and the study of their structure. Two frequently consid-
ered notions are Nash equilibrium [Nash 1950; 1951], where no player can change
its strategy (which edges to buy) to locally improve its cost, and strong Nash equi-
librium [Aumann 1959; Andelman et al. 2007; Albers 2008], where no coalition of
players can change their collective strategy to locally improve the cost of each player
in the coalition. Nash equilibria capture the combined effect of both selfishness and
lack of coordination, while strong Nash equilibria separates these issues, enabling
coordination and capturing the specific effect of selfishness. However, the notion of
strong Nash equilibrium is extremely restrictive in our context, because all play-
ers can simultaneously change their entire strategies, abusing the local optimality
intended by original Nash equilibria, and effectively forcing globally near-optimal
solutions [Andelman et al. 2007].

We consider weaker notions of equilibria, which broadens the scope of equilibria
and therefore strengthens our upper bounds, where players can change their strat-
egy on only a single edge at a time. In a collaborative equilibrium, even coalitions
of players do not wish to change their collective strategy on any single edge; this
concept is particularly important for the cooperative network creation game, where
multiple players must negotiate their relative valuations of an edge. (This notion
is the natural generalization of pairwise stability from [Corbo and Parkes 2005]
to arbitrary cost sharing.) Collaborative equilibria are essentially a compromise
between Nash and strong Nash equilibria: they still enable coordination among
players and thus capture the specific effect of selfishness, like strong Nash, yet they
consider more local moves, in the spirit of Nash (but with a different form of lo-
cality). In particular, any results about all collaborative equilibria also apply to
all strong Nash equilibria. Collaborative equilibria also make more sense computa-
tionally: players can efficiently detect equilibrium using a simple bidding procedure
ACM SIGecom Exchanges, Vol. 8, No. 2, December 2009.
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(whereas this problem is NP-hard for strong Nash), and the resulting dynamics
converge to such equilibria (see Section 2.2).

The structure of equilibria in network creation games is not very well under-
stood. For example, Fabrikant et al. [2003] conjectured that equilibrium graphs in
the unilateral model were all trees, but this conjecture was disproved by Albers et
al. [2006]. One particularly interesting structural feature is whether all equilibrium
graphs have small diameter (say, polylogarithmic), analogous to the small-world
phenomenon [Kleinberg 2000; Even-Dar and Kearns 2006], In the original unilat-
eral version of the problem, the best general lower bound is just a constant and
the best general upper bound is polynomial. A closely related issue is the price of
anarchy [Koutsoupias and Papadimitriou 1999; Papadimitriou 2001; Roughgarden
2002b], that is, the worst possible ratio of the total cost of an equilibrium (found by
independent selfish behavior) and the optimal total cost possible by a centralized
solution (maximizing social welfare). The price of anarchy is a well-studied con-
cept in algorithmic game theory for problems such as load balancing, routing, and
network design; see, e.g., [Papadimitriou 2001; Czumaj and Vöcking 2002; Rough-
garden 2002a; Fabrikant et al. 2003; Anshelevich et al. 2003; Anshelevich et al.
2004; Chun et al. 2004; Corbo and Parkes 2005; Albers et al. 2006; Demaine et al.
2007]. Upper bounds on diameter of equilibrium graphs translate to approximately
equal upper bounds on the price of anarchy, but not necessarily vice versa. In the
unilateral version, for example, there is a general 2O(

√
lgn) upper bound on the price

of anarchy.

1.0.0.1 Previous work.. Network creation games have been studied extensively
in the literature since their introduction in 2003.

For the unilateral version and a complete host graph, Fabrikant et al. [2003] prove
an upper bound of O(

√
α) on the price of anarchy for all α. Lin [2003] proves that

the price of anarchy is constant for two ranges of α: α = O(
√
n) and α ≥ c n3/2 for

some c > 0. Independently, Albers et al. [2006] prove that the price of anarchy is
constant for α = O(

√
n), as well as for the larger range α ≥ 12ndlg ne. In addition,

Albers et al. prove a general upper bound of 15
(

1 + (min{α
2

n ,
n2

α })
1/3
)

. The latter

bound shows the first sublinear worst-case bound, O(n1/3), for all α. Demaine et
al. [2007] prove the first o(nε) upper bound for general α, namely, 2O(

√
lgn). They

also prove a constant upper bound for α = O(n1−ε) for any fixed ε > 0, and improve
the constant upper bound by Albers et al. (with the lead constant of 15) to 6 for
α < (n/2)1/2 and to 4 for α < (n/2)1/3. Andelmen et al. [2007] show that, among
strong Nash equilibria, the price of anarchy is at most 2.

For the bilateral version and a complete host graph, Corbo and Parkes [2005]
prove that the price of anarchy is between Ω(lgα) and O(min{

√
α, n/

√
α}). De-

maine et al. [2007] prove that the upper bound is tight, establishing the price of
anarchy to be Θ(min{

√
α, n/

√
α}) in this case.

For the cooperative version and a complete host graph, the only known result is
an upper bound of 15

(
1 + (min{α

2

n ,
n2

α })
1/3
)

, proved by Albers et al. [2006].
Other variations of network creation games allow nonuniform interests in connec-

tivity between nodes [Halevi and Mansour 2007] and nodes with limited budgets
for buying edges [Laoutaris et al. 2008].
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1.0.0.2 Our results.. Our research pursues two important facets of the network
creation game.

First, we make an extensive study of a natural version of the game—the coopera-
tive model—where the only previous results were simple extensions from unilateral
analysis. We substantially improve the bounds in this case, showing that the price
of anarchy is polylogarithmic in n for all values of α in complete graphs. This is
the first result of this type for any version of the network creation game. As men-
tioned above, this result applies to both collaborative equilibria and strong Nash
equilibria. Interestingly, we also show that equilibrium graphs have polylogarithmic
diameter for the most natural range of α (at most npolylg n). Note that, because
of the locally greedy nature of Nash equilibria, we cannot use the classic probabilis-
tic spanning (sub)tree embedding machinery of [Bartal 1998; Fakcharoenphol et al.
2004; Elkin et al. 2005] to obtain polylogarithmic bounds (although this machinery
can be applied to approximate the global social optimum).

Second, we study the impact of the natural assumption that the host graph
is a general graph, not necessarily complete, inspired by practical limitations in
constructing network links. This model is a simple example of nonuniform creation
costs among the edges (effectively allowing weights of α and ∞). Surprisingly, no
bounds on the diameter or the price of anarchy have been proved before in this
context. We prove several upper and lower bounds, establishing nontrivial tight
bounds for many ranges of α, for both the unilateral and cooperative versions. In
particular, we establish polynomial lower bounds for both versions and many ranges
of α, even for this simple nonuniform cost model. These results are particularly
interesting because, by contrast, no superconstant lower bound has been shown for
either game in complete (uniform) graphs. Thus, while we believe that the price
of anarchy is polylogarithmic (or even constant) for complete graphs, we show a
significant departure from this behavior in general graphs.

Our proof techniques are most closely related in spirit to “region growing” from
approximation algorithms; see, e.g., [Leighton and Rao 1999]. Our general goal is
to prove an upper bound on diameter by way of an upper bound on the expansion
of the graph. However, we have not been able to get such an argument to work
directly in general. The main difficulty is that, if we imagine building a breadth-
first-search tree from a node, then connecting that root node to another node does
not necessarily benefit the node much: it may only get closer to a small fraction
of nodes in the BFS subtree. Thus, no node is motivated selfishly to improve the
network, so several nodes must coordinate their changes to make improvements.
The cooperative version of the game gives us some leverage to address this difficulty.
We hope that this approach, particularly the structure we prove of equilibria, will
shed some light on the still-open unilateral version of the game, where the best
bounds on the price of anarchy are Ω(1) and 2O(

√
lgn).

Table I summarizes our results. Section 4 proves our polylogarithmic upper
bounds on the price of anarchy for all ranges of α in the cooperative network cre-
ation game in complete graphs. Section 5 considers how the cooperative network
creation game differs in general graphs, and proves our upper bounds for this model.
Section 6 extends these results to apply to the unilateral network creation game in
general graphs. Section 7 proves lower bounds for both the unilateral and coopera-
ACM SIGecom Exchanges, Vol. 8, No. 2, December 2009.
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α = 0 n n lg0.52 n n lg7.16 n n3/2 n5/3 n2 n2 lgn ∞
Cooperative,
complete graph Θ(1) lg3.32 n O

“
lgn+

q
n
α

lg3.58 n
”

Θ(1)

Cooperative,
general graph O(α1/3) O(n1/3), Ω(

q
α
n

) Θ(n
2

α
) O

“
n2

α
lgn
”

Θ(1)

Unilateral,
general graph O(α1/2) O(n1/2), Ω(α

n
) Θ(n

2

α
) Θ(1)

Table I. Summary of our bounds on equilibrium diameter and price of anarchy for co-
operative network creation in complete graphs, and unilateral and cooperative network
creation in general graphs. For all three of these models, our bounds are strict improve-
ments over the best previous bounds.

tive network creation games in general graphs, which match our upper bounds for
some ranges of α.

2. MODELS

In this section, we formally define the different models of the network creation
game.

2.1 Unilateral Model

We start with the unilateral model, introduced in [Fabrikant et al. 2003]. The
game is played on a host graph G = (V,E). Assume V = {1, 2, . . . , n}. We have
n players, one per vertex. The strategy of player i is specified by a subset si of
{j : {i, j} ∈ E}, defining the set of neighbors to which player i creates a link. Thus
each player can only create links corresponding to edges incident to node i in the
host graph G. Together, let s = 〈s1, s2, . . . , sn〉 denote the joint strategy of all
players.

To define the cost of strategies, we introduce a spanning subgraph Gs of the host
graph G. Namely, Gs has an edge {i, j} ∈ E(G) if either i ∈ sj or j ∈ si. Define
dGs(i, j) to be the distance between vertices i and j in graph Gs. (If Gs has no
path between i and j, then dGs(i, j) = ∞.) The cost (creation plus usage cost)
incurred by player i is

ci(s) = α |si|+
n∑
j=1

dGs(i, j).

The total cost incurred by joint strategy s is c(s) =
∑n
i=1 ci(s).

A (pure) Nash equilibrium is a joint strategy s such that ci(s) ≤ ci(s′) for all
joint strategies s′ that differ from s in only one player i. The price of anarchy is
then the maximum cost of a Nash equilibrium divided by the minimum cost of any
joint strategy (called the social optimum).

2.2 Cooperative Model

Next we turn to the cooperative model, introduced in [Fabrikant et al. 2003; Albers
et al. 2006]. Again, the game is played on a host graph G = (V,E), with one
player per vertex. Assume V = {1, 2, . . . , n} and E = {e1, e2, . . . , e|E|}. Now the
strategy of player i is specified by a vector si = 〈s(i, e1), s(i, e2), . . . , s(i, e|E|)〉,
where s(i, ej) corresponds to the value that player i is willing to pay for link ej .
Together, s = 〈s1, s2, . . . , sn〉 denotes the strategies of all players.

ACM SIGecom Exchanges, Vol. 8, No. 2, December 2009.
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We define a spanning subgraph Gs = (V,Es) of the host graph G: ej is an edge
of Gs if

∑
i∈V (G) s(i, ej) ≥ α. To make the total cost for an edge ej exactly 0 or

α in all cases, if
∑
i∈V (G) s(i, ej) > α, we uniformly scale the costs to sum to α:

s′(i, ej) = αs(i, ej)/
∑
k∈V (G) s(k, ej). (Equilibria will always have s = s′.) Then

the cost incurred by player i is

ci(s) =
∑
ej∈Es

s′(i, ej) +
n∑
j=1

dGs(i, j).

The total cost incurred by joint strategy s is

c(s) = α |Es|+
n∑
i=1

n∑
j=1

dGs(i, j).

In this cooperative model, the notion of Nash equilibrium is less natural because it
allows only one player to change strategy, whereas a cooperative purchase in general
requires many players to change their strategy. Therefore we use a stronger notion
of equilibrium that allows coalition among players, inspired by the strong Nash
equilibrium of Aumann [1959], and modeled after the pairwise stability property
introduced for the bilateral game [Corbo and Parkes 2005]. Namely, a (pure) joint
strategy s is a collaborative equilibrium if, for any edge e of the host graph G, for
any coalition C ⊆ V , for any joint strategy s′ differing from s in only s′(i, e) for
i ∈ C, some player i ∈ C has ci(s′) > ci(s). Note that any such joint strategy
must have every sum

∑
i∈V (G) s(i, ej) equal to either 0 or α, so we can measure

the cost ci(s) in terms of s(i, ej) instead of s′(i, ej). The price of anarchy is the
maximum cost of a collaborative equilibrium divided by the minimum cost of any
joint strategy (the social optimum).

We can define a simple dynamics for the cooperative network creation game in
which we repeatedly pick a pair of vertices, have all players determine their valuation
of an edge between those vertices (change in ci(s) from addition or removal), and
players thereby bid on the edge and change their strategies. These dynamics always
converge to a collaborative equilibrium because each change decreases the total cost
c(s), which is a discrete quantity in the lattice Z+αZ. Indeed, the system therefore
converges after a number of steps polynomial in n and the smallest integer multiple
of α (if one exists). More generally, we can show an exponential upper bound in
terms of just n by observing that the graph uniquely determines c(s), so we can
never repeat a graph by decreasing c(s).

3. PRELIMINARIES

In this section, we define some helpful notation and prove some basic results. Call
a graph Gs corresponding to an equilibrium joint strategy s an equilibrium graph.
In such a graph, let dGs(u, v) be the length of the shortest path from u to v and
DistGs(u) be

∑
v∈V (Gs)

dGs(u, v). Let Nk(u) denote the set of vertices with distance
at most k from vertex u, and let Nk = minv∈G |Nk(v)|. In both the unilateral and
cooperative network creation games, the total cost of a strategy consists of two
parts. We refer to the cost of buying edges as the creation cost and the cost∑
v∈V (Gs)

dGs(u, v) as the usage cost.

ACM SIGecom Exchanges, Vol. 8, No. 2, December 2009.
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First we prove the existence of collaborative equilibria for complete host graphs.
Similar results are known in the unilateral case [Fabrikant et al. 2003; Andelman
et al. 2007].

Lemma 1. In the cooperative network creation game, any complete graph is a
collaborative equilibrium for α ≤ 2, and any star graph is a collaborative equilibrium
for α ≥ 2.

Next we show that, in the unilateral version, a bound on the usage cost suffices
to bound the total cost of an equilibrium graph Gs, similarly to [Demaine et al.
2007, Lemma 1].

Lemma 2. The total cost of any equilibrium graph in the unilateral game is at
most αn+ 2

∑
u,v∈V (Gs)

dGs(u, v).

Proof: Let v = argminu∈V (Gs) DistGs(u). Therefore DistGs(v) ≤
1
n

∑
u,v∈V (Gs)

dGs(u, v). Let T be the BFS tree rooted at v. For every vertex x, if x
changes its strategy in order to keep only edges in T that x bought, the sum of its
distance to the other vertices would be at most

∑
y∈V (Gs)

[dGs(x, v) + dGs(v, y)] ≤
ndGs(x, v)+DistGs(v). On the other hand, x’s creation cost would be at most α tx,
where tx is the number of edges in T bought by x. Thus the total cost of vertex x
would be at most α tx+ndGs(x, v)+DistGs(v). But x did not choose this strategy,
so cx(s) ≤ α tx+ndGs(x, v)+DistGs(v). By summing all these costs, the total cost
of the equilibrium graph is at most

c(s) ≤
∑

x∈V (Gs)

(ndGs(x, v) + DistGs(v) + α tx)

≤ 2nDistGs(v) + α(n− 1)

≤ 2
∑

u,v∈V (Gs)

dGs(u, v) + αn.

2

Next we prove a more specific bound for the cooperative version, using the fol-
lowing bound on the number of edges in a graph of large girth:

Lemma 3. [Dutton and Brigham 1991] The number of edges in an n-vertex
graph of odd girth g is O(n1+2/(g−1)).

Lemma 4. For any integer g, the total cost of any equilibrium graph Gs is at
most αO(n1+2/g) + g

∑
u,v∈V (Gs)

dGs(u, v).

Proof: Let g′ = g + 1. Consider an edge x in at least one cycle of length at
most g′. We know

∑
v∈V (Gs)

c(v, x) ≥ α. For every vertex v, consider the shortest
path from v to other vertices, and let f(v, x) denote the number of such paths that
contain x. If we delete x from graph Gs, then the length of these f(v, x) shortest
paths increase by at most g′−2. Because the edge x is in the equilibrium graph, we
conclude that (g′−2)

∑
v∈V (Gs)

f(v, x) ≥
∑
v∈V (Gs)

c(v, x) ≥ α, which implies that∑
v∈V (Gs)

f(v, x) ≥ α/(g′−2). Thus edge x is in at least α/(g′−2) shortest path in
the equilibrium graph. On the other hand,

∑
u,v∈V (Gs)

dGs(u, v) equals the number

ACM SIGecom Exchanges, Vol. 8, No. 2, December 2009.
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of edges in all shortest path. Therefore the number of edges like x that are in at
least one cycle of length at most g′ is at most

∑
u,v∈V (Gs)

dGs(u, v)/(α/(g′ − 2)).
If we delete all such edges in at least one cycle of length at most g′, then

the girth of the remaining graph is at least g′ + 1. By Lemma 3, the num-
ber of edges in the remaining graph is O(n1+2/(g′−1)) (because g′ + 1 maybe an
even number). Thus the number of edges in the equilibrium graph is at most∑
u,v∈V (Gs)

dGs(u, v)/(α/(g′ − 2)) + O(n1+2/(g′−1)) and the cost of buying these
edges is at most (g′ − 2)

∑
u,v∈V (Gs)

dGs(u, v) + αO(n1+2/(g′−1). Therefore the
total cost is at most αO(n1+2/g) + g

∑
u,v∈V (Gs)

dGs(u, v). 2

4. COOPERATIVE VERSION IN COMPLETE GRAPHS

In this section, we study the price of anarchy when any number of players can
cooperate to create any link, and the host graph is the complete graph.

We start with two lemmata that hold for both the unilateral and cooperative
versions of the problem. The first lemma bounds a kind of “doubling radius” of
large neighborhoods around any vertex, which the second lemma uses to bound the
usage cost.

Lemma 5. [Demaine et al. 2007, Lemma 4] For any vertex u in an equilibrium
graph Gs, if |Nk(u)| > n/2, then |N2k+2α/n(u)| ≥ n.

Proof: We prove the contrapositive. Suppose |N2k+2α/n(u)| < n. Then there is a
vertex v with dGs(u, v) ≥ 2k + 1 + 2α/n. For every vertex x ∈ Nk(u), dGs(u, x) ≤
k. By the triangle inequality, dGs(u, x) + dGs(x, v) ≥ dGs(u, v), so dGs(x, v) ≥
k + 1 + 2α/n. If vertex v bought the edge {v, u}, then the distance between v
and x would decrease by at least 2α/n, so DistGs(v) would decrease by at least
Nk(u)·2α/n. Because v has not bought the edge {v, u}, we have α ≥ |Nk(u)|·2α/n,
i.e., |Nk(u)| ≤ n/2. 2

Lemma 6. If we have Nk(u) > n/2 for some vertex u in an equilibrium graph
Gs, the usage cost is at most O(n2k + αn).

Proof: By Lemma 5, the sum of the distances from u to all other vertices is at most
2k + 2α/n. Thus the distance between any pair of vertices is at most 4k + 4α/n,
so
∑
u,v∈V (Gs)

dGs(u, v) = O(n2(k + α/n)) = O(n2k + αn). 2

Next we show how to improve the bound on “doubling radius” for large neigh-
borhoods in the cooperative game:

Lemma 7. For any vertex u in an equilibrium graph Gs, if |Nk(u)| > n/2, then
|N

2k+4
√
α/n

(u)| ≥ n.

Proof: We prove the contrapositive. Suppose |N
2k+4
√
α/n

(u)| < n. Then there

is a vertex v with dGs(u, v) ≥ 2k + 1 + 4
√
α/n. For every vertex x ∈ Nk(u)

and y ∈ N√
α/n

(v), we have dGs(u, x) ≤ k and dGs(v, y) ≤
√
α/n; see Figure 1.

By the triangle inequality dGs(u, x) + dGs(x, y) + dGs(y, v) ≥ dGs(u, v), we have
dGs(x, y) ≥ k + 1 + 3

√
α/n.

ACM SIGecom Exchanges, Vol. 8, No. 2, December 2009.
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u

x y

v

Nk(u) N√
α/n

(v)

Fig. 1. The vertices x and y have incentive to buy edge (u, v).

Adding edge {v, u} decreases the distance between x and y by at least 2
√
α/n,

so DistGs(y) would decrease by at least Nk(u) · 2
√
α/n. Every node y ∈ N√

α/n

can pay at least Nk(u) · 2
√
α/n for edge {v, u}. Because the edge {v, u} is not

bought, we have α ≥ |Nk(u)| · 2
√
α/n · |N√

α/n
(v)|. Note that |N√

α/n
| ≥

√
α/n.

Therefore |Nk(u)| ≤ n/2, which is a contradiction. 2

Next we consider what happens with arbitrary neighborhoods, using techniques
similar to [Demaine et al. 2007, Lemma 5].

Lemma 8. If |Nk(u)| ≥ Y for every vertex u in an equilibrium graph Gs, then
either |N4k+2(u)| > n/2 for some vertex u or |N5k+3(u)| ≥ Y 2n/α for every ver-
tex u.

Proof: If there is a vertex u with |N4k+2(u)| > n/2, then the claim is obvious.
Otherwise, for every vertex u, |N4k+2(u)| ≤ n/2. Let u be an arbitrary vertex. Let
S be the set of vertices whose distance from u is 4k + 3. We select a subset of S,
called center points, by the following greedy algorithm. We repeatedly select an
unmarked vertex z ∈ S as a center point, mark all unmarked vertices in S whose
distance from z is at most 2k, and assign these vertices to z.

Suppose that we select l vertices x1, x2, . . . , xl as center points. We prove that
l ≥ |Nk(u)|n/α. Let Ci be the vertices in S assigned to xi; see Figure 2. By
construction, S =

⋃l
i=1 Ci. We also assign each vertex v at distance at least 4k+ 4

from u to one of these center points, as follows. Pick any one shortest path from v
to u that contains some vertex w ∈ S, and assign v to the same center point as w.
This vertex w is unique in this path because this path is a shortest path from v
to u. Let Ti be the set of vertices assigned to xi and whose distance from u is more
than 4k + 2. By construction,

⋃l
i=1 Ti is the set of vertices at distance more than

4k + 2 from u. The shortest path from v ∈ Ti to u uses some vertex w ∈ Ci. For
any vertex x whose distance is at most k from u and for any y ∈ Ti, adding the
edge {u, xi} decreases the distance between x and y at least 2, because the shortest
path from y ∈ Ti to u uses some vertex w ∈ Ci, as shown in Figure 2. By adding
edge {u, xi}, the distance between u and w would become at most 2k + 1 and the
distance between x and w would become at most 3k + 1, where x is any vertex
whose distance from u is at most k. Because the current distance between x and
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xi

y

S

Ci

xk

Ck

w

x

u

Fig. 2. Center points.

w is at least 4k + 3 − k = 3k + 3, adding the edge {u, xi} decreases this distance
by at least 2. Consequently the distance between x and any y ∈ Ti decreases by at
least 2. Note that the distance between x and y is at least dGs(u, y)− k, and after
adding edge (u, xi), this distance becomes at most

3k + 1 + dGs(w, y) = 3k + 1 + dGs(u, y)− dGs(u,w)
= 3k + 1 + dGs(u, y)− (4k + 3)
= dGs(u, y)− k − 2.

Thus any vertex y ∈ Ti has incentive to pay at least 2 |Nk(u)| for edge {u, xi}.
Because the edge {u, xi} is not in equilibrium, we conclude that α ≥ 2|Ti||Nk(u)|.
On the other hand, |N4k+2(u)| ≤ n/2, so

∑l
i=1 |Ti| ≥ n/2. Therefore, l α ≥

2|Nk(u)|
∑l
i=1 |Ti| ≥ n|Nk(u)| and hence l ≥ n|Nk(u)|/α.

According to the greedy algorithm, the distance between any pair of center points
is more than 2k; hence, Nk(xi) ∩ Nk(xj) = ∅ for i 6= j. By the hypothesis of the
lemma, |Nk(xi)| ≥ Y for every vertex xi; hence |

⋃l
i=1Nk(xi)| =

∑l
i=1 |Nk(xi)| ≥

l Y . For every i ≤ l, we have dGs(u, xi) = 4k + 3, so vertex u has a path of
length at most 5k+ 3 to every vertex whose distance to xi is at most k. Therefore,
|N5k+3(u)| ≥ |

⋃l
i=1Nk(xi)| ≥ l Y ≥ Y n|Nk(u)|/α ≥ Y 2n/α. 2

Now we are ready to prove bounds on the price of anarchy. We start with the
case when α is a bit smaller than n:
ACM SIGecom Exchanges, Vol. 8, No. 2, December 2009.
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Theorem 9. For 1 ≤ α < n1−ε, the price of anarchy is at most O(1/ε1+lg 5).

Proof: Consider an equilibrium graph Gs. Let X = n/α > nε. Define a1 = 2 and
ai = 4ai−1 + 3, or equivalently ai = 3 · 4i−1− 1 < 4i, for all i > 1. By Lemma 8, for
each i ≥ 1, eitherN3ai+2(v) > n/2 for some vertex v orNai+1 ≥ (n/α)N2

ai = X N2
ai .

Let j be the least number for which |N3aj+2(v)| > n/2 for some vertex v. By this
definition, for each i < j, Nai+1 > (n/α)N2

ai = X N2
ai . Because Na1 > 1, we obtain

that Nai > X2i−1−1 for every i ≤ j. On the other hand, X2j−1−1 < Naj ≤ n,
which implies 2j−1 − 1 < 1/ε. Thus j < lg(1/ε + 1) + 1 ≤ lg(1/ε) + 2 and
aj < 4lg(1/ε)+2 = 16/ε2. Therefore N3·16/ε2+2 > n/2 and using Lemma 6, we
conclude that the usage cost is at most O(n

2

ε2 + n2 + αn). Now set g = 2/ε in
Lemma 4. Then the total cost is O(αn1+ε) + 2

εO(n
2

ε2 + n2 + αn). The cost of
the social optimum is at least Ω(αn + n2), and the value of α is less that n1−ε.
Therefore the price of anarchy is O(1/ε3). 2

Next we prove a polylogarithmic bound on the price of anarchy when α is close
to n.

Theorem 10. For α = O(n), the price of anarchy is O(lg1+lg 5 n) and the di-
ameter of any equilibrium graph is O(lglg 5 n).

Proof: Consider an equilibrium graph Gs. The proof is similar to the proof of
Theorem 9. Define a1 = max{2, 2α/n} + 1 and ai = 5ai−1 + 3, or equivalently
ai = 4a1+3

20 · 5i − 3
4 < a15i, for all i > 1. By Lemma 8, for each i ≥ 1, either

N4ai+2(v) > n/2 for some vertex v or Nai+1 ≥ (n/α)N2
ai . Let j be the least

number for which |N4aj+2(v)| > n/2 for some vertex v. By this definition, for each
i < j, Nai+1 ≥ (n/α)N2

ai . Because Na1 > 2 max{1, α/n}, we obtain that Nai >
22i−1

max{1, α/n} for every i ≤ j. On the other hand, 22j−1 ≤ 22j−1
max{1, α/n} <

Naj ≤ n, so j < lg lg n + 1 and aj < a1 5lg lgn+1 < (2 + 2α/n + 1 + 1)5 lglg 5 n =
10(2 + α/n) lglg 5 n. Therefore N4·[10(2+α/n) lglg 5 n]+2(v) > n/2 for some vertex v
and using Lemma 5, we conclude that the distance of v to all other vertices is
at most 2[40(2 + α/n) lglg 5 n + 2] + 2α/n. Thus the diameter of Gs is at most
O((1 + α/n) lglg 5 n). Setting g = lg n in Lemma 4, the cost of Gs is at most
αO(n) + (lg n)O(n2(1 +α/n) lglg 5 n) = O((αn+n2) lg1+lg 5 n). Therefore the price
of anarchy is at most O(lg1+lg 5 n). 2

When α is a bit larger than n, we can obtain a constant bound on the price of
anarchy. First we need a somewhat stronger result on the behavior of neighbor-
hoods:

Lemma 11. If |Nk(u)| ≥ Y for every vertex u in an equilibrium graph Gs,
then either |N5k(u)| > n/2 for some vertex u or |N6k+1(u)| ≥ Y 2kn/2α for every
vertex u.

Proof: The proof is similar to the proof of Lemma 8. If there is a vertex u
with |N5k(u)| > n/2, then the claim is obvious. Otherwise, for every vertex u,
|N5k(u)| ≤ n/2. Let u be an arbitrary vertex. Let S be the set of vertices whose
distance from u is 5k+1. We select a subset of S as we did in the proof of Lemma 8.

Suppose that we select l vertices x1, x2, . . . , xl as center points. We prove that
l ≥ |Nk(u)|kn/2α. Let Ci be the vertices in S assigned to xi. By construction,
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S =
⋃l
i=1 Ci. We also assign each vertex v at distance at least 5k + 2 from u to

one of these center points, as follows. Pick any one shortest path from v to u that
contains a vertex w ∈ S, and assign v to the same center point as w. This vertex
w is unique in this path because this path is a shortest path from v to u. Let Ti be
the set of vertices assigned to xi and whose distance from u is more than 5k. By
construction,

⋃l
i=1 Ti is the set of vertices at distance more than 5k from u. The

shortest path from v ∈ Ti to u uses some vertex w ∈ Ci. For any vertex x whose
distance is at most k from u and any y ∈ Ti, adding the edge {u, xi} decreases the
distance between x and y at least k, because the shortest path from y ∈ Ti to x
uses some vertex w ∈ Ci. By inserting edge {u, xi}, the distance between u and w
would become at most 2k + 1 and the distance between x and w would become at
most 3k + 1, where x is any vertex whose distance from u is at most k. Because
the current distance between x and w is at least 5k + 1− k = 4k + 1, adding edge
{u, xi} decreases this distance by at least k. Consequently the distance between x
and any y ∈ Ti decreases by at least k.

Thus any vertex y ∈ Ti has incentive to pay at least kNk for edge {u, xi}. Be-
cause the edge {u, xi} is not in equilibrium, we conclude that α ≥ k|Ti||Nk(u)|.
On the other hand, |N4k(u)| ≤ n/2, so

∑l
i=1 |Ti| ≥ n/2. Therefore, l α ≥

k|Nk(u)|
∑l
i=1 |Ti| ≥ kn|Nk(u)|/2 and hence l ≥ kn|Nk(u)|/2α.

According to the greedy algorithm, the distance between any pair of center points
is more than 2k; hence, Nk(xi) ∩ Nk(xj) = ∅ for i 6= j. By the hypothesis of the
lemma, |Nk(xi)| > Y for every vertex xi; hence |

⋃l
i=1Nk(xi)| =

∑l
i=1 |Nk(xi)| >

l Y . For every i ≤ l, we have dGs(u, xi) = 5k + 1, so vertex u has a path of
length at most 6k+ 1 to every vertex whose distance to xi is at most k. Therefore,
|N6k+1(u)| ≥ |

⋃l
i=1Nk(xi)| > l Y ≥ Y kn|Nk(u)|/2α > Y 2kn/2α. 2

Theorem 12. For any α > n, the price of anarchy is O(
√
n/α lg1+lg 6 n) and

the diameter of any equilibrium graph is O(lglg 6 n ·
√
α/n).

Proof: Consider an equilibrium graph Gs. The proof is similar to the proof
of Theorem 10. Define a1 = 2

√
α/n + 1 and ai = 6ai−1 + 1, or equivalently

ai = 5a1+1
30 · 6i − 1

5 < a16i, for all i > 1. By Lemma 11, for each i ≥ 1, either
|N5ai(v)| > n/2 for some vertex v or Nai+1 ≥ (n/2α) aiN2

ai . Let j be the least
number for which |N5aj (v)| > n/2 for some vertex v. By this definition, for each
i < j, Nai+1 > (n/2α) aiN2

ai . Because Na1 > 2
√
α/n and ai ≥ a1, we obtain that

Nai > 22i−1√
α/n for every i ≤ j. On the other hand, 22j−1 ≤ 22j−1√

α/n < Naj ≤
n, so j < lg lg n+ 1 and aj < a16lg lgn+1 = 6a1 lglg 6 n < 18

√
α/n lglg 6 n. Therefore

|N
5·18
√
α/n lglg 6 n

(v)| > n/2 for some vertex v and using Lemma 7, we conclude that

the distance of v to other vertices is at most 10[18
√
α/n lglg 6 n] + 4

√
α/n. Thus

the diameter of Gs is at most O(lglg 6 n ·
√
α/n). Setting g = lg n in Lemma 4, the

cost of Gs is at most αO(n) + (lg n)O(n2 lglg 6 n ·
√
α/n). Therefore the price of

anarchy is at most
αO(n)+O

(
n2 lg1+lg 6 n

√
α/n
)

αn = O(
√
n/α lg1+lg 6 n). 2

By Theorem 12, we conclude the following:

Corollary 13. For α = Ω(n lg2+2 lg 6 n) ≈ Ω(n lg7.16 n), the price of anarchy
ACM SIGecom Exchanges, Vol. 8, No. 2, December 2009.
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is O(1).

5. COOPERATIVE VERSION IN GENERAL GRAPHS

In this section, we study the price of anarchy when only some links can be created,
e.g., because of physical limitations. In this case, the social optimum is no longer
simply a clique or a star.

We start by bounding the growth of distances from the host graph G to an
arbitrary equilibrium graph Gs:

Lemma 14. For any two vertices u and v in any equilibrium graph Gs,
dGs(u, v) = O(dG(u, v) + α1/3dG(u, v)2/3).

Proof: Let u = v0, v1, . . . , vk = v be a shortest path in G between u and v,
so k = dG(u, v). Suppose that the distance between v0 and vi in Gs is di, for
0 ≤ i ≤ k. We first prove that di+1 ≤ di + 1 +

√
9α/di for 0 ≤ i < k. If edge

{vi, vi+1} already exists in Gs, the inequality clearly holds. Otherwise, adding this
edge decreases the distance between x and y by at least di+1−di

3 , where x is a vertex
whose distance is at most di+1−di

3 −1 from vi+1 and y is a vertex in a shortest path
from vi to v0. Therefore any vertex x whose distance is at most di+1−di

3 − 1 from
vi+1 can pay di+1−di

3 di for this edge. Because this edge does not exist in Gs and
because there are at least di+1−di

3 vertices of distance at most di+1−di
3 −1 from vi+1,

we conclude that
(
di+1−di

3

)2

di ≤ α. Thus we have di+1 ≤ di + 1 +
√

9α/di for

0 ≤ i < k. Next we prove that di+1 ≤ di + 1 + 5α1/3. If edge {vi, vi+1} already
exists in Gs, the inequality clearly holds. Otherwise, adding this edge decreases the
distance between z and w by at least di+1−di

5 , where z and w are two vertices whose
distances from vi+1 and vi, respectively, are less than di+1−di

5 . There are at least

at least
(
di+1−di

5

)2

pair of vertices like (z, w). Because the edge {vi, vi+1} does not

exist in Gs, we conclude that
(
di+1−di

5

)3

≤ α. Therefore di+1 ≤ di + 1 + 5α1/3.

Combining these two inequalities, we obtain di+1 ≤ di + 1 + min{
√

9α/di, 5α1/3}.
Inductively we prove that dj ≤ 3j+7α1/3+5α1/3j2/3. For j ≤ 2, the inequality is

clear. Now suppose by induction that dj ≤ 3j+7α1/3+5α1/3j2/3. If dj ≤ 2α1/3, we
reach the desired inequality using the inequality dj+1 ≤ dj + 1 + 5α1/3. Otherwise,
we know that dj+1 ≤ dj + 1 +

√
9α/dj = f(dj) and to find the maximum of the

function f(dj) over the domain dj ∈ [2α1/3, j+ 7α1/3 + 5α1/3j2/3], we should check
f ’s critical points, including the endpoints of the domain interval and where f ’s
derivative is zero. We reach three values for dj : 2α1/3, j + 7α1/3 + 5α1/3j2/3, and(

9α
4

)1/3. Because the third value is not in the domain, we just need to check the
first two values. The first value is also checked, so just the second value remains.
For the second value, we have

dj+1 ≤ dj + 1 +
√

9α/dj

≤ j + 7α1/3 + 5α1/3j2/3 + 1 +
√

9α
j+7α1/3+5α1/3j2/3

≤ j + 1 + 7α1/3 + 5α1/3j2/3 +
√

10α
5α1/3j2/3
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≤ j + 1 + 7α1/3 + 5α1/3j2/3 + α1/3√2
j1/3

.

Because (j + 1)2/3 − j2/3 = (j+1)2−j2
(j+1)4/3+(j+1)2/3j2/3+j4/3

≥ 2j
3(j+1)4/3

, we have

j + 1 + 7α1/3 + 5α1/3j2/3 + α1/3√2
j1/3

≤ j + 1 + 7α1/3 + 5α1/3(j + 1)2/3 − 5α1/3 2j
3(j+1)4/3

+ α1/3√2
j1/3

≤ j + 1 + 7α1/3 + 5α1/3(j + 1)2/3 − 10α1/3j
3j4/3

+ α1/3√2
j1/3

≤ j + 1 + 7α1/3 + 5α1/3(j + 1)2/3.

Note that j + 1 > 2 and dk = dGs(u, v). Therefore dGs(u, v) is at most
O(dG(u, v) + α1/3dG(u, v)2/3) and the desired inequality is proved. 2

Using this Lemma 14, we prove two different bounds relating the sum of all
pairwise distances in the two graphs:

Corollary 15. For any equilibrium graph Gs,
∑
u,v∈V (G) dGs(u, v) = O(α1/3) ·∑

u,v∈V (G) dG(u, v).

Theorem 16. For any equilibrium graph Gs,
∑
u,v∈V (G) dGs(u, v) ≤ min{n3,

O(n1/3)(αn+
∑
u,v∈V (G) dG(u, v))}.

Proof: We partition pairs of vertices into two parts. The first part contains pairs
with distance at most α

n in G. The second part contains pairs with distance more
than α

n in G.∑
u,v∈V (Gs)

dGs(u, v)

≤
∑

u,v∈V (G)

O(dG(u, v) + α1/3dG(u, v)2/3)

≤
∑

dG(u,v)≤αn

O(dG(u, v) + α1/3dG(u, v)2/3) +
∑

dG(u,v)≥αn

O(dG(u, v) + α1/3dG(u, v)2/3)

≤ O(n2α1/3
(
α/n

)2/3) +
∑

u,v∈V (G)

O
(dG(u, v)α1/3

(α/n)1/3

)
≤ O(n1/3)αn+O(n1/3)

∑
u,v∈V (G)

dG(u, v)

On the other hand, we know that
∑
u,v∈V (Gs)

dGs(u, v) is at most n3 for every con-
nected graph Gs. Therefore we have the desired property for the sum of distances
in Gs. 2

Now we can bound the price of anarchy for the various ranges of α, combining
Corollary 15, Theorem 16, and Lemma 4, with different choices of g.

Theorem 17. In the cooperative network creation game in general graphs, the
price of anarchy is at most

(a) O(α1/3) for α < n,
ACM SIGecom Exchanges, Vol. 8, No. 2, December 2009.
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(b) O(n1/3) for n ≤ α ≤ n5/3,

(c) O(n
2

α ) for n5/3 ≤ α < n2−ε, and

(d) O(n
2

α lg n) for n2 ≤ α.

Proof: (a) By setting g = 6 in Lemma 4, the total cost is at most αO(n4/3) +
6
∑
u,v∈V (Gs)

dGs(u, v) ≤ O(α1/3n2) + 6
∑
u,v∈V (Gs)

dGs(u, v). Using Corollary 15,∑
u,v∈V (Gs)

dGs(u, v) = O(α1/3)
∑
u,v∈V (G) dG(u, v). Thus the total cost is at most

O(α1/3n2) +O(α1/3)
∑
u,v∈V (G) dG(u, v), which is at most O(α1/3) times the opti-

mum cost.
(b) By setting g = 6 in Lemma 4, the total cost is at most αO(n4/3) +

6
∑
u,v∈V (Gs)

dGs(u, v). Using Theorem 16,
∑
u,v∈V (Gs)

dGs(u, v) = O(n1/3)(αn +∑
u,v∈V (G) dG(u, v)). Thus the total cost is at most αO(n4/3) + O(n1/3)(αn +∑
u,v∈V (G) dG(u, v)). The cost of the social optimum is Ω(αn+

∑
u,v∈V (G) dG(u, v)),

so the price of anarchy is at most O(n1/3).
(c) By setting g = 2/ε in Lemma 4, the total cost is at most αO(n1+ε) +

2
ε

∑
u,v∈V (Gs)

dGs(u, v). Using Theorem 16,
∑
u,v∈V (Gs)

dGs(u, v) = O(n3). Thus
the total cost is at most αO(n1+ε)+ 2

εO(n3). Because the cost of the social optimum
is Ω(αn+n2), the price of anarchy is at most O(max{nε, 2

ε
n2

α }) = O( 2
ε
n2

α ) = O(n
2

α ).
(d) By setting g = lg n in Lemma 4, the total cost is at most αO(n) +

lg n
∑
u,v∈V (Gs)

dGs(u, v). Using Theorem 16,
∑
u,v∈V (Gs)

dGs(u, v) = O(n3). Thus
the total cost is at most αO(n) + (lg n)O(n3). Because the cost of the social opti-
mum is Ω(αn+ n2), the price of anarchy is at most O(n

2

α lg n). 2

6. UNILATERAL VERSION IN GENERAL GRAPHS

Next we consider how a general host graph affects the unilateral version of the
problem.

Lemma 18. For any two vertices u and v in any equilibrium graph Gs,
dGs(u, v) = O(dG(u, v) + α1/2dG(u, v)1/2).

Proof: Similar to the proof of Lemma 14, we define the sequence di, 0 ≤ i ≤ k.
We prove that di+1 ≤ di + 1 + α

di
for 0 ≤ i < k. If edge {vi, vi+1} already exists in

Gs, the inequality clearly holds. Otherwise, adding this edge decreases the distance
between vi+1 and x by at least di+1 − di − 1, where x is a vertex in a shortest
path from vi to v0. Therefore vi+1 can pay (di+1− di− 1)di for this edge. Because
this edge does not exist in Gs, we conclude that (di+1 − di − 1)di ≤ α. Thus we
have di+1 ≤ di + 1 + α

di
for 0 ≤ i < k. On the other hand, we can prove that

di+1 ≤ di + 1 + 3α1/2. If edge {vi, vi+1} already exists in Gs, clearly the inequality
holds. Otherwise, adding this edge decreases the distance between vi+1 and y by
at least di+1−di

3 where y is a vertex whose distances is less than di+1−di
3 from vi.

There are at least at least di+1−di
3 vertices like y. Because the edge {vi, vi+1} does

not exist in Gs,
(
di+1−di

3

)2

≤ α. Therefore di+1 ≤ di + 3α1/2. Combining these

two inequalities, we obtain di+1 ≤ di + 1 + min{1 + α
di
, 3α1/2}.
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Inductively we prove that dj ≤ j+4α1/2 +2α1/2j1/2. For j = 0, the inequality is
clear. Now suppose by induction that dj ≤ j + 4α1/2 + 2α1/2j1/2. If dj ≤ α1/2, we
reach the desired inequality using the inequality dj+1 ≤ dj + 1 + 3α1/2. Otherwise,
we know that dj+1 ≤ dj + 1 + α

dj
= f(dj) and to find the maximum of the function

f(dj) over the domain dj ∈ [α1/2, j+4α1/2 +2α1/2j1/2], we should check its critical
points including endpoints of the domain interval and where its derivative is zero.
We reach three values for dj : α1/2, j + 4α1/2 + 2α1/2j1/2, and α1/2. The first and
third values are checked, so just the second value remains. For the second value,
we have

dj+1 ≤ dj + 1 + α
dj

≤ j + 4α1/2 + 2α1/2j1/2 + 1 + α
j+4α1/2+2α1/2j1/2

≤ j + 1 + 4α1/2 + 2α1/2j1/2 + α1/2

2j1/2
.

Because (j + 1)1/2 − j1/2 = 1
(j+1)1/2+j1/2

≥ 1
2j1/2

, we have

j + 1 + 4α1/2 + 2α1/2j1/2 + α1/2

2j1/2

≤ j + 1 + 4α1/2 + 2α1/2(j + 1)1/2 − 2α1/2 1
2j1/2

+ α1/2

2j1/2

≤ j + 1 + 4α1/2 + 2α1/2(j + 1)1/2.

Note that dk = dGs(u, v). Therefore dGs(u, v) is at most O(dG(u, v) +
α1/2dG(u, v)1/2) and the desired inequality is proved. 2

Again we relate the sum of all pairwise distances in the two graphs:

Corollary 19. For any equilibrium graph Gs,
∑
u,v∈V (G) dGs(u, v) = O(α1/2) ·∑

u,v∈V (G)DG(u, v).

Theorem 20. For any equilibrium graph Gs,
∑
u,v∈V (Gs)

dGs(u, v) ≤
min{O(n1/2)(αn+

∑
u,v∈V (G)DG(u, v)), n3}.

Proof: We partition pairs of vertices into two parts. The first part contains pairs
with distance at most α

n in G. The second part contains pairs with distance more
than α

n in G.∑
u,v∈V (Gs)

DGs(u, v) ≤
∑

u,v∈V (G)

O(DG(u, v) + α1/2DG(u, v)1/2)

≤
∑

DG(u,v)≤αn

O(DG(u, v) + α1/2DG(u, v)1/2)

+
∑

DG(u,v)≥αn

O(DG(u, v) + α1/2DG(u, v)1/2)

≤ O(n2α1/2
(
α
n

)1/2) +
∑

u,v∈V (G)

O

(
DG(u, v)α1/2

(α/n)1/2

)
≤ O(n1/2)αn+O(n1/2)

∑
u,v∈V (G)

DG(u, v)
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On the other hand, we know
∑
u,v∈V (Gs)

dGs(u, v) is at most n3 for every connected
graph Gs. Therefore we have the desired property for the sum of distances in Gs.

2

To conclude bounds on the price of anarchy, we now use Lemma 2 in place of
Lemma 4, combined with Corollary 19 and Theorem 20.

Theorem 21. For α ≥ n, the price of anarchy is at most min{O(n1/2), n
2

α }.

Theorem 22. For α < n, the price of anarchy is at most O(α1/2).

7. LOWER BOUNDS IN GENERAL GRAPHS

In this section, we prove polynomial lower bounds on the price of anarchy for general
host graphs, first for the cooperative version and second for the unilateral version.

Theorem 23. The price of anarchy in the cooperative game is Ω(min{
√

α
n ,

n2

α }).

Qi

v1

v3
v2l

v2
Q1

Ql

v4

v2i

P2i
P2i+1

v2i+2

v2i+1

P2l

P1 P2

P3

Qi+1

P2i+2

v2i+3

Fig. 3. Lower bound graph.

Proof: For α = O(n) or α = Ω(n2),
the claim is clear. Otherwise, let
k =

√
α

12n ≥ 2. Thus k = O(
√
n).

We construct graph Gk,l as follows;
see Figure 3. Start with 2l vertices
v1, v2, . . . , v2l connected in a cycle. For
any 1 ≤ i ≤ 2l, insert a path Pi of k
edges between vi and vi+1 (where we
define v2l+1 = v1). For any 1 ≤ i ≤ l,
insert a path Qi of k edges between v2i
and v2i+2 (where we define v2l+2 = v2).
Therefore there are n = (3k − 1)l ver-
tices and (3k + 2)l edges in Gk,l, so
l = n/(3k − 1).

For simplicity, let G denote Gk,l in
the rest of the proof. Let G1 be
a spanning connected subgraph of G
that contains exactly one cycle, namely,
(v1, v2, . . . , v2l, v1); in other words, we
remove from G exactly one edge from
each path Pi and Qi. Let G2 be a span-
ning connected subgraph of G that con-
tains exactly one cycle, formed by the concatenation of Q1, Q2, . . . , Ql, and contains
none of the edges {vi, vi+1}, for 1 ≤ i ≤ 2l; for example, we remove from G exactly
one edge from every P2i and every edge {vi, vi+1}.

Next we prove that G2 is an equilibrium. For any 1 ≤ i ≤ l, removing any edge
of path Qi increases the distance between its endpoints and at least n/6 vertices by
at least lk

3 ≥ n/6. Because α = o(n2), we have α < n
6
n
6 , so if we assign this edge to

be bought solely by one of its endpoints, then this owner will not delete the edge.
Removing other edges makes G2 disconnected. For any 1 ≤ i ≤ l, adding an edge
of path P2i or path P2i+1 or edge {v2i, v2i+1} or edge {v2i+1, v2i+2} to G2 decreases
only the distances from some vertices of paths P2i or P2i+1 to the other vertices.
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There are at most n(2k − 1) such pairs. Adding such an edge can decrease each of
these distance by at most 3k−1. But we know that α ≥ 12nk2 > 2n(2k−1)(3k−1),
so the price of the edge is more than its total benefit among all nodes, and thus the
edge will not be created by any coalition.

The cost of G1 is equal to O(αn + n2(k + l)) = O(αn + n2(k + n
k )) and

the cost of G2 is Ω(αn + n2(k + lk)) = Ω(αn + n3). The cost of the so-
cial optimum is at most the cost of G1, so the price of anarchy is at least
Ω( n3

αn+n3/k+kn2 ) = Ω(min{n
2

α , k,
n
k }). Because k = O(

√
n), the price of anarchy

is at least Ω(min{n
2

α , k}) = Ω(min{n
2

α ,
√

α
n}). 2

Theorem 24. The price of anarchy in unilateral games is Ω(min{αn ,
n2

α }).

Proof: The proof is similar to the proof of Theorem 23. For α = O(n) or α =
Ω(n2), the claim is clear. Otherwise, let k be the biggest number for which the
inequality 3nk < α < n

6 ( n9k − 1) holds. Therefore k = O(
√
n). Let l = n/(3k − 1).

Again consider the host graph Gk,l and the subgraphs G1 and G2, as defined in the
proof of Theorem 23.

Next we prove that G2 is an equilibrium. For any 1 ≤ i ≤ l, removing any edge
of path Qi increases the distance between its endpoints and at least n/6 vertices
by at least lk

3 ≥
n
9 − 1. Because α < n

6 ( n9k − 1), the owner of such an edge will
not delete it. Removing any other edge disconnects G2. Adding any edge to G2

decreases the distance of its endpoints to other vertices at most 3k− 2 because any
edge in G−G2 forms a cycle of length at most 3k with edges in G2. But we know
that α > 3nk, so neither endpoint will create this edge.

The cost of G1 is equal to O(αn+n2(k+l)) = O(αn+n2(k+n
k )) and the cost of G2

is Ω(αn+n3). The cost of the social optimum is at most the cost of G1, so the price
of anarchy is at least Ω( n3

αn+n3/k+n2k ) = Ω(min{n
2

α , k,
n
k }). Because k = O(

√
n)

and k = Θ( α3n ), the price of anarchy is at least Ω(min{n
2

α , k}) = Ω(min{n
2

α ,
α
n}). 2

8. OPEN PROBLEMS

For cooperative network creation games, the main direction for future research
is to determine whether the price of anarchy for the complete graph is constant
or polylogarithmic (or somewhere in between). For network creation games in
general, the main open question remains to determine the price of anarchy for the
unilateral network creation game in complete graphs, in particular, whether it is
polylogarithmic.
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