Realistic Reconfiguration of Crystalline
(and Telecube) Robots

Greg Aloupis’, Sébastien Collette! *, Mirela Damian?, Erik D. Demaine? T,
Dania El-Khechen*, Robin Flatland®, Stefan Langerman' ¥, Joseph
O’Rourke®, Val Pinciu”, Suneeta Ramaswami®, Vera Sacristan® §, and
Stefanie Wuhrer!?

! Université Libre de Bruxelles, Belgique,
{greg.aloupis,sebastien.collette,stefan.langerman}@ulb.ac.be

2 Villanova University, Villanova, USA, mirela.damian@villanova.edu

3 Massachusetts Institute of Technology, Cambridge, USA, edemaine@mit.edu

4 Concordia University, Montreal, Canada, d_elkhec@cs.concordia.ca

5 Siena College, Loudonville, N.Y., USA, flatland@siena.edu

5 Smith College, Northampton, USA, orourke@cs.smith.edu

" Southern Connecticut State University, USA, pinciu@scsu.ctstateu.edu

8 Rutgers University, Camden, NJ, USA, rsuneeta@camden.rutgers.edu

9 Universitat Politecnica de Catalunya, Barcelona, Spain,
vera.sacristan@upc.edu

10

Carleton University, Ottawa, Canada, swuhrer@scs.carleton.ca

Abstract: In this paper we propose novel algorithms for reconfiguring modular
robots that are composed of n atoms. Each atom has the shape of a unit cube and
can expand/contract each face by half a unit, as well as attach to or detach from
faces of neighboring atoms. For universal reconfiguration, atoms must be arranged
in 2 X 2 X 2 modules. We respect certain physical constraints: each atom reaches
at most unit velocity and (via expansion) can displace at most one other atom. We
require that one of the atoms can store a map of the target configuration.

Our algorithms involve a total of O(n?) such atom operations, which are per-
formed in O(n) parallel steps. This improves on previous reconfiguration algorithms,
which either use O(n?) parallel steps [7, 9, 4] or do not respect the constraints men-
tioned above [1]. In fact, in the setting considered, our algorithms are optimal, in
the sense that certain reconfigurations require £2(n) parallel steps. A further advan-
tage of our algorithms is that reconfiguration can take place within the union of the
source and target configurations.
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1 Introduction

Crystalline and Telecube robots. In this paper, we present new algorithms
for the reconfiguration of robots composed of crystalline atoms [3, 4, 7] or
telecube atoms [8, 9], both of which have been prototyped.

The atoms of these robots are cubic in shape, and are arranged in a grid
configuration. Each atom is equipped with mechanisms allowing it to extend
each face out one unit and later retract it back. Furthermore, the faces can
attach to or detach from faces of adjacent atoms; at all times, the atoms should
form a connected unit. The default configuration for a Crystalline atom has
expanded faces, while the default for a Telecube atom has contracted faces.

When groups of atoms perform the four basic atom operations (expand,
contract, attach, detach) in a coordinated way, the atoms move relative to
one another, resulting in a reconfiguration of the robot. Figure 1 shows an
example of a reconfiguration. To ensure that all reconfigurations are possible,
atoms must be arranged in k x k x k modules, where k > 2 [1, 9]. In the
two-dimensional setting that we focus on, we assume that modules consist of
2 x 2 atoms. Our algorithms can easily be extended to 3D.

We refer the reader to [7, 9, 1] for a more detailed and basic introduction
to these robots. Various types of self-reconfiguring robots, as well as related
algorithmic issues, are surveyed in [5, 10].
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Fig. 1. Example of reconfiguring crystalline atoms.

The model. The problem we solve is to reconfigure a given connected source
configuration of n modules to a specified, arbitrary, connected target config-
uration T in O(n) parallel steps. We allow modules to be able to exert only a
constant amount of force, independent of n. In other words each module has
the ability to push/pull one other module by a unit distance (the length of
one module) within a unit of time. Simply bounding the force may still lead
to arbitrarily high velocities and thus rather unrealistic motions. On the other
hand, in some situations where maximal control is desired (e.g., treacherous
conditions, dynamic obstacle environment, minimally stable static configura-
tion of the robot itself) it may be desirable to strictly limit velocity. Thus we
also bound maximum velocity (and so the momentum) by a constant (module
length / unit time). Our algorithms are designed for Crystalline robots. For a
discussion of the main differences for Telecube robots, see Section 5.

We restrict our descriptions to a 2D lattice. None of our techniques depend
on dimension, so it is straightforward to extend to 3D robots. Given the 2 x 2
module size, a cell of the lattice can contain up to two modules (see Fig. 2).
Cells are marked with an integer in {0, 1,2}: a 0-cell corresponds to a node in
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T that has no module yet, a 1-cell contains one module, and a 2-cell contains
two (compressed) modules. In a 2-cell, we sometimes distinguish between the
host module and the guest module.

Turn

Fig. 2. The middle cell contains two modules. The red guest module is capable of
turning orientation. Only initial and final configurations are shown.

Let 19 be a specialized module that has access to a map of the target
configuration, T'. We compute a spanning tree S of the source configuration,
rooted at 79, and instruct cells to attach/detach so that the attachments
model the tree connections in S. The spanning tree can be computed in linear
time and constructed via local communication. The tree structure between
cells is maintained throughout the algorithm by physical connections between
host modules. These modules are also responsible for the parent-child pointer
structure of the tree. For each node v € S, let P(u) denote the parent of u in
S. A child of a cell u is adjacent either on the east, north, west, or south side
of u. Let the highest priority child of u be the first child in counterclockwise
order starting with the east direction.

Related results. Algorithms for reconfiguring Crystalline and Telecube
robots in O(n?) parallel steps have been given in [7, 9, 4]. A linear-time
parallel algorithm for reconfiguring within the bounding box of source and
target is given in [1]. The total number of individual moves is also linear.
However, no restrictions are made concerning physical properties of the
robots. For example, O(n) strength is required, since modules can carry
towers and push large masses during certain operations. An O(logn) time
algorithm for 2D robots that uses O(nlogn) parallel moves and also stays
within the bounding box is given in [2]. However, not only do modules have
O(n) physical strength, they can also reach O(n) velocity. An O(y/n) time
algorithm for 2D robots, using the third dimension as an intermediate, is
given in [6]. This is optimal in the model considered, which permits linear
velocities, but only constant acceleration. If applied within the model used
in [2], this algorithm would run in constant time. We remind the reader that,
unlike [6, 1, 2], we limit force and velocity to a constant level.

Contributions of this paper. We present two algorithms to reconfigure
Crystalline robots in O(n) time steps, using O(n) parallel moves per time step.
Our first algorithm (Section 3) is slightly simpler to describe, and relatively
easily adaptable to Telecube robots. It also forms the basis of our second
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algorithm (Section 4), which is exactly in-place, i.e., it uses only the cells of the
union of the source and target configurations. This is particularly interesting
if there are obstacles in the environment. Both algorithms consider the given
robot as a spanning tree, and push leaves towards the root with “parallel
tunneling”. No global communication is required. This means that constant-
size memory suffices for each non-root module, which can decide how to move
at each step based solely on the states of its neighbors. In the realistic model
considered in this paper, our algorithms are optimal, in the sense that certain
reconfigurations require a linear number of parallel moves.

2 Primitive operations

Let m and g be adjacent cells. We define the following primitive operations:

1. PUsHINLEAF(m, q) — applies when ¢ = P(m), m is a leaf, and both are
uncompressed. Here, m becomes empty and ¢ becomes compressed (i.e.,
q takes the module of m as a guest).

2. PoPOUTLEAF(m, q) — applies when ¢ is compressed and m is empty. This
is the inverse of the PUSHINLEAF operation.

3. TRANSFER(m, q) — applies when m is compressed and ¢ is non-empty; if
q is compressed, the guests of both cells physically exchange positions.
Otherwise, the guest of m moves into (and becomes a guest of) q.

4. ATTACH(m, q) — host modules in m and ¢ form a physical connection.

DETACH(m, q) — the inverse of ATTACH.

6. SWITCH(m) — applies when m is compressed. Its two modules physically
switch positions (and roles of host and guest).

ot

PusHINLEAF, POPOUTLEAF, and TRANSFER are illustrated in Fig. 3.

PushinLeaf
—_—

—_—
PopOutLeat

(a)

Fig. 3. (a) PUSHINLEAF and POPOUTLEAF. (b) TRANSFER. Only initial and final
configurations are shown.

Note that any permutation of atoms within a module can be realized in
linear time with respect to the size of the module (i.e., O(1) time for our
modules). Thus a compressed cell may transfer or push one module to any
direction, and two modules within a cell can switch roles. Details are omitted
due to space restrictions.
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In the remainder of this paper, we assume that all parallel motions are
synchronized. However, due to the simple hierarchical tree structure of our
robots, we find it plausible that our algorithms could be implemented so that
modules may operate asynchronously. Details remain to be verified.

Lemma 1. Operations PUSHINLEAF, POPOUTLEAF, SWITCH and TRANS-
FER maintain the tree structure of a robot.

The proof is omitted for lack of space.

In our basic motions, modules move by one unit length per time step.
The moving modules do not carry other modules. Thus our reconfiguration
algorithms place no additional force constraints beyond those required by any
reconfiguration algorithm.

3 Reconfiguration via canonical form

This section describes an algorithm to reconfigure S into 7" via an intermediate
canonical configuration. Modules follow a path directly to the root rg, and
into a canonical “storage configuration”. We focus on the construction of
one type of canonical form, a vertical line V. In fact V could be any path
that avoids the source configuration. Thus the entire reconfiguration can take
place relatively close to the bounding box of S. Reconfiguring from V to T is
relatively straightforward and not discussed here, due to space restrictions.

3.1 Algorithmic details

We first move 7y to a maximum possible y-coordinate within S: This involves
pushing in a leaf and iteratively transferring it to rg, so that ro becomes part
of a 2-cell and then is able to iteratively transfer to its target. Note that this
might not be necessary in implementations in which all modules are capable
of playing the role of r¢ (for example, if all modules have a map of T, or if
all are capable of communicating to an external processor). This initial step
is followed by two main phases, during which rg does not move.

In the first phase, we repeatedly apply procedure CLUSTERSTEP to move
modules closer to 7y, by compressing in at the leaves and moving up S in par-
allel. The shape of S shrinks, as PUSHINLEAF operations in CLUSTERSTEP
compress leaf modules into their parent cells. It is not critical that all cells
become compressed. In fact this phase mainly helps to analyze the total num-
ber of parallel steps in our algorithm. At the end of this phase, all non-leaf
cells will become 2-cells. In this state we refer to S as being fully compressed.



CLUSTERSTEP(S)

For all cells v in S except for that containing ro, execute the following in parallel:
If P(u) is a 1-cell
If w is the highest priority child of P(u) and
all siblings of u are leaves or 2-cells,
If u is a 1-cell leaf then PUSHINLEAF(u, P(u)).
If w is a 2-cell, then TRANSFER(u, P(u)).

SOURCECLUSTER(.S)

Repeat until S is fully compressed
CLUSTERSTEP(SS).

SOURCECLUSTER is illustrated in Figure 4. The task of compressing a parent
cell P(u) falls onto its highest priority child, u. Note that P(u) first becomes
compressed only when all its subtrees are essentially compressed. That is, even
if u is ready to supply a module to P(u), it waits until all other children are
also ready. This rule could be altered, and in fact the whole process would then
run slightly faster. Here, we ensure that once the root of a subtree becomes
compressed, it will supply a steady stream of guest modules to its ancestors.

’0 ro ro
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Fig. 4. An example of SOURCECLUSTER.

In the second phase, we construct V' while emptying S, one module at a
time. This is described in the second step of algorithm TREETOPATH, and is
illustrated in Figure 5.

Lemma 2. If S is a set of modules physically connected in a tree of cells,
then CLUSTERSTEP(S) returns a tree containing the same set of modules,
while maintaining connectivity. So does SOURCECLUSTER (S ).

Proof. CLUSTERSTEP invokes two basic operations, PUSHINLEAF and
TRANSFER. By Lemma 1, these operations maintain a tree. The claim fol-
lows immediately for SOURCECLUSTER. 0O
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Algorithm TREETOPATH(S, V')

1.  SOURCECLUSTER(S)
2. Let d be the cell containing rg as a host. Let V = d.
Repeat until V' contains all modules:
a) For all 2-cells u in V, execute in parallel:
Let ¢ be the cell vertically above wu.
If ¢ is empty, POPOUTLEAF(u, ¢);
Otherwise, TRANSFER(u, ¢).
b) CLUSTERSTEP(S)
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Fig. 5. An example of TREETOPATH.

The height of a cell in S is the height of its subtree in S.

Lemma 3. Let r be a cell in S with height h > 2. In iteration h—1 of
SOURCECLUSTER(SS), r becomes a 2-cell for the first time.

Proof. Prior to the first iteration, S contains only 1-cells. The proof is by
induction on h. For the base case when h = 2, the children of r are leaves.
Therefore, in the first iteration, during CLUSTERSTEP, the highest priority
leaf compresses into 7.

Now assume inductively that the lemma is true for all subtrees of height
smaller than h. Cell r must have at least one child ¢ with height h—1. By
the inductive hypothesis, ¢ becomes a 2-cell in iteration h—2, and all its other
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non-leaf children are 2-cells by the end of iteration h—2. Therefore, at iteration
h—1, for the first time the conditions are satisfied for r to receive a module
from its highest priority child during CLUSTERSTEP. 0O

Lemma 4. Let r be a 2-cell with height h that transfers its gquest module to
P(r) in iteration i of SOURCECLUSTER. Then at the end of iteration i+1, r
1s either a leaf or a 2-cell again.

Proof. First note that at the beginning of iteration i+1, r is a 1-cell and P(r)
is a 2-cell. Thus if r is a leaf after iteration 4, it remains so. On the other hand
if  has children (h > 2), it will become a 2-cell. We prove this by assuming
inductively that our claim holds for all heights less than h. Consider the base
case when h = 2. At the end of iteration ¢, all children of r are leaves and
thus one will compress into r (note that r might also become a leaf in this
particular case).

For h > 2, consider the iteration j < ¢ in which r received the guest module
that it later transfers to P(r) in iteration . At the beginning of iteration j,
all of r’s children were leaves or 2-cells, since that is a requirement for r to
receive a guest. Let ¢ be the child that passed the module to r. If ¢ used the
PUSHINLEAF operation, then at the end of iteration j, r has one fewer children
(but at least one). The other children remain leaves or 2-cells until iteration
1+ 1, when r becomes a 1-cell again. Thus in iteration i+1, conditions are set
for r to receive a module.

On the other hand, if ¢ used the TRANSFER operation, we apply the in-
ductive hypothesis: at the end of iteration j+1 < 4, ¢ is either a leaf or a
2-cell. During iterations j and j+1 in which r is busy receiving or transferring
a module, all other children of r (if any) remain leaves or 2-cells. Therefore in
iteration j+2 < i+1, the conditions are set for r to receive a module. O

Let the depth of a cell in a tree be its distance from the root. Hence, the
root has depth zero.

Lemma 5. SOURCECLUSTER terminates after at most 2h—1 iterations of
CLUSTERSTEP.

Proof. We claim that at the completion of iteration h—14d of SOURCECLUS-
TER, all non-leaf modules at depth less than or equal to d in Sj,_1 4 are 2-cells.
The proof is by induction on d. The base case is the root of S,_; at depth
d = 0. By Lemma 3, the root becomes a 2-cell in iteration h — 1. Assume
inductively that our claim is true for all values d’, where 0 < d’' < d.

Now consider a cell p at depth d—1 that has children. By the inductive
hypothesis, p and all its ancestors are 2-cells by the end of iteration ¢ =
h—14(d—1), and p is the last of this group to become a 2-cell. Thus at the
beginning of iteration ¢, all children of p are either leaves or 2-cells. During
iteration 4, only p’s highest priority child ¢ changes, either by transferring a
guest module into p (if ¢ is a 2-cell), or by pushing into p (if ¢ is a 1-cell leaf).
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In the first case, by Lemma 4, ¢ will be a 2-cell or a leaf by the end of iteration
i+1. In the second case, ¢ is not part of S anymore.

Since p will not accept new guest modules after iteration 4, all siblings of ¢
remain leaves or 2-cells during iteration i+1. Thus at the end of this iteration,
our claim holds for depth d. By setting d = h, our result follows. O

Let a long gap consist of two adjacent 1-cells that are not leaves. A tree is
root-clustered if it has no long gaps. Observe that a fully compressed tree is a
special case of a root-clustered tree.

Lemma 6. Let S be a root-clustered tree. Then after one application of
CLUSTERSTEP (S ), S remains root-clustered.

Proof. This follows from claims in the proof of Lemma 4. Specifically, consider
any 2-cell u. If CLUSTERSTEP keeps u as a 2-cell, then u is not part of a long
gap. Otherwise, if u sends a module to P(u), none of the children of u attempt
to transfer a module to u. Now consider any 1-cell non-leaf child y of u. Since
there was no long gap in S, all children of y were either 2-cells or leaves.
Thus y will become a 2-cell during this iteration of CLUSTERSTEP. Again we
conclude that u cannot be part of a long gap. 0O

Theorem 1. Algorithm TREETOPATH terminates in linear time.

Proof. By Lemma 5, SOURCECLUSTER terminates in linear time. In fact by
treating the final top position of V' as an implicit root, our claim follows.

More specifically, however, we analyze the transition from S into V. When
SOURCECLUSTER terminates, S is fully compressed (i.e., root-clustered), and
we set rg to be the host in cell d.

In step 2a, d sends a module to the empty position ¢ vertically above, if ¢
is not a 2-cell. We may treat the position ¢ as P(d), and consider step 2a to
be synchronous to step 2b. In other words, d is the only child of ¢, and thus d
follows the same rules as CLUSTERSTEP. In fact, since S is fully compressed,
after the first iteration of phase 2, the tree rooted at ¢ will be root-clustered
(only ¢ and the highest-priority child of d will not be 2-cells). Therefore, by
Lemma 6, in every iteration of phase 2, S remains root-clustered. Thus in
every even iteration, d supplies a module to ¢, and in every odd iteration d is
given a module from one of its children. Informally, when d sends a module
up into V', the gap (in the sense of lack of guest module) that is created in
S travels down the highest priority path of S until it disappears at a leaf.
In general, a guest module on the priority path will never be more than two
steps away from d, following the analysis of Lemma 4. Within V', a stream of
guest modules, two units apart, will move upward. One module will pop up
into an empty cell, every three iterations. Thus compressed modules in V' are
always able to progress. O

Again, we remind the reader that our first phase need not terminate before
the second commences. By compressing leaves and sending them towards the
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root, while simultaneously constructing V' from the root whenever it becomes
compressed, the target configuration will be constructed even sooner. Splitting
into two distinct phases simply helps for the analysis.

4 In-place reconfiguration

This section describes an algorithm that reconfigures S into T by restricting
the movement of all modules to the space occupied by S UT, as long as they
intersect. If S and T" do not intersect, then we also use the cells on the shortest
path between them. Our description assumes intersection. We call such an
algorithm in-place. If all modules were to know which direction to take in each
time unit (for example, by having an external source synchronously transmit
instructions to each module individually), then it would not be difficult to
design an in-place algorithm similar to the one in Section 3. However, in
this section we impose the restriction that all modules are only capable of
communicating locally. Thus it is up to r¢ to direct all action.

4.1 Overview

Our algorithm consists of two phases. The first phase is identical to phase 1 of
the TREETOPATH algorithm from Section 3 (i.e., clustering around the root).
In the second phase, rq carries out a DFS (depth-first search) walk on T,
dynamically constructing portions that are not already in place. Apart from
modules in cells adjacent to rg that receive its instructions, all other modules
simply try to keep up with rg (i.e., they follow CLUSTERSTEP). Note that if
ro is not initially inside T, it first must travel to such a position. At any time,
this “moving root” will either be traveling through modules that belong to
the partially constructed tree T', or will be expanding T beyond the current
tree structure, using compressed modules that are tagging along close to rg.

4.2 Algorithmic details

The INPLACERECONFIGURATION algorithm maintains a dynamically chang-
ing tree S, each of whose cells v maintains two links: a physical link corre-
sponding to the physical connection between u and P(u), and a logical link
that could either be NULL, or identical to the physical link. We call the tree
Sp induced by the logical links the logical tree.

S always contains all occupied cells. Sy is the smallest tree containing
the modules that are not in their final position in 7. Thus at the end of the
algorithm, S = T and S, = 0.

The full algorithm is summarized in the following:
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Algorithm INPLACERECONFIGURATION(S, T')

Phase 1. S «— SOURCECLUSTER(S).

Phase 2. Repeat until rg reaches the final position in its DFS traversal:
S < TARGETGROW(S,T).

We now describe the operation of TARGETGROW.

TARGETGROW(S, T

{1. DFS Root Update }
d «— next cell in the DFS visit of T.
¢ < current 2-cell in which 7 is a guest module.

Mechanical/Physical Operations
1.1 If d is a 0-cell,
PorPOUTLEAF(c, d)
1.2 If d is not a 0-cell,
If ¢ # P(d),
ATTACH(c,d) and DETACH(d, P(d)).
TRANSFER(c, d).

Tree Structure Update

1.3 Set P(c) to be d. Set P(d) to NULL
1.4 Mark c as “visited”.

1.5 Include d in Sp.

{2. Root Clustering }
Until ¢ and d become 2-cells, repeat:
(a) Detach Leaf: For all 1-cell leaves u € Sy, execute in parallel:
If w is marked “visited”, remove u from Sp.
(b) CLUSTERSTEP(.S¢)
If ro is not the guest in ¢, SWITCH(c).

In Phase 2, we start with Sy = S. Throughout this phase, the logical tree
is maintained as a subtree of the physical tree: S, C S . The host module in
each cell uses a bit to determine if the cell is also part of Sy. Pointers between
cells and their parents apply for both trees.

The main idea of the target growing phase is to move ry through the
cells of T' in a DFS order. A caravan of modules will follow rg, providing a
steady stream of modules to fill in empty target cells that ry encounters. The
algorithm repeats the following main steps:

1. DFS Root Update: rg is the guest of 2-cell ¢ and is ready to depart. It
marks c as “visited” (i.e., ¢ now belongs to T'). Then ¢ moves to the next
cell d encountered in a DFS walk of T'. This is accomplished either by
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uncompressing (popping) rg into d (see Fig. 6(a — b)), or by transferring
ro to d (see Fig. 6(e — f)). Cell d is added to Sy, if not already included.

2. Root Clustering: Modules in Sy attempt to move closer to rg, to ensure
that they are readily available when r¢ needs them. However, host modules
in their final target position should never be displaced from that position,
so we must carefully prevent such modules from compressing towards rg.
To achieve this, we alternate between the following two steps, until ¢ and
d both become 2-cells:

a) Logical Leaf Detach: remove any 1-cell leaf of S, that has been visited
(i.e., is in T'). Note that a detached 1-cell may end up back in Sy one
more time, during Root Update.

b) Cluster Step: this step is applied to Sy. Thus, only modules that are
guests or unvisited leaves will try to move towards rq.

Fig. 6 illustrates the INPLACERECONFIGURATION algorithm with the help
of a simple example. The top row of the figure shows the source configuration
S after phase 1 completes (left), and the target robot configuration (right).
Links in Sy, which is shaded, are depicted as arrows.

Algorithm Correctness.

Lemma 7. Algorithm INPLACERECONFIGURATION maintains a physically
connected tree that contains all modules.

Proof. By Lemma 2, SOURCECLUSTER produces a tree S containing all robot
modules. Thus we must show that TARGETGROW maintains such a tree when
it receives one as input. We first analyze step 1 (DFS root update). In step 1.1,
PoPOUTLEAF maintains a tree, by Lemma 1. In step 1.2, d is already part
of S. Now if ¢ # P(d), we attach ¢ to d, which creates a cycle (see Fig. 7b).
However, we immediately break this cycle by detaching d from P(d), and thus
S is restored to a tree. See Figs. 6(c — d — e) for an example. Regardless
of the initial relation between ¢ and P(d), and the possible re-structuring
of S,we proceed with TRANSFER(c, d), which maintains tree connectivity, by
Lemma 1.
After steps 1.1 and 1.2 or the DFS update, no other physical connections are
altered. Pointers are modified to reflect the physical changes made.

Finally, S remains a physical tree during step 2 of TARGETGROW. This
follows from two observations: (a) step 2a changes only the logical tree Sy,
and (b) CLUSTERSTEP maintains S as a tree, by Lemma 2. 0O

In phase 1 of INPLACERECONFIGURATION SOURCECLUSTER produces a
root-clustered tree containing rg in a 2-cell. We now show that phase 2 main-
tains this property in constant time, regardless of how ry moves.

Lemma 8. TARGETGROW maintains Sy as a root-clustered tree containing
ro in a 2-cell. Furthermore, the procedure uses O(1) parallel steps.
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Fig. 6. Reconfiguring S into T': the top row shows S (after SOURCECLUSTER) and
T'. Subsequent figures show S (with its logical subtree S; shaded) (a) after TARGET-
GRrROW, with each intermediate step illustrated (DFS root update on the left and
the subsequent 3 clustering steps on the right); (b) after TARGETGROW, with each
intermediate step illustrated; (c¢) after TARGETGROW, with its two main steps (root
update and root clustering) illustrated; (d,e,f,g) show the next 4 TARGETGROW
steps; (h) after the next 2 TARGETGROW steps; (i) after the next TARGETGROW
(note the rightmost 1-cell leaf getting disconnected from S¢); the process continues.

o

L ]P(d)

e[ ]t

! .d
)

(b)

Fig. 7. (a) POPOUTLEAF(¢,d). (b) DFS Root update when ¢ # P(d) (left) and

¢ = P(d) (right).
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Proof. The proof is rather similar to that of Lemma 6. Since S, C S , it
follows from Lemma 7 that Sy is physically connected.

Let S} denote the root-clustered tree that is input for TARGETGROW.
In step 1 (DFS root update), S§ will be modified according to any physical
operations carried out (POPOUTLEAF and TRANSFER ). By Lemma 7, these
changes result in a tree, which we call Sf'l.

Since step 1 only affects ¢ and d, it follows that at the beginning of step 2,
a long gap in Sfl must contain ¢, which becomes a 1-cell via POPOUTLEAF
(see Fig. 8a), or via TRANSFER (see Fig. 8b).

0 - - R
- 2i—1 =2 =1 24—1 —2 —1
T ‘I oy —
| - 7 —[]—1t—1t 7—1 —2]—1
do [11=2 =1 3d|_}__|,, =2 ] 0 c d I ,Cd
O P S o 0 It o 1t
0 2t 2t 1t o 2t 2t 14 | |
| 24 24

(a) (b)
Fig. 8. DFS Root update (a) POPOUTLEAF(c,d) (b) TRANSFER(c, d).

We now show that the loop in step 2 of TARGETGROW iterates at most four
times before our claim holds. Recall that, since S}é“ was root-clustered, chil-
dren of ¢ are either leaves, 2-cells, or their children have that property.

Any DetachLeaf operation only trims visited 1-cell leaves from the tree
and thus does not affect the root-clustered property of the tree. There are two
cases for the number of CLUSTERSTEP applications required to terminate the
loop:

1. S was obtained via POPOUTLEAF (step 1.1): In this case c and d are
1-cells at the beginning of step 2. If all children of ¢ are leaves or 2-
cells, then in the first iteration of CLUSTERSTEP, ¢ will become a 2-cell
again. Otherwise, since S} was root-clustered, any non-leaf 1-cell child will
become a 2-cell in the first iteration. Thus in the second iteration at the
latest, ¢ will become a 2-cell. Furthermore, just as described in Lemma 6,
the subtree rooted at any child of ¢ remains root-clustered after the first
application of CLUSTERSTEP (in particular, for the highest-priority child
which is the only one that changes). Similarly, by the time ¢ becomes
a 2-cell, the subtree rooted at ¢ also becomes root-clustered. The third
CLUSTERSTEP makes d a 2-cell root of a root-clustered tree, since all
children of ¢ must have been leaves or 2-cells to supply a module to c¢. The
fourth CLUSTERSTEP makes ¢ a 2-cell, which terminates the loop.

2. S;t was obtained via TRANSFER (step 1.2): In this case d is already a 2-
cell at the beginning of step 2 because of the TRANSFER operation in step
1.2. If ¢ remains a 2-cell during the transfer, then S§+1 is already root-
clustered and the loop condition is satisfied. If ¢ is a 1-cell, arguments
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similar to case 1 imply that after one application of CLUSTERSTEP, SE‘H
is root-clustered. A second application of CLUSTERSTEP makes ¢ a 2-cell,
which terminates the loop.

This concludes the proof. O

Theorem 2. The INPLACERECONFIGURATION algorithm can be implemented
in O(n) parallel steps.

Proof. By Lemma 5, phase 1 uses O(n) steps. Step 2 of INPLACERECONFIG-
URATION has O(n) iterations, since DF'S has O(n) complexity. By Lemma 8,
each iteration takes constant time. O

5 Observations

Matching lower bound: Transforming a horizontal line of modules to a
vertical line requires a linear number of parallel steps, if each module can
only displace one other and maximum velocity is constant.

3D: All of our techniques apply directly to 3D robots, once the top and
bottom sides of cells are incorporated into our highest priority rule.

Labeled robots: Our algorithms are essentially unaffected if labels are as-
signed to modules. In TREETOPATH, assume that the partially constructed
canonical path is sorted. Then a new module m pushed through can bub-
ble/tunnel to its position. When it gets there, the tail of the path must shift
over, but this is straightforward involving propagation of one compressed unit,
and does not interfere with other modules following m.

For the in-place algorithm, T' can first be constructed disregarding labels.
A similar type of bubble-sort can then be applied, taking place within 7.

Telecube robots: The natural state of a telecube robot has atom arms con-
tracted. There is no room to compress two modules into one cell. Thus an
algorithm cannot commence with PUSHINLEAF operations, and it is not pos-
sible to physically exchange modules in adjacent cells while remaining in place.
However, consider our first algorithm. We do not even need a SOURCECLUS-
TER phase, since all atoms are packed together. The root can transmit an
instruction to a cell at maximum y-coordinate to act as root and immediately
push out two of its atoms. For the construction of V, all analysis follows. It
seems that labeled atoms within a module might become separated (for ex-
ample, if the module is at a junction in a tree). Thus an extra step is used, to
collect the root atoms at the bottom of V.

Exact in-place reconfiguration is impossible for labeled telecube robots.
Thus the root cannot travel to any position within S. It might be possible
to deal with this issue by requiring larger modules and designing a “reduced
module shape” for the root (e.g., fewer atoms, using naturally expanded
links). Instead, we could require that all modules have access to the map
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of T, which means any module can begin to expand T by filling adjacent
0-cells. Instead of backtracking or advancing through non-empty cells of T’
physically, the root can just tell its neighbors to take over. Eventually a new
root module would expand T at a different connected component of 0-cells.
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