
PSPACE-Completeness of Reversible
Deterministic Systems

Erik D. Demaine1, Robert A. Hearn2, Dylan Hendrickson1, and Jayson Lynch3

1 MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street,
Cambridge, MA 02139, USA, {edemaine,dylanhen}@mit.edu

2 bob@hearn.to
3 University of Waterloo Cheriton School of Computer Science, Waterloo, ON,

Canada, jayson.lynch@uwaterloo.ca

Abstract. We prove PSPACE-completeness of several reversible, fully
deterministic systems. At the core, we develop a framework for such
proofs (building on a result of Tsukiji and Hagiwara and a framework
for motion planning through gadgets), showing that any system that
can implement three basic gadgets is PSPACE-complete. We then apply
this framework to four different systems, showing its versatility. First,
we prove that Deterministic Constraint Logic is PSPACE-complete, fix-
ing an error in a previous argument from 2008. Second, we give a new
PSPACE-hardness proof for the reversible ‘billiard ball’ model of Fredkin
and Toffoli from 40 years ago, newly establishing hardness when only two
balls move at once. Third, we prove PSPACE-completeness of zero-player
motion planning with any reversible deterministic interacting k-tunnel
gadget and a ‘rotate clockwise’ gadget (a zero-player analog of branching
hallways). Fourth, we give simpler proofs that zero-player motion plan-
ning is PSPACE-complete with just a single gadget, the 3-spinner. These
results should in turn make it even easier to prove PSPACE-hardness of
other reversible deterministic systems.

1 Introduction

Reversible deterministic systems arise in various situations, some of the most
important of which come from physics because fundamental existing physical
theories are reversible and deterministic4. In particular, due to the thermody-
namics of information, reversible computation can potentially use significantly
less energy than irreversible computation because Landauer’s Principle requires
physical systems expend kBT ln 2 energy per bit of information lost.5 Thus un-
derstanding how reversible systems can solve computationally difficult problems
may help in designing general-purpose reversible computing hardware.
4 The time evolution of the wave-function in the Standard Model is deterministic even

if the observation of macroscopic phenomena is probabilistic.
5 Here kB ≈ 1.4·10−23 is the Boltzmann constant and T is the temperature in kelvins.

At room temperature, this comes to about 2.8 · 10−21 joules per bit. Current chips
are rapidly approaching this limit; see [6,5].

bob@hearn.to


2 Erik D. Demaine, Robert A. Hearn, Dylan Hendrickson, and Jayson Lynch

More precisely, a system is deterministic if its configuration at each time
in the future is entirely determined by its current configuration. A system is
reversible if, in addition, its configuration at each time in the past is entirely
determined by its current configuration. The systems we consider all satisfy,
or nearly satisfy, the stronger property of time-reversal symmetry : evolution
forward in time and backward in time obey the same rules, so by looking at a
sequence of configurations it is not possible to determine whether time is moving
forwards or backwards. To reverse time, we simply need to reverse the direction of
motion of each moving part in each of the systems we consider. In one system, we
use a slightly more general symmetry by replacing each ‘rotate clockwise’ gadget
with a ‘rotate counterclockwise’ gadget, and vice-versa. A physicist might call
this parity–time (PT) symmetry; see, e.g., [10].

In this paper (Section 2), we develop a framework for proving PSPACE-
completeness of reversible deterministic systems. Our framework extracts and
simplifies a framework implicit in the work of Tsukiji and Hagiwara [11], who
proved PSPACE-hardness for Langton’s reversible ‘ant’ model of artificial life
in two geometries, the square and hexagonal grids. Their hardness reductions
construct five core gadgets in each grid, and show that these gadgets suffice for
PSPACE-hardness by a reduction from satisfiability in Quantified Boolean For-
mulas (QBF). Our framework decreases the number of required gadgets to just
three, showing that some of the previous gadgets are unnecessary (essentially,
redundant) and others can be simplified. The framework also guarantees that
the gadgets are connected together without crossings, making it well suited to
reducing to planar systems (which all of our applications are).

We then apply our framework to analyzing the complexity of four reversible
deterministic systems:

1. We prove in Section 3 that Deterministic Constraint Logic is PSPACE-
complete. While this result was already claimed 14 years ago [3,8], we de-
scribe in Section 3.1 an error in the previous reduction. Luckily the new
framework enables a correct proof of the same result.

2. We develop in Section 4 a new PSPACE-hardness proof for the ‘billiard
ball’ reversible model of computation, introduced and analyzed by Fredkin
and Toffoli in 1982 [7]. In this model, unit-radius 2D balls move without
friction and collide elastically with pinned or movable objects, according to
classical physics. Unlike the previous proof, our PSPACE-hardness result
works even in the case when only two balls ever move at once (and the
rest are stationary), which results in a substantially simpler proof (no longer
needing complex timing arguments to guarantee simultaneity).

3. We prove in the full version of the paper that zero-player motion plan-
ning through gadgets is PSPACE-complete when the gadgets include any
reversible deterministic interacting k-tunnel gadget and a ‘rotate clockwise’
gadget (a 1-state 3-location gadget where an entering signal simply exits
along the clockwise-next location). This result can be thought of as extend-
ing Table 1 in the motion-planning-through-gadgets framework [2,4] to add
a ‘zero-player’ column in the unbounded row, analogous to zero-player De-



PSPACE-Completeness of Reversible Deterministic Systems 3

terministic Constraint Logic [8]. Our proof indeed uses the same simulations
as for motion planning with a positive number of players [4] to reduce to one
core case — locking 2-toggles and rotate clockwise — and then shows that
that case is PSPACE-complete.

4. We prove in the full version of the paper that zero-player motion planning
with one very simple gadget called a ‘3-spinner’ is PSPACE-complete. Specif-
ically, a 3-spinner has two states — ‘clockwise’ and ‘counterclockwise’ — and
three locations at which the signal can enter; after entering, the gadget flips
its state and the signal exits in the next port in the order given by the
state. This result is weaker than Tsukiji and Hagiwara’s PSPACE-hardness
of ‘ant’ on a hexagonal lattice [11], because the vertices in the lattice act
exactly as 3-spinners. We effectively translate this result into the motion-
planning-through-gadgets framework of Demaine et al. [4], and simplify it
significantly.

All of the systems we consider can straightforwardly be simulated using poly-
nomial space, so the decision problems are in PSPACE.

2 The Framework

Our framework for proving PSPACE-hardness, which is a modest simplification
of one due to Tsukiji and Hagiwara [11], can be understood in terms of the
motion-planning gadgets framework of Demaine et al. [4]. In particular, it is
closely related to, and can be described in terms of, the ‘input/output gadgets’
of Ani et al. [1]. We will describe it independently.

The framework may apply to any setting with a single signal deterministi-
cally navigating a planar network of gadgets with the following properties. Each
gadget has some designated ports. When the signal enters the gadget at one of
its ports, it then exits the same gadget at one of its port, which is determined
by the entrance port and any previous traversals of that gadget. The network
links gadgets by connecting the ports of the gadgets in disjoint pairs: when the
signal exits at a port, it enters at the paired port.

To describe the “behavior” of a gadget, we define a traversal to be of the
form a → b for any two ports a and b of the gadget. A gadget implements a
sequence [a1 → b1, . . . , ak → bk] of traversals if, when the sequence of the signal’s
entrance ports to the gadget is [a1, . . . , ak], the sequence of exit ports from the
gadget is [b1, . . . , bk]. Note that a gadget implements any prefix of a sequence it
implements.

All of the gadgets we consider in this section are symmetric under time-
reversal, meaning if we perform a sequence of traversals followed by its time-
reverse, the gadget is returned to its original state. Formally, if a gadget imple-
ments two sequences X = [a1 → b1, . . . , ak → bk] and Y = [c1 → d1, . . . cℓ → dℓ],
then it also implements

XX−1Y = [a1 → b1, . . . , ak → bk, bk → ak, . . . , b1 → a1, c1 → d1, . . . , cℓ → dℓ].



4 Erik D. Demaine, Robert A. Hearn, Dylan Hendrickson, and Jayson Lynch

In the language of Hendrickson [9], our gadgets can be modeled as ‘prefix-closed
gizmos’, and time-reversal symmetry means they satisfy the ‘implication prop-
erty’ X,Y =⇒ XX−1Y .

If every gadget in a network is symmetric under time-reversal, then the entire
network is as well: if we reverse the direction of the signal by returning it to the
just-exited port instead of the port paired to just-exited port, it will retrace its
steps in reverse, eventually returning to the initial configuration. This is a special
case of a result applying to implication properties in general [9].

2.1 Required Gadgets

We are now ready to describe the gadgets which we will show suffice for PSPACE-
hardness.

We describe each gadget by specifying some sequences it implements. The
gadgets then also implement all prefixes of implemented sequences, and all se-
quences required for time-reversal symmetry. We don’t fully specify the behav-
ior of the gadgets: they are allowed to do anything if the signal arrives in an
unspecified sequence, and this does not affect our PSPACE-hardness result be-
cause it never happens in the networks created by the reduction. The required
behavior of our gadgets is summarized in Table 1. In addition, for each gadget
G described below, we also allow our network to include the gadget G after
[α1 → β1, . . . , αi → βi], which behaves like G would after having performed the
traversals α1 → β1, . . . , αi → βi in that order. That is, if G implements [α1 →
β1, . . . , αi → βi, a1 → b1, . . . , ak → bk], then G after[α1 → β1, . . . , αi → βi]
implements [a1 → b1, . . . , ak → bk].

Our first, and most complicated gadget, is the Switch. This corresponds to
three of Tsukiji and Hagiwara’s gadgets, the ‘Switch & Pass,’ ‘Switch & Turn,’
and ‘Pseudo-Crossing,’ which are all equivalent except for the cyclic order of
ports in the planar embedding, and that Switch & Turn merges the ports we
call Set and Out. The Switch has 5 ports, called ‘Set,’ ‘Out,’ ‘Test,’ ‘T-Out,’
and ‘F-Out.’ It implements [Set → Out,Test → T-Out] and [Test → F-Out].
Intuitively, it has an internal state which is initially False, and is set to True
by the traversal Set → Out. Entering Test reveals the current state. Time-
reversal symmetry implies that the Switch is reusable: for instance, it must also
implement

[Set → Out,Test → T-Out,T-Out → Test,Out → Set,Test → F-Out].

There are really 12 different Switch gadgets (up to rotation and reflection),
based on the cyclic order of the ports. We allow any cyclic order of the ports;
our PSPACE-hardness applies to any individual order.

Our next gadget is the Reversible Fan-in. Tsukiji and Hagiwara call this
gadget ‘CONJ.’ It has three ports a, b, and c, and implements [a → c] and
[b → c]. Intuitively, it is a fan-in that sends both a and b to c, but—as required
by time-reversal symmetry—remembers which entrance was taken so that when
the signal returns to c, it exits the port it originally entered.



PSPACE-Completeness of Reversible Deterministic Systems 5

Our final gadget is the A/BA Crossover. The A/BA Crossover has four ports
A, B, a, and b in cyclic order, and implements [A → a] and [B → b, A → a].
Tsukiji and Hagiwara build a slightly more powerful crossover they call ‘CROSS,’
which also implements [A → a,B → b]. However, this is not necessary for
PSPACE-hardness, and the A/BA Crossover can easily be constructed using
Tsukiji and Hagiwara’s Pseudo-Crossing (which is a particular planar embed-
ding of a Switch) and CONJ.

Gadget Ports Cyclic Order Implements

Switch

Set
Out
Test
T-Out
F-Out

Any order [Set → Out,Test → T-Out]
[Test → F-Out]

Reversible Fan-in
a
b
c

(Only one possible) [a → c]
[b → c]

A/BA Crossover

A
B
a
b

A, B, a, b [A → a]
[B → b, A → a]

Table 1: Summary of time-reversal-symmetric gadgets required for PSPACE-
hardness. Each gadget implements all sequences generated from those under
Implements by prefixes and time-reversal symmetry (X,Y =⇒ XX−1Y ).

2.2 PSPACE-Hardness

We now prove PSPACE-hardness for the natural decision problem concerning
these gadgets: given a planar network containing Switches, Reversible Fan-ins,
and A/BA Crossovers (including these gadgets after some traversals), a starting
port which the signal enters first, and a target port, does the signal ever reach
the target port? We reduce from QBF, still following Tsukiji and Hagiwara [11]
with some simplification and slightly different abstractions.

We first ignore the requirement of planarity, showing PSPACE-hardness for
general networks containing just Switches and Reversible Fan-ins. Then we argue
that A/BA Crossovers suffice for all required crossings in a planar embedding of
the networks we construct.

Given a quantified formula Q1x1 : · · ·Qnxn : ϕ(x1, . . . , xn) where ϕ is a 3-
CNF formula, we construct a network of Switches and Reversible Fan-ins. At a
high level, the network consists of a series of ‘quantifier gadgets,’ ending in ‘CNF
evaluation.’ When the signal arrives at a quantifier gadget, the quantifier gadget
sets the variable it controls, and then queries the next quantifier. Depending on
the response, it may perform a second query with the other setting of its variable,



6 Erik D. Demaine, Robert A. Hearn, Dylan Hendrickson, and Jayson Lynch

and then it sends a response to the previous quantifier. The final quantifier Qn

instead queries the CNF evaluation, which computes the value of ϕ under the
current variable assignment. The structure of the reduction is shown in Fig. 1.

Q2
In 

Write 

Out 

T-In 

F-In 

T-Out 

F-Out 

Q1
In 

Write 

Out 

T-In 

F-In 

T-Out 

F-Out 

Qn
In 

Write 

Out 

T-In 

F-In 

T-Out 

F-Out 

CNF Evaluation
In 

T-Out 

F-Out 

x1 x2 xn 

Fig. 1: The high-level structure of the network produced by our reduction. The
signal begins at In on Q1, evaluates the formula, and eventually arrives at T-Out
or F-Out on Q1 depending on its truth value.

Because we are working with gadgets which are symmetric under time-
reversal, we need our quantifier gadgets have this symmetry as well. Quanti-
fiers need to be used multiple times, so we will reset them in the way suggested
by time-reversal symmetry: the signal needs to backtrack across its entire path
through each quantifier gadget before returning to the previous quantifier. We
will describe the desired behavior of quantifier gadgets which are symmetric
under time-reversal, and later show how to build them using Switches and Re-
versible Fan-ins.

We specifically discuss universal quantifiers; existential quantifiers require
only a minor modification. A universal quantifier gadget Qi has eight locations,
named in cyclic order ‘F-Out’, ‘T-Out’, ‘In’, ‘Write-Out’, ‘Write-In’, ‘Out’, ‘T-
In’, and ‘F-In.’6 The gadget is activated when the signal arrives at In, and the
signal proceeds to Out to query the next quantifier; the variable xi is currently
set to False.

Eventually, the signal returns at either T-In or F-In, indicating the truth
value of the remainder of the formula with the current variable assignment up
to xi. If it enters at F-In, the universally quantified formula is false, so it passes
this along to Qi−1 by exiting at F-Out. If it enters at T-In, we need to try
the other assignment, which means we need to reset the quantifiers after Qi by
backtracking through them. So the quantifier gadget ‘remembers’ that it received
one True signal, and sends the signal back out T-In. Due to reversibility, the
signal eventually returns to Out, at which point it is sent to Write-Out to set
6 Tsukiji and Hagiwara call these ‘OUTi,FALSE,’ ‘OUTi,TRUE,’ ‘INi,’ ‘Ixi ,’ ‘Oxi ,’

‘INi+1,’ ‘OUTi+1,TRUE,’ and ‘OUTi+1,FALSE,’ respectively.



PSPACE-Completeness of Reversible Deterministic Systems 7

xi to True. The signal goes through a series of Switches in the CNF evaluation,
and then returns at Write-In. Now Qi sends the signal to Out, this time with the
other setting of xi. Eventually the signal returns again at either T-In or F-In,
and it is sent straight to T-Out or F-Out to answer the query from Qi−1.

Once Qi−1 has dealt with the response, the signal returns to Qi at the same
one of T-Out or F-Out it exited, at which point everything is reversed, ending
with the signal exiting at In with xi set to False, and Qi and all later quantifiers
in their initial configuration.

Formally, we need a universal quantifier to implement these sequences (and
those implied by time-reversal symmetry), corresponding to the first query to
Qi+1 returning False, the first query returning True but the second returning
False, and both queries returning True, respectively:

[In → Out,F-In → F-Out]

[In → Out,T-In → T-In,Out → Write-Out,Write-In → Out,F-In → F-Out]

[In → Out,T-In → T-In,Out → Write-Out,Write-In → Out,T-In → T-Out]

An existential quantifier gadget is constructed by swapping T-In with F-In
and T-Out with F-Out on a universal quantifier gadget.

The signal starts at In on Q1, which queries the truth value of the whole
formula. It eventually arrives at either T-Out or F-Out depending on the answer;
we make T-Out on Q1 the target port. If we connect In, T-Out, and F-Out to
themselves, then after evaluating the formula the signal will backtrack all the
way to the beginning, and repeat this cycle.

The final quantifier Qk interfaces directly with the CNF evaluation instead
of another quantifier. The CNF evaluation maintains the current variable assign-
ment, initially with all variables False. It has a path for each variable xi which
is connected to Write-Out and Write-In on Qi; traversing this path forwards
sets xi True, and then traversing it backwards returns xi to False. The CNF
evaluation has three additional ports In, T-Out, and F-Out, analogous to those
on a quantifier gadget. When the signal arrives at In, it exits at either T-Out or
F-Out depending on the truth value of the formula under the current variable
assignment. These ports are connected to Out, T-In, and T-Out on Qk in the
same way as other quantifiers.

By the designed behavior of quantifier gadgets and CNF evaluation, the signal
arrives at T-Out on Q1 if and only if the quantified formula is true. We still need
to fill in the details: how do we build quantifier gadgets and CNF evaluation and
of Switches and Reversible Fan-ins, and how do we handle crossings?

CNF evaluation. Our CNF evaluation is the same as Tsukiji and Hagiwara’s,
and is shown in Fig. 2. There is a switch for each literal in ϕ. For each variable
xi, there is a path that goes through all switches corresponding to instances of
xi (or ¬xi) in ϕ, and traversing this path sets xi to True. When the signal enters
In, it checks each clause in series. For each clause, it goes through the switches



8 Erik D. Demaine, Robert A. Hearn, Dylan Hendrickson, and Jayson Lynch

corresponding to literals in the clause, and emerges in one of two locations de-
pending on whether the clause is satisfied. If it is not satisfied, the signal exits
at F-Out, and otherwise it proceeds to the next clause, exiting at T-Out once
it has passed every clause. Later, it will return to either T-Out or F-Out and
reverse its path back to In; the Reversible Fan-ins remember the path taken and
necessarily send it back along the same path.

Quantifier gadgets. Our quantifier gadgets are essentially the same as Tsukiji
and Hagiwara’s, the only differences are due to planar arrangement and that we
must build their Switch & Turn gadget out of a Switch and a Reversible Fan-in.
The universal quantifier gadget is shown in Fig. 3. The existential quantifier
gadget is constructed by exchanging the roles of T-In with F-In and T-Out
with F-Out, so there is a direct path from T-In to T-Out which crosses some
edges linking F-In and F-Out to the other ports. This similarity is sensible:
for existential quantifiers if the formula is false we need to try again with the
other value, but for universal quantifiers if the formula is true we are allowed to
attempt the other required value for the variable.

We must check that the universal quantifier gadget correctly implements the
behavior described above. Recall that the signal will first arrive at In. It proceeds
to the upper left switch, taking [F-Out → Test] and leaving the Switch in its
default state. Then signal takes [a → c] in the upper right Fan-in and leaves
at Out. If it now enters F-In, it goes directly to F-Out. If instead it enters T-
In, it goes from Test to F-Out on the bottom switch, goes along edge 8 to the
Reversible Fan-In (which is after [a → c]), and traverses [c → a]. Then the signal
traverses Set → Out on the top switch, and returns to the bottom switch via
the Reversible Fan-in, leaving both the Switch and Reversible Fan-in in different
states than before. The signal then backtracks from F-Out to Test on the bottom
Switch, and exits T-In, where it just entered. Now if the signal enters Out, the
Reversible Fan-in sends it back to Test on the top Switch along edge 2. But the
top Switch has been activated, so the signal exits the Switch at T-Out and exits
the quantifier at Write-Out. It next enters Write-In, at which point it traverses
Set → Out on the bottom Switch, and exits Out. Finally, if the signal now enters
F-In, it is still sent to F-Out, and if it enters T-In then it goes from Test to T-Out
on the bottom switch (which has now been activated) and exits the quantifier
at T-Out.

Planarity. Finally, we argue that we can use A/BA Crossovers to avoid cross-
ings in the network produced by this reduction.

Note that each edge in the network is directed, in the sense that the first
traversal across the edge is in a predetermined direction which we call forwards,
and all future traversals alternate direction—we never traverse an edge twice
consecutively in the same direction. At any time while running the system, we say
an edge is used if it has been traversed forwards more recently than backwards.
Initially no edges are used, and they are used and unused throughout the process.
For two edges x and y which cross, an A/BA Crossover suffices for their crossing



PSPACE-Completeness of Reversible Deterministic Systems 9

x

c
a

b

Test 

Set 

F-Out 

Out 

T-Out 
In 

T-Out 

F-Out 

¬y

Test 

Set 

F-Out 

Out 

T-Out 

z

Test 

Set 

F-Out 

Out 

T-Out 

c
a

b

¬x

c
a

b

Test 

Set 

F-Out 

Out 

T-Out 

y

Test 

Set 

F-Out 

Out 

T-Out 

z 

Test 

Set 

F-Out 

Out 

T-Out 

c
a

b

C
la

us
e 

1 
tru

e 
Clause 1 false 

C
la

us
e 

2 
tru

e 

a b
c

Clause 2 false 

x-In x-Out y-In y-Out z-In z-Out 

Fig. 2: Our CNF evaluation. Each clause consists of three Switches corresponding
to the literals in the clause, with Reversible Fan-ins to merge paths. A variable
and its negation differ in the positions of T-Out and F-Out on the corresponding
Switch. When the signal enters In, if any literal in the first clause is true it will
take the edge labeled “Clause 1 true” and otherwise will take the edge labeled
“Clause 1 false.” All the exits for false clauses merge and lead to F-Out. If all
clauses are true, the signal will traverse them in series and then exit T-Out. For
each variable xi, there is also a path from xi-In to xi-Out which goes through
Set → Out on the switch corresponding to each instance of xi or ¬xi.

provided that whenever both x and y are used, always the same edge—say x—
was traversed forwards more recently, and also x will be traversed backwards
sooner in the future. In this case, we can set x to be the A → a tunnel and y



10 Erik D. Demaine, Robert A. Hearn, Dylan Hendrickson, and Jayson Lynch

c
a b

a

b
cF-Out 

T-Out 

Set Out 

Test 

Test 

Set 

F-Out 

Out 

T-Out 

In 

Write-Out Write-In 

Out 

T-In 

F-In 

T-Out 

F-Out 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

x y 

Fig. 3: The universal quantifier gadget built
from two Switches (squares) and two Re-
versible Fan-ins (triangles). The top Switch be-
gins is after [Test → F-Out], the bottom left
Reversible Fan-in is after [a → c], and the
other two gadgets are their default versions.
Edges between gadgets are labeled for later
use.

1 

2 

3 

4 

5 

6 

7 

8 9 

10 

Fig. 4: A Hasse diagram
of the order relation on
used edges in our quanti-
fier gadgets (Fig. 3). That
a is above b indicates that
whenever both edges are
used, a was used more re-
cently and will be unused
sooner.

to be the B → b tunnel of an A/BA Crossover. If x and y are never both used,
either orientation of the A/BA Crossover will work.

So we just need to argue that there is a consistent order edges (other than
the few we showed can avoid crossings) are used. There are no crossings outside
the CNF evaluation and quantifier gadgets, so we need only check those gadgets.
For the CNF evaluation, this is straightforward:

– For i < j, the path to set xi is used before the path to set xj .
– Within the path to set xi, the edges are used in order.
– All paths for setting variables are used before edges involved in testing the

current value.
– The edges involved in testing the current value are used in order. Specifically,

there is a partial order on these edges based on when it is possible to traverse
one and then another on the way from In to T-Out or F-Out. We arbitrarily
extend this partial order to a total order, or equivalently, for two edges which



PSPACE-Completeness of Reversible Deterministic Systems 11

can’t both be used, we arbitrarily choose which is A and which is B in the
A/BA Crossover.

For quantifier gadgets, the numbering listed in Fig. 3 works as an order for all
edges other than x and y. More generally, a Hasse diagram of the “is sometimes
used after” partial order on these edges is shown in Fig. 4, and positioning A/BA
Crossovers to respect this order suffices for all crossings between these edges. It
is straightforward to verify this partial order by considering the behavior of our
quantifier gadgets.

For crossings inside a quantifier gadget which involve edge x or y, we need a
different approach: for instance, if edge 2 crosses x, then the signal will sometimes
traverse 2, then x, then 2 backwards, which isn’t supported by the default A/BA
Crossover. When x or y is involved in crossing, we use an A/BA crossover as
follows:

– If x crosses y, make x the B → b tunnel since it is always used first.7
– If x or y crosses 1, make 1 the B → b tunnel since it is always used first.
– If x or y crosses 3, 4, 5, 9, or 10, make x or y the B → b tunnel since they

are always used first.
– If x or y crosses 2, 6, 7, or 8, use an A/BA Crossover after A → a, and

make the numbered tunnel a → A. By time-reversal symmetry, the A/BA
Crossover after A → a implements [a → A,B → b, A → a], which cor-
responds for instance to traversing 2 forwards, x backwards, and then 2
backwards, which is what is needed.

To carefully check that this arrangement of A/BA Crossovers works for the
quantifier gadget, we can consider the possible sequences of edge traversals. Using
·−1 for backwards traversals, these are (generated by time-reversal symmetry
from)

– [1, 2, 6, 10]
– [1, 2, 6, 7, 8, x, y, 8−1, 7−1, 6−1, 2−1, 3, 4, 5, 6, 10]
– [1, 2, 6, 7, 8, x, y, 8−1, 7−1, 6−1, 2−1, 3, 4, 5, 6, 7, 9]

which correspond to the sequences the quantifier gadget was built to implement.
It is straightforward to verify, for each pair of edges, that an A/BA Crossover
as described supports all of the ways that pair of tunnels is used. For instance,
the possible sequences for just 2 and x are [2] and [2, x, 2−1], which are [a → A]
and [a → A,B → b, A → a] on the A/BA Crossover involved, and both of these
are implemented by an A/BA Crossover after A → a. It suffices to check just
the sequences listed, since taking the closure under time-reversal symmetry does
not give rise to any new intermediate configurations.

Hence we have the main result of this section:

Theorem 1. Given a planar network of Switches, Reversible Fan-ins, A/BA
Crossovers, and these gadgets after some traversals, a starting location, and
7 Alternatively, avoid this crossing by adjusting the Reversible Fan-in connecting x

and y.



12 Erik D. Demaine, Robert A. Hearn, Dylan Hendrickson, and Jayson Lynch

a target location, it is PSPACE-complete to determine whether the signal ever
reaches the target location from the starting location. This result holds even when
all Switches have any particular cyclic order of ports.

To apply this framework to a specific problem, we simply need to describe
the signal and how it moves along wires, and then construct a Switch (with ports
in any order), Reversible Fan-in, and A/BA Crossover.

3 Deterministic Constraint Logic

Constraint Logic is a problem about graph orientation reconfiguration intro-
duced by Hearn and Demaine [3,8] as a tool for proving hardness results. A
constraint graph is a directed planar graph where each edge has weight 1 or 2,
which are colored red and blue, respectively.8 Each vertex in a constraint graph
is either an AND vertex, which has two red and one blue edge, or an OR vertex,
which has three blue edges. Each vertex is required to have at least 2 total weight
in edges pointing towards it. Edges change orientation, while maintaining this
constraint. Hearn and Demaine show how to ‘tie up’ loose edges, allowing the
use of degree-2 vertices with any combination of colors, for which the required
weight is only 1 (so a single red edge satisfies it).

In this paper, we are specifically interested in Deterministic Constraint Logic
(DCL), in which edges flip according to the following deterministic rule. Each
time step, an edge flips if it didn’t flip in the previous time step and it can flip
without violating the in-weight constraint of the vertex it is currently directed
towards, or it did flip in the previous time step but no other edge pointing
towards the vertex it is now directed towards can flip this time step.

Here are the basic behaviors that result from the deterministic rule:

– Begin with a path of edges of any color, all pointing to the left. If the leftmost
edge flips, all the edges in the path will flip, one in each time step.

– If a blue edge flips to point towards an OR vertex, in the next time step the
blue edge which was already pointing towards the OR vertex will flip.

– If a blue edge flips to point towards an AND vertex, in the next time step
both red edges pointing towards that vertex will flip.

– If both red edges flip to point towards an AND vertex in the same time step,
in the next time step the blue edge will flip.

– If one red edge but not the other flips to point towards an AND vertex, in
the next time step the same red edge will flip again.

The decision problem in Deterministic Constraint Logic is whether some
specified edge will eventually flip, given a constraint graph and the set of edges
that are considered to have flipped in time step 0.

8 In grayscale, blue edges are darker than red edges. Figures also draw blue edges
thicker than red edges.



PSPACE-Completeness of Reversible Deterministic Systems 13

3.1 Issue with Existing Proof

Hearn and Demaine’s proof of PSPACE-hardness for Deterministic Constraint
Logic [8] has a subtle issue. When their universal quantifier receives a ‘satisfied
in’ signal, it records this fact, much like our universal quantifier gadget. When
it receives a second ‘satisfied in’ signal (assuming the signal did not enter ‘try
out’ in between), it erases the record of the first one; this is by design, to reset
the gadget for the next variable assignment.

The existential quantifier tries assigning its variable False, then True, and
then False again, and passes every ‘satisfied in’ signal it gets to ‘satisfied out’ to
inform the previous quantifier. If the existential quantifier is satisfied when its
variable is False but not True, it sends two such signals instead of one. This is
the problem: if the previous quantifier is universal, the second signal cancels the
first one, and that quantifier behaves as though there was no signal. The simplest
formula for which the reduction fails is ∀x∃y : ¬y. Modifying the existential
quantifier to test each assignment exactly once does not fix the problem, because
then if the quantifier is satisfied by both values for its variable, it sends two
signals to the previous quantifier. In particular, ∀x∃y : y ∨ ¬y would fail.

The proof may be fixable by modifying the existential quantifier gadget to
ensure it only ever sends one signal; it would likely be about as complicated as
the universal quantifier. The approach our framework takes is different: it adds
an additional query return line, so instead of just ‘satisfied in’ we have both T-in
and F-in, and quantifier gadgets are guaranteed to receive exactly one response
for each query.

3.2 PSPACE-Hardness

Our PSPACE-hardness proof for Deterministic Constraint Logic uses many of
the same elements as Hearn and Demaine’s. The signal is a flipping edge, which
propagates along paths in the direction opposite the orientation of the edges in
the path. Like Hearn and Demaine, our gadgets will sometimes contain ‘bounc-
ing’ edges which flip in a periodic way, and we ensure the length of each path
through a gadget is a multiple of this period—for us, the period is 2, though
Hearn and Demaine used a period of 4. The ports of our gadgets are always blue
edges, which are connected by joining them with a degree-2 vertex. The target
edge is the edge corresponding to the target port, and it flips if and only if the
signal reaches the target port.

While DCL itself is symmetric under time reversal, it is possible to build a
DCL gadget which is not, by including periodically bouncing edges calibrated
such that the signal enters out of phase with when it exits. Some of Hearn
and Demaine’s gadgets [8] behave this way. However, all of our gadgets will be
symmetric under time reversal in all of their relevant behavior, as is required for
the framework we are using.

We simply need to build valid Switch, Reversible Fan-in, and A/BA Crossover
gadgets. A Reversible Fan-in is simply an OR vertex, which always takes 2
time steps to traverse. We use Hearn and Demaine’s A/BA crossover, which we



14 Erik D. Demaine, Robert A. Hearn, Dylan Hendrickson, and Jayson Lynch

reproduce in Fig. 5. This A/BA crossover always takes an even number of time
steps to traverse, and contains bouncing edges with period 2.

B b

A

a

Fig. 5: An A/BA Crossover for Deterministic Constraint Logic, from Hearn and
Demaine [8]. Glowing auras indicate edges that flip every time step—the state
shown is the state immediately before the signal enters the gadget, so that when
the signal enters, the blue edge at the entered port and all glowing edges simul-
taneously flip from the shown configuration.

Our Switch gadget is a bit more complicated, and is shown in Fig. 6. If the
signal arrives at Set, it exits at Out and reflects the configuration by flipping
the bottom four edges and setting the left red edge bouncing instead of the right
red edge. If the signal arrives at Test, at exists either F-Out or T-Out based on
which red edge is currently bouncing, and sets one of the top red edges bouncing.
Every traversal through this gadget takes four time steps.

Set Out

Test

F-Out T-Out

Set Out

Test

F-Out T-Out

Fig. 6: A Switch for Deterministic Constraint Logic. Left: the initial configura-
tion. Right: the configuration after the traversal Test → T-Out.



PSPACE-Completeness of Reversible Deterministic Systems 15

4 Billiard Balls

Our final application is the billiard ball model, which was introduced by Fredkin
and Toffoli [7] and is one of the best known reversible models of computation.
In the billiard ball model, there are circular balls colliding elastically with each
other and with fixed mirrors. For simplicity, all balls have the same size and mass,
and will only move at a single nonzero speed. This model is based on classical
physics, and in fact exactly matches the classical kinetic theory of perfect gasses.

The decision problem we consider is whether a ball ever reaches a particular
position, given a configuration of mirrors and initial positions and velocities of
balls. Fredkin and Toffoli [7] proved that this model can perform arbitrary com-
putation by showing how to build and string together Fredkin gates; it follows
that the decision problem is PSPACE-complete.

We present a new proof of PSPACE-hardness using our framework. The pri-
mary advantage this proof has over Fredkin and Toffoli’s is that only a constant
number—in particular, two—of balls will be moving at any time, and the two
moving balls will always be in close proximity. This means there are fewer details
to work out relating to issues like timing; Fredkin and Toffoli had to ensure that
signals from disparate parts of the construction arrive at a logic gate simultane-
ously.

Fig. 7: The billiard ball model. Filled circles depict initial positions of balls, and
empty circles depict intermediate or final positions. Diagonal lines are mirrors,
and horizontal or vertical lines are paths taken by balls. Left: a ball bounces
off of mirrors. Middle: two moving balls collide. If only one ball arrives, it goes
straight through, but if both balls arrive simultaneously, they bounce off each
other. Right: A moving blue ball collides with a stationary red ball, transferring
its momentum and leaving the blue ball not grid-aligned.

The balls in our construction all have a radius of 1√
2
, and will move only

horizontally or vertically. The types of collisions that will occur are shown in
Fig. 7. One can think of a head-on collision with a stationary ball as moving the
stationary ball backwards by the ball diameter, and teleporting the moving ball
forwards by the same amount.

The signal will be represented by two balls moving along parallel paths 2
√
2

(i.e. twice the diameter) apart. This signal is easy to route, as demonstrated by
Fig. 8. We will always have the two balls aligned with each other when the signal
enters a gadget. Full crossovers, and in particular A/BA crossovers, are trivial:



16 Erik D. Demaine, Robert A. Hearn, Dylan Hendrickson, and Jayson Lynch

simply have two paths the signal might take cross each other. For simplicity, our
diagrams show the paths separated by 3 units, rather than the actual distance
2
√
2 ≈ 2.8.

Fig. 8: A signal consisting of two bil-
liard balls is sent from the top left to
the bottom right. The paths of the
two balls have the same length.

Test

Set

Out

T-O ut

F-O ut

Fig. 9: The Switch for the billiard ball
model. Each port is marked with a pair
of green lines, along which the two balls
of the signal may enter or exit.

All that remains is constructing the Switch and Reversible Fan-In. Our
Switch is shown in its initial state Fig. 9. The key idea is that stationary balls
inside the gadget might (depending on the state) be in the way of one of the
balls in the signal entering at Test, effectively making that ball arrive slightly
earlier. This change in timing affects whether that ball collides with the other
ball in the signal, resulting in two possible places for the signal to end up.

The three relevant traversals are shown in Fig. 10. Since the model has time-
reversal symmetry, any gadget built in it also has time-reversal symmetry, so we
only need to check that the sequences listed in Table 1 are implemented correctly.

Finally, our Reversible Fan-in is shown in Fig. 11. It works in a very similar
way to Switch, but in reverse, and essentially combining the Set traversal with
one of the Test traversals. If the signal enters at a, the balls collide and arrive
at c. If the signal enters at b, the signal balls do not collide, and arrive at c with
a slightly different timing. To correct the timing, we have the signal entering at
b first remove two balls from the path near c.



PSPACE-Completeness of Reversible Deterministic Systems 17

Test

Set

Out

T-O ut

F-O ut

Test

Set

Out

T-O ut

F-O ut

Test

Set

Out

T-O ut

F-O ut

Fig. 10: The ways a signal moves through the switch. Left: in the initial state,
the signal bounces from Test to F-Out. The two balls don’t collide where there
paths cross. Middle: the blue ball hits the green, which hits the purple, leaving
two balls in the path of the Test port. The red ball’s path is extended north
so that two balls exit at Out simultaneously; the two red balls in its path save
the same amount of time as the two balls in the blue ball’s path. Right: with
the purple and green balls in the way of the signal entering Test, the green ball
arrives soon enough to collide with the red ball, resulting in the signal exiting
at F-Out. The two additional red balls are to help synchronize the exit signal.

c

b 

a 

c

b

a

c

b

a

Fig. 11: The Reversible Fan-in for the billiard ball model. Left: the gadget in
its initial state. Middle: the signal enters at a. The signal balls ricochet off each
other, and then exit at c. They each collide with two stationary balls, so the balls
exiting c get there at the same time. Right: The signal enters at b. The blue ball
knocks the green ball, which knocks the purple ball, clearing the vertical path
to c. The red ball and the purple ball then exit at c without colliding. The red
zigzag to the north and two additional red balls are to make the timing correct.



18 Erik D. Demaine, Robert A. Hearn, Dylan Hendrickson, and Jayson Lynch

References

1. Joshua Ani, Erik D. Demaine, Dylan H. Hendrickson, and Jayson Lynch. Trains,
games, and complexity: 0/1/2-player motion planning through input/output gad-
gets. In Proceedings of the 16th International Conference and Workshops on Algo-
rithms and Computation (WALCOM 2022), 2022. arXiv:2005.03192.

2. Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy. Computational
complexity of motion planning of a robot through simple gadgets. In Proceedings
of the 9th International Conference on Fun with Algorithms (FUN 2018), pages
18:1–18:21, 2018.

3. Erik D. Demaine and Robert A. Hearn. Constraint Logic: A uniform framework
for modeling computation as games. In Proceedings of the 23rd Annual IEEE
Conference on Computational Complexity, pages 149–162, June 2008.

4. Erik D. Demaine, Dylan H. Hendrickson, and Jayson Lynch. Toward a general
complexity theory of motion planning: Characterizing which gadgets make games
hard. In Proceedings of the 11th Innovations in Theoretical Computer Science
Conference (ITCS 2020), pages 62:1–62:42, 2020.

5. Erik D. Demaine, Jayson Lynch, Geronimo J. Mirano, and Nirvan Tyagi. Energy-
efficient algorithms. In Proceedings of the 7th Annual ACM Conference on Inno-
vations in Theoretical Computer Science (ITCS 2016), pages 321–332, Cambridge,
Massachusetts, January 14–16 2016.

6. Michael P Frank. Fundamental physics of reversible computing–an introduc-
tion. Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States), 2020.

7. Edward Fredkin and Tommaso Toffoli. Conservative logic. International Journal
of theoretical physics, 21(3):219–253, 1982.

8. Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. CRC
Press, 2009.

9. Dylan Hendrickson. Gadgets and gizmos: A formal model of simulation in the
gadget framework for motion planning. PhD thesis, Massachusetts Institute of
Technology, 2021.

10. Ş. K. Özdemir, S. Rotter, F Nori, and L. Yang. Parity–time symmetry and excep-
tional points in photonics. Nature Materials, 18:783–798, 2019.

11. Tatsuie Tsukiji and Takeo Hagiwara. Recognizing the repeatable configurations of
time-reversible generalized Langton’s ant is PSPACE-hard. Algorithms, 4(1):1–15,
2011.


	PSPACE-Completeness of Reversible Deterministic Systems

