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Abstract

We study misère Dots-and-Boxes, where the goal is to minimize score, for narrow boards.
In particular, we characterize the winner for 1× n boards with an explicit winning strategy for
the first player with a score of b(n − 1)/3c. We also give preliminary results for 2 × n and for
Swedish 1× n (where the boundary is initially drawn).

1 Introduction
2 2

Figure 1: In the mid-
dle of a typical Dots-and-
Boxes game. Based on
[BCG03, Fig. 1].

Recall the classic children’s game Dots-and-Boxes [BCG03]. We start with
an m× n square grid of dots. Players alternate drawing individual edges
of the grid. If a player completes a box of the grid, s/he gets a point and
must draw another edge; this process can repeat several times within a
single turn. The game ends when all edges have been drawn, i.e., when
all mn boxes have been completed. In normal Dots-and-Boxes, the player
to receive the most points wins. In misère Dots-and-Boxes, the player to
receive the fewest points wins. A draw (tie) occurs when mn is even and
the players complete the same number of boxes.

Normal Dots-and-Boxes endgames are known to be NP-hard; see [DH]. In addition, no winning
strategies are known when m or n is sufficiently large. To our knowledge, even the 1 × n case is
open for arbitrary n. On the other hand, misère Dots-and-Boxes may be easier to analyze.

In Section 2, we give a winning strategy for the first player in 1×n misère Dots-and-Boxes that
guarantees a score of at most b(n− 1)/3c boxes, which is a win by roughly n/6. The essence of the
strategy is to avoid any parity switching of who leads the game, which we show is possible, unlike
general boards. In Sections 3 and 4, we give preliminary results for the 2 × n game and for the
Swedish 1× n game (where the boundary is initially drawn).

Figure 2: Boundary edges are
solid; interior edges are dashed.

Terminology. See Figure 2. A boundary edge is an edge of the
bounding rectangle. An interior edge is any nonboundary edge.

2 Misère 1 × n

In a 1 × n board, there are n − 1 interior edges; the remaining 2n + 2 edges are boundary. We
distinguish the leftmost and rightmost boxes as end boxes.
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Theorem 1 For all n ≥ 1, misère 1× n Dots-and-Boxes is a first-player win.

Proof: First we describe Player 1’s strategy, which divides the game into two phases. In Phase I,
some interior edges remain untaken, and Player 1 always takes such an edge. The initial choice of
interior edge is any not incident to an end box, if there is one, and otherwise an arbitrary interior
edge. We ignore any boxes that Player 2 takes, and instead focus on the last edge played. If
Player 2 takes an interior edge, Player 1 takes another arbitrary interior edge. If Player 2 takes
a boundary edge, Player 1 takes one of the two incident interior edges, if one of them is untaken,
and otherwise an arbitrary interior edge. This rule may cause Player 1 to take a box, in which case
Player 1 takes another, arbitrary interior edge (if any exist). In Phase II, when all interior edges
are depleted, Player 1 takes any boundary edge that does not complete a box; we will show that
such an edge always exists.

We show that no edge can ever complete two boxes simultaneously. During Phase I, Player 1
goes first and takes only interior edges, so the number of taken interior edges is always at least
the number of taken boundary edges. Further we claim that, within each nonboundary box except
possibly the one in which Player 2 just played, the number of taken interior edges is always at least
the number of taken boundary edges. The claim is trivially true before either player has played
in the box. If Player 1 plays in the box, the claim certainly remains true. Whenever Player 2
plays in the box, Player 1’s next move will be to play in the box, unless both interior edges have
already been taken; in either case, the claim remains true. For boundary boxes, the number of
boundary edges can exceed the number of interior edges, but only when all (zero or one) interior
edges have been taken. Thus, at any time, no box except possibly the one in which Player 2 just
played could be completed by an interior edge; all other boxes can be completed only by boundary
edges, each of which is incident to only one box. Therefore at no time can any edge complete two
boxes simultaneously.

Figure 3: A spanning tree of a
1× n grid has 2n + 1 edges.

Next we prove that Player 1 completes no boxes during
Phase II. By definition, Player 1 will take a box during Phase II
only if every box is either completed or one edge from being com-
pleted. At such a time, the taken edges must include a spanning
tree of the grid, which consists of 2n+ 1 edges (see Figure 3), plus
exactly one edge for each completed box (because the cycle formed
by each completed box can be broken by a single edge removal).
Because we proved that each edge completed at most one box, the number of complete turns must
be the number of taken edges minus the number of completed boxes. Thus the number of complete
turns must be 2n + 1, meaning that it is Player 2’s turn. Therefore Player 1 completes no boxes
during Phase II.

We claim that Player 1 never completes an end box. An end box has at most one interior
edge, so there is only one possible move by Player 1 that could complete the box in Phase I. But
when Player 2 plays the top or bottom edge of the box, Player 1 will take the interior edge, before
Player 2 could have played the opposite (bottom or top) edge of the box. Therefore this move by
Player 1 did not complete the box.

If Player 1 plays first in a non-end box of the board, then we claim that Player 1 will not
complete this box; refer to Figure 4. If Player 1 also plays second in this box, then the claim is
obvious: Player 1 will play in the box only if it does not complete the box. If Player 2 plays second
in the box, then by definition Player 1 will immediately take the remaining interior edge of the box.
As this is only the third move in the box, this move does not complete the box. Player 1 will not
play the final boundary edge of the box because that would complete the box.
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(a) Player 1 starts.
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(b) Player 2 starts.

Figure 4: Behavior of a non-end box under Player 1’s strategy, depending on who takes the first box edge.
Non-immediate responses are denoted by · · ·.

Finally we show that Player 1 completes at most b(n − 1)/3c boxes. As argued above, for
Player 1 to complete a box, it must not be an end box and Player 2 must play in it first. Indeed,
Player 2 must play in that box again, taking the other boundary edge, or else we would have already
entered Phase II. Thus, every box taken by Player 1 can be charged to two moves by Player 2,
as well as the two following interior edges taken by Player 1. Furthermore, the completed box
means that Player 1 also takes another interior edge (if there is one). Thus every box completed
by Player 1 corresponds to an increase in the number of taken interior by at least 3. Therefore
Player 1 completes at most (n− 1)/3 boxes. 2
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Figure 5: A strategy for Player 2 that causes Player 1’s strategy to complete b(n−1)/3c boxes. Edge labels
denote turn number.

Figure 5 shows an example where the strategy of Theorem 1 causes Player 1 to take b(n−1)/3c
boxes. We conjecture that this strategy is optimal, at least up to additive constants.

Open Problem 1 Can Player 2 force Player 1 to complete b(n− 1)/3c boxes?

3 Misère 2 × n

For misère 2× n Dots-and-Boxes, which player is the initial leader changes with n. In the absence
of parity-switching moves, the first player should win for odd n and the second player should win
for even n. By Theorem 1, we already know this to be the case for n = 1. We have also verified
this claim by exhaustive computational search for n = 2 and n = 3.

A natural strategy for the leading player, generalizing the 1 × n strategy, is the following. If
you can complete a box, then take it. (This rule prevents the formation of larger parity-changing
cycles.) Otherwise, if there is an untaken internal edge incident to the edge just taken by the other
player, then take it. Otherwise, if there is an untaken internal edge, take it. Otherwise, if there is
an edge that does not complete a box, take it. Otherwise, take any edge. (The last rule should not
arise if the parity remains unchanged.) We have verified that this strategy works for 2× 2 but not
for 2× 3 or larger boards.

In fact, for sufficiently large 2 × n boards, it seems that the nonleading player can force the
leading player to take around 3/4 of the boxes. If this is the case, then either the nonleading player
wins, or the leading player must change the parity. We wonder whether such a change in parity
(perhaps just once or twice?) can let the leading player guarantee a win.
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1× 2 — second player wins by 2 points 1× 24 — draw
1× 3 — second player wins by 3 points 1× 25 — second player wins by 1 point
1× 4 — first player wins by 4 points 1× 26 — draw
1× 5 — first player wins by 5 points 1× 27 — first player wins by 1 point
1× 6 — first player wins by 6 points 1× 28 — draw
1× 7 — first player wins by 5 points 1× 29 — first player wins by 1 point
1× 8 — first player wins by 4 points 1× 30 — draw
1× 9 — first player wins by 3 points 1× 31 — first player wins by 1 point
1× 10 — first player wins by 2 points 1× 32 — draw
1× 11 — first player wins by 1 point 1× 33 — second player wins by 1 point
1× 12 — draw 1× 34 — draw
1× 13 — second player wins by 1 point 1× 35 — second player wins by 1 point
1× 14 — second player wins by 2 points 1× 36 — draw
1× 15 — second player wins by 1 point 1× 37 — first player wins by 1 point
1× 16 — draw 1× 38 — draw
1× 17 — first player wins by 1 point 1× 39 — first player wins by 1 point
1× 18 — first player wins by 2 points 1× 40 — draw
1× 19 — first player wins by 1 point 1× 41 — first player wins by 1 point
1× 20 — first player wins by 2 points 1× 42 — draw
1× 21 — first player wins by 1 point 1× 43 — second player wins by 1 point
1× 22 — draw 1× 44 — draw
1× 23 — second player wins by 1 point 1× 45 — ???

Table 1: Who wins in Swedish 1 × n misère Dots-and-Boxes under optimal play, as computed by an
exhaustive search.

4 Misère Swedish 1 × n

In Swedish Dots-and-Boxes [Wil], all boundary edges are initially drawn. In this case, 1×n misère
Dots-and-Boxes has a much more complicated behavior; see Table 1. These results are based on
exhaustive computational search.

This game seems particularly interesting because it is very simple, yet is all about the parity
switching of who leads. Conceivably, 1× n Swedish games could also arise in the middle of a 2× n
game, though it is unclear whether this happens under optimal play.

Conjecture 1 The outcome of misère 1 × n Swedish Dots-and-Boxes is given by Table 1, with
periodic behavior starting from n = 22 and a period of 10.

This conjecture is supported by different observations. First, it matches the behavior exposed
by our exhaustive search, as shown in Table 1. Second, we have a detailed proof that the outcome
is correct for a restricted form of the game, in which every edge drawn must form a rectangle of
size 1 × 1, 1 × 2, 1 × 3, or 1 × 4, and the last case only when there is not already another 1 × 4
rectangle on the board. We believe that the outcome of this restricted game is equivalent to the
original one:

Conjecture 2 For misère 1 × n Swedish Dots-and-Boxes, there exists an optimal play in which
both players move so as to form rectangles of size 1×1, 1×2, 1×3, or 1×4 with every edge drawn,
with the last case arising only when there is not already a 1× 4 rectangle on the board.
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This conjecture is also supported by our exhaustive search: in the games we so analyze, there
is always an optimal move of the restricted form, as shown in Table 2. If Conjecture 2 is true, our
proof implies Conjecture 1. The outcome under optimal play of the restricted game (and thus also
of the unrestricted game if Conjecture 2 holds) is the following eventually periodic sequence:

−2,−3, 4, 5, 6, 5, 4, 3, 2, 1, 0,−1,−2,−1, 0, 1, 2, 1, 2, 1, [0,−1, 0,−1, 0, 1, 0, 1, 0, 1]∗.

These numbers indicate by how many points the first player wins under optimal play, with a
positive number meaning a first-player win, zero meaning a draw, and a negative number meaning
a second-player win.

Acknowledgments

We thank Greg Aloupis, David Bremner, Karim Doüıeb, and Vi Hart for helpful discussions about
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1× 2 any
1× 3 any
1× 4 cut 2
1× 5 cut 2
1× 6 cut 3
1× 7 take all but 6 then cut 3
1× 8 take all but 6 then cut 3
1× 9 take all but 6 then cut 3
1× 10 take all but 6 then cut 3
1× 11 take all but 6 then cut 3
1× 12 take all but 6 then cut 3
1× 13 take all but 6 then cut 3
1× 14 cut 2; or take all but 6 then cut 3
1× 15 cut 2
1× 16 cut 2
1× 17 cut 2
1× 18 cut 2
1× 19 cut 2, 3, . . . , or 9; or take 1 then

cut 2
1× 20 cut 3, 5, 6, . . . , or 10
1× 21 cut 3, 5, 6, . . . , or 10; or take 1

then cut 3, 5, 6, . . . , or 10
1× 22 cut 3, 5, 6, . . . , or 11; take 1 then

cut 3, 5, 6, . . . , or 10; or take 2
then cut 3, 5, 6, . . . , or 10

1× 23 cut 2, 3, . . . , or 11; take 1 then
cut 3, 5, 6, . . . , or 11; take 2 then
cut 3, 5, 6, . . . , or 10; or take 3
then cut 3, 5, 6, . . . , or 10

1× 24 cut 4
1× 25 cut 2, 3, . . . , or 12; or take 1 then

cut 4
1× 26 cut 2 or 4
1× 27 cut 2
1× 28 cut 2, 3, . . . , or 14; or take 1 then

cut 2
1× 29 cut 2, 3, . . . , or 14

1× 30 cut 2, 3, . . . , or 15; or take 1 then
cut 2, 3, . . . , or 14

1× 31 cut 3, 5, 6, . . . , or 15
1× 32 cut 2, 3, . . . , or 16; or take 1 then

cut 3, 5, 6, . . . , or 15
1× 33 cut 2, 3, . . . , or 16; take 1 then

cut 2, 3, . . . , or 16; or take 2 then
cut 3, 5, 6, . . . , or 15

1× 34 cut 2, 3, . . . , or 17
1× 35 cut 2, 3, . . . , or 17; or take 1 then

cut 2, 3, . . . , or 17
1× 36 cut 2, 3, . . . , or 18
1× 37 cut 2 or 4
1× 38 cut 2, 3, . . . , or 19; or take 1 then

cut 2 or 4
1× 39 cut 2, 3, . . . , or 19
1× 40 cut 2, 3, . . . , or 20; or take 1 then

cut 2, 3, . . . , or 19
1× 41 cut 3, 5, 7, 8, . . . , or 20
1× 42 cut 2, 3, . . . , or 21; or take 1 then

cut 3, 5, 7, 8, . . . , or 20
1× 43 cut 2, 3, . . . , or 21; take 1 then

cut 2, 3, . . . , or 21; or take 2 then
cut 3, 5, 7, 8, . . . , or 20

1× 44 cut 2, 3, . . . , or 22
1× 45 cut 2, 3, . . . , or 22; or take 1 then

cut 2, 3, . . . , or 22
1× 46 cut 2, 3, . . . , or 23
1× 47 cut 2 or 4
1× 48 cut 2, 3, . . . , or 24; or take 1 then

cut 2 or 4
1× 49 cut 2, 3, . . . , or 24
1× 50 cut 2, 3, . . . , or 25; or take 1 then

cut 2, 3, . . . , or 24
1× 51 cut 3, 5, 7, 9, 10, . . . , or 25
1× 52 cut 2, 3, . . . , or 26; or take 1 then

cut 3, 5, 7, 9, 10, . . . , or 25

Table 2: All optimal moves for the first player from the initial configuration of the 1 × n Swedish board,
as computed by an exhaustive search. Here “take k” means to complete n boxes, “cut k” means to draw an
edge to form a 1× k rectangle, and an ellipsis (. . . ) denotes an interval of consecutive integers. To remove
symmetric moves, we omit “cut k” when k is larger than half the current rectangle.

6


	1 Introduction
	2 Misère 1 × n
	3 Misère 2 × n
	4 Misère Swedish 1 × n

