
Discrete & Computational Geometry manuscript No.
(will be inserted by the editor)

Low-Dimensional Embedding with Extra
Information?
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Abstract A frequently arising problem in computational geometry is
when a physical structure, such as an ad-hoc wireless sensor network or a
protein backbone, can measure local information about its geometry (e.g.,
distances, angles, and/or orientations), and the goal is to reconstruct the
global geometry from this partial information. More precisely, we are given
a graph, the approximate lengths of the edges, and possibly extra informa-
tion, and our goal is to assign two-dimensional coordinates to the vertices
such that the (multiplicative or additive) error on the resulting distances
and other information is within a constant factor of the best possible. We
obtain the first pseudo-quasipolynomial-time algorithm for this problem
given a complete graph of Euclidean distances with additive error and no
extra information. For general graphs, the analogous problem is NP-hard
even with exact distances. Thus, for general graphs, we consider natural
types of extra information that make the problem more tractable, including
approximate angles between edges, the order type of vertices, a model of
coordinate noise, or knowledge about the range of distance measurements.
Our pseudo-quasipolynomial-time algorithm for no extra information can
also be viewed as a polynomial-time algorithm given an “extremum ora-
cle” as extra information. We give several approximation algorithms and
contrasting hardness results for these scenarios.
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1 Introduction

Suppose we have a geometric structure (a graph realized in Euclidean space),
but we can only measure local properties in this structure, such as distances
between pairs of vertices, and the measurements are just approximate. In
many applications we would like to use this approximate local informa-
tion to reconstruct the entire geometric structure, that is, the realization
of the graph. Two interesting questions arise in this context: when is such
a reconstruction unique, and can it be computed efficiently? These prob-
lems have been studied extensively in the fields of computational geometry
[CL92,EHKN99,Yem79,Sax79], rigidity theory [Hen92,Con91,JJ05], sensor
networks [ČHH01,SRB01], and structural analysis of molecules [BKL99,
ABC+05,CH88,Hen95]. The reconstruction problem arises frequently in
several distributed physical structures such as the atoms in a protein
[BKL99,CH88,Hen95] or the nodes in an ad-hoc wireless network [ČHH01,
SRB01,PCB00].

A reconstruction is always unique (up to isometry) and easy to compute
for a complete graph of exact distances, or any graph that can be “shelled”
by incrementally locating nodes according to the distances to three non-
collinear located neighbors. More interesting is that such graphs include
visibility graphs [CL92] and segment visibility graphs [EHKN99]. In gen-
eral, however, the reconstruction problem is NP-hard [Yem79], even in the
strong sense [Sax79]. It is also NP-hard to test whether a graph has a
unique reconstruction [Sax80, Section 6]. The uniqueness of a reconstruc-
tion in the generic case1 was recently shown to be testable in polynomial
time in two dimensions by a simple characterization related to generic in-
finitesimal rigidity [Hen92,JJ05], but this result has not yet led to efficient
algorithms for actual reconstruction in the generic case.

This reconstruction problem can also be cast in the context of embed-
ding arbitrary distance matrices into (low-dimensional) geometric spaces.
Methods for computing such embeddings have their roots in work going
back to the first half of the 20th century, and in the more recent work of
Shepard [She62a,She62b], Kruskal [Kru64a,Kru64b], and others. The area
is usually called multi-dimensional scaling and is a subject of extensive re-
search with several applications [Wor]. However, despite significant practical
interest, very few theoretical results exist in this area. The most commonly
used algorithms are heuristic (e.g., gradient-based method or simulated an-
nealing) and are often not satisfactory in terms of running time and/or
embedding quality.

Recently, several papers [HIL03,Iva00,Băd03,ABF+99,FK99] have pre-
sented algorithms for various versions of the embedding problem. These

1 In the generic case [JJ05], we are given the promise that the goal embedding is
“generic”. An embedding of a graph into d-dimensional Euclidean space is generic
if the coordinates of the vertices are algebraically independent over the rationals,
i.e., no polynomial over the vertex coordinates with rational coefficients evaluates
to zero, except for the zero polynomial.
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algorithms offer provable guarantees on the distortion of the computed em-
beddings, for particular families of input metrics and target spaces. More
precisely, these papers consider the problem of embedding the complete
graph G = (V,E), with specified lengths D[v, w] for all edges {v, w} ∈ E,
chosen from some (restricted) family of metrics. Their goal is to embed
G into d-dimensional `s space, for particular values of d and s, via a
mapping f : V → Rd either to approximately minimize additive distor-
tion max{v,w}∈E | ‖f(v) − f(w)‖s − D[v, w] |, or to approximately min-
imize multiplicative distortion max{v,w}∈E ‖f(v) − f(w)‖s/D[v, w] sub-
ject to ‖f(v) − f(w)‖s ≥ D[v, w] (noncontractiveness). (In d-dimensional
`s space, distances and lengths are measured according to the `s norm
‖(x1, . . . , xd)‖s = s

√
xs

1 + · · ·+ xs
d.)

Unfortunately, these results suffer from two important limitations:

– Few algorithms support embedding into constant-dimensional space
(other than one dimension). Among the few such algorithms, none sup-
port Euclidean distances, which are the most common in the appli-
cations mentioned above. For example, the polynomial-time algorithm
of [Băd03] works only for embeddings into the plane under the `1 norm,
and its guarantee of approximately minimum additive distortion in `1
does not extend to the `2 norm.

– The algorithms assume that approximate distances between all pairs
of points are specified. In some contexts, we have only partial distance
information, for example, because an obstacle between two objects pre-
vents estimating their distance or because the objects are too far for the
estimation to be possible/reliable.2

The goal of this paper is to overcome these difficulties by obtaining
efficient algorithms for approximate embedding of metrics into the plane.
Our approach is to explore possible additional types of local information and
study their influence on the complexity of the problem. In many practical
scenarios such information is readily available. In other cases the amount of
extra information needed is so small that it can be “guessed” via exhaustive
enumeration, which leads to a pseudo-quasipolynomial-time algorithm that
uses no extra information.3 This algorithm is in fact the first such algorithm
for embedding into low-dimensional Euclidean space with approximately
optimal additive distortion.

We consider the following types of extra information:

Angle information: Between every pair of incident edges, we are given
the approximate counterclockwise angle.

2 More generally, we might consider the situation in which each distance has an
explicit error bound, some of which might be infinite (in which case nothing is
known about the distance). However, as we will see, the problem is hard even in
the case of equal error bounds except for some error bounds which are infinite.

3 An algorithm’s running time is quasipolynomial if it is 2logO(1) n, pseudopoly-
nomial if it is NO(1) where N is the maximum value of any number in the problem

instance, and pseudo-quasipolynomial if it is 2logO(1) n · logO(1) N .
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Extremum oracle: Suppose that the x coordinates of the embedding are
known (fixed). Let f be an optimal (minimum-distortion) embedding
subject to these and all other constraints. The extremum oracle reports,
in any specified vertical slab of the optimal embedding, the minimum y
coordinate of a point and a point achieving that coordinate, and sym-
metrically for the maximum y coordinate. More precisely, given a range
[xl, xr], the oracle reports the data point p = argminp′:fx(p′)∈[xl,xr] fy(p′)
and f(p), and symmetrically with argmax. In addition, we require that
the answers returned by the oracle to different queries are consistent,
that is, based on the same embedding f .
Guessing this extra information is exactly what causes one of our algo-
rithms to use pseudo-quasipolynomial time when given no extra infor-
mation.

Order type: For some point p and all pairs of points q, r, we are given the
clockwise/counterclockwise orientation of 4pqr.

Distribution information: We know that the metric is induced by ran-
dom points in a square (as in, e.g., [GRK04]) plus adversarial noise added
to their pairwise distances.

Range constraints: Each point p has a range rp such that we know the
(approximate) distance between p and a point q precisely when this
distance is at most rp.

One of our motivations for studying these problems is “autoconfigu-
ration” in the Cricket Compass [PMBT01,MIT] location system. In this
system several beacons are placed in a physical environment, and the goal
is to find the global geometry of these beacons in order to enable private
localization of mobile devices such as PDAs (personal digital assistants). In
general, the beacons live in three-dimensional space, but a common scenario
is that they all live in a common plane (the ceiling). Beacons can measure
approximate pairwise distances, with subcentimeter accuracy and a range
of up to several meters, using a combination of ultrasonic and radio pulses
(measuring the difference in travel time between the sound-speed pulse and
the light-speed pulse). Using two or more ultrasonic transceivers to measure
distances from two or more points on a beacon, beacons can also measure
approximate counterclockwise angles of other beacons within range, relative
to a local coordinate system. In this practical scenario, distribution infor-
mation, range constraints, order type, and especially angle information are
all reasonable assumptions to consider.

We show that any of the types of extra information described above, in
addition to the approximate distance information given by D, often allow us
to design efficient algorithms to construct embeddings into two dimensions
with approximately optimal distortion. Specifically, we develop polynomial-
time algorithms for the following versions of this embedding-with-extra-
information problem:

1. Embedding a general graph with approximate angle information into
two-dimensional `s space, s ∈ {1, 2,∞}, with approximately optimal
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multiplicative distortion. If we are given the counterclockwise angle of
each edge with respect to a fixed axis, or we are given counterclock-
wise angles between incident pairs of edges in the complete graph, our
approximation factor is O(1). If we are given counterclockwise angles
between pairs of incident edges in a general graph, our approximation
factor is O(diam) where diam is the diameter of the graph. The approx-
imation factors depend on the additive error on the angles; see Section
2 for details.
These algorithms are the first subexponential-time algorithms for em-
bedding an arbitrary metric into a low-dimensional space (even in the
one-dimensional case) to approximately minimize multiplicative distor-
tion. Without angles, even embedding tree metrics into the line with
approximately minimum multiplicative distortion is hard to approxi-
mate better than a factor of Θ(n1/12), by a recent result of Bădoiu et
al. [BCIS05].

2. Embedding a complete graph into the Euclidean plane with O(1)-
approximate additive distortion in pseudo-quasipolynomial time of
2O(log n·log2 ∆) where ∆ is the “spread” of the input point set. We ob-
tain this result in Section 3 using a polynomial number of calls to an
extremum oracle, which can be simulated in pseudo-quasipolynomial
time.
This algorithm is the first algorithm for minimizing the additive dis-
tortion of an embedding into a low-dimensional Euclidean space, other
than trivial exponential-time algorithms.

3. Embedding a complete graph into the Euclidean plane with O(1)-
approximate additive distortion given the orientation of all triples of
points involving a common point (Section 4).

4. Embedding a complete graph into the Euclidean plane with O(1)-
approximate additive distortion given the prior that the distances D
are approximately induced by a random set of points in a unit square.
In this case our algorithm returns an embedding with additive distor-
tion that is within a constant factor of the maximum noise added to any
distance. See Section 5 for the detailed formulation.

5. Embedding a general graph that satisfies the range constraints into the
line with O(1)-approximate additive distortion (Section 6).

6. In contrast, we show that embedding a general graph that satisfies the
range constraints into two-dimensional `p space, for p ∈ {1, 2,∞}, is
NP-hard (Section 7). This problem was known to be NP-hard without
range constraints in d-dimensional Euclidean space for all d [Sax79].

Several of these algorithms are practical; often they are based on simple
linear programs.

2 Embedding with Angle Information

This section considers embedding a graph with given edge lengths up to
multiplicative error and given angles with additive error, in `1, `2, and `∞.
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We consider several possible angle specifications in the next section, and
reduce to the case where we know the counterclockwise angle between every
edge and one fixed edge.

2.1 Different Types of Angle Information

Lemma 1 Given a complete graph, and given counterclockwise angles be-
tween pairs of incident edges each with (one-sided or two-sided) additive
error at most γ, we can compute the counterclockwise angle of every edge
with respect to a particular edge with additive error at most 2γ.

Proof Fix one edge (p, q) and call it the x axis. To estimate the counter-
clockwise angle of an edge (v, w) with respect to the x axis, we use the
known counterclockwise angles θ1 = ∠pqv and θ2 = ∠qvw. If the angles
were exact, the counterclockwise angle of (v, w) with respect to (p, q) would
be θ1 + θ2 − 180◦ (modulo 360◦). With additive error, the errors in θ1 + θ2

accumulate to at most double in the worst case. 2

Lemma 2 Given a general graph, and given counterclockwise angles be-
tween pairs of incident edges each with (one-sided or two-sided) additive
error at most γ, we can compute the counterclockwise angle of every edge
with respect to a particular edge with additive error at most (diam + 1)γ
where diam is the diameter of the graph.

Proof Similar to Lemma 1, except now we must combine counterclockwise
angles along a path p, q, . . . , v, w, which might have length up to diam + 2,
and therefore involves at most diam + 1 angles. 2

This lemma is the best we can obtain in the worst case. We can of course
improve the angles estimates by, e.g., choosing (p, q) to be maximally cen-
tral, computing shortest paths, etc. If the errors are known to be indepen-
dent and randomly distributed with mean zero, the error is O(

√
diam) with

high probability, where diam is the diameter of the graph.

2.2 `2 Algorithm

Our algorithm for embedding into the Euclidean plane assumes, possibly
using the reductions of the previous section, that we are given the approxi-
mate counterclockwise angle of every edge with respect to one edge (which
we view as the x axis). The algorithm sets up a constraint program for find-
ing the coordinates of each vertex. The straightforward setup has nonconvex
constraints and is difficult to solve. We relax the program to a convex pro-
gram at the cost of some error. We further relax the program to a linear
program at the cost of additional error.

The basic optimization problem has the following constraints. For ev-
ery edge (p, q), the distance and angle information of that edge specifies
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Fig. 1 Feasible region of a point q with respect to p given the `2 distance within
a multiplicative ε and given the counterclockwise angle to the x axis within an
additive γ. (Measuring the counterclockwise angle, instead of just the angle, dis-
tinguishes between q being “above” or “below” the x axis.)

a (nonconvex) constraint region, relative to the location of p, that must
contain q. (See Fig. 1.) Conditioning on that there is an embedding of the
graph achieving multiplicative error ε on the distances and additive error γ
on the angles, we can find such an embedding by finding a feasible solution
satisifying all constraints. If only one of these error parameters (e.g., γ) is
known, we can still find such an embedding by setting the objective function
to minimize the other error parameter (e.g., ε). If neither error parameter
is known, we obtain a family of solutions by minimizing one error parame-
ter subject to various choices for the other parameter; alternatively, we can
minimize any desired linear combination of the error parameters by setting
the objective function accordingly.

We can relax each constraint region to be convex by taking its convex
hull. More precisely, we add one edge (a, b) to cut off the inner arc of the
region; see Fig. 1. This relaxation, applied to every constraint region defined
by an edge (p, q), produces a convex program. The maximum possible error
is obtained when q is placed at the midpoint between a and b. Then the
distance between p and q is cos γ times the input distance between p and q.
We can transform this contraction into an expansion by multiplying all
distances by 1/ cos γ. Thus, the maximum expansion is at most (1+ε)/ cos γ,
proving the following theorem:

Theorem 1 Given a graph, given the length of each edge with multiplicative
error ε, and given the counterclockwise angle of every edge with respect to
a particular edge with additive error γ, we can compute in polynomial time
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an `2 embedding with angles of maximum additive error γ and distances of
maximum multiplicative error (1 + ε)/ cos γ − 1.

We can further relax the constraint region to be piecewise-linear by
approximating the unique arc of the region with a polygonal chain. Then
we obtain a linear program from combining the relaxed constraint for each
edge (p, q). If we use k + 1 ≥ 2 segments in a regular chain, the maximum
expansion factor of a distance is (1 + ε)/ cos(γ/k). By incorporating the
expansion factor from the previous theorem as well, we obtain the following
theorem:

Theorem 2 Given a graph, given the length of each edge with multiplicative
error ε, and given the counterclockwise angle of every edge with respect to
a particular edge with additive error γ, we can compute in polynomial time
an `2 embedding with angles of maximum additive error γ and distances of
maximum multiplicative error

1 + ε

cos γ cos(γ/k)
− 1 =

1 + ε

cos γ
− 1 + O

(
γ2

k2

)
.

2.3 More Types of Angle Information

For embedding into `1, we need additional information about the global
rotation of the graph. More precisely, we need to know, for each edge (p, q),
the quadrant of q with respect to p. In other words, we need to know the two
high-order bits of the counterclockwise angle of each edge (p, q) with respect
to the x axis, i.e., whether this angle is in [0, 90◦], [90◦, 180◦], [180◦, 270◦],
or [270◦, 360◦]. Because of our additive angle errors, we may not know to
which quadrant an edge belongs; in this case we would like to know that
the edge is borderline between two particular quadrants.

If our input specifies counterclockwise angles of edges with respect to the
x axis, we are done. For other types of input, we can apply the following
reductions:

Lemma 3 Given a graph, given counterclockwise angles between pairs of
incident edges each with (one-sided or two-sided) additive error at most γ,
and given the counterclockwise angle of one edge relative to the x axis with
the same additive error, we can compute the counterclockwise angle of every
edge with respect to the x axis with additive error at most (diam + 2)γ.

Proof Apply Lemma 2 relative to the edge for which we know the counter-
clockwise angle with respect to the x axis, and translate using this angle.

2

Lemma 4 Given a graph, and given counterclockwise angles between pairs
of incident edges each with (one-sided or two-sided) additive error at most γ,
we can compute a family of O(1/γ′) possible assignments of counterclockwise
angles relative to the x axis with additive error at most γ + γ′.
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Proof Apply Lemma 2 to obtain counterclockwise angles relative to an edge
e, and then “guess” the counterclockwise angle of the x axis with respect
to e among the d360◦/γ′e angles of the form 0, γ′, 2γ′, . . . . 2

2.4 `1 Algorithm

We can adapt the `2 algorithm to an `1 algorithm as follows. The convex
program and linear program are the same as before; the only difference is
the shape of the constraint region of q with respect to p. For an edge (p, q)
that is known to be in a particular quadrant, the region is a trapezoid as
shown in Fig. 2(a). In this case the region is already convex and polygonal,
and we find an embedding with no error beyond the optimal distortion.

The difficult case is when the edge (p, q) straddles two quadrants, i.e., is
almost parallel to a coordinate axis. See Fig. 2(b). In this case the angular
wedge intersects two sides of the `1 circle around p, and the region becomes
a nonconvex “V”. As before, we convexify this region by closing the mouth
of the “V”. The resulting region is also polygonal, so we can apply linear
programming.

The worst-case error arises when (p, q) is exactly parallel to a coordinate
axis. Then the smallest distance between p and a relaxed position for q is
1− (tan γ)/(1 + tan γ) times the input distance between p and q. Again we
can transform this contraction into an expansion by multiplying all distances
by 1/[1− (tan γ)/(1 + tan γ)], and the maximum expansion is at most (1 +
ε)/[1− (tan γ)/(1 + tan γ)]:

Theorem 3 Given a complete graph, given the length of each edge with
multiplicative error ε, and given the counterclockwise angle of every edge
with respect to the x axis with additive error γ, we can compute in polyno-
mial time an `1 embedding with angles of maximum additive error γ and
distances of maximum multiplicative error

1 + ε

1− (tan γ)/(1 + tan γ)
− 1 = (1 + ε)(γ + O(γ3)) + ε.

If we are given the approximate counterclockwise angles between inci-
dent pairs of edges, and the approximate counterclockwise angle between
one edge and the x axis, then we can apply this theorem in combination with
Lemma 3. If we are just given the approximate counterclockwise angles be-
tween incident pairs of edges, we can consider all “combinatorial rotations”
with respect to the x axis, and extract whether each edge is roughly hori-
zontal, roughly vertical, or substantially within one of the four quadrants.
This partial information increases the region error for near-horizontal and
near-vertical edges, and does not preserve the angle for all other edges, but
will approximately preserve distances in the resulting embedding.
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(a) Convex case

(b) Nonconvex case

Fig. 2 Feasible region of a point q with respect to p given the `1 distance within
a multiplicative ε and given the counterclockwise angle to the x axis within an
additive γ.

2.5 Extension to `∞

We can directly adapt the `1 algorithm to an `∞ algorithm. If we rotate
an `∞ input by 45◦, and scale by a factor of 1/

√
2 in each dimension, then

we obtain an “identical” `1 input. The two inputs are identical in the sense
that the `∞ distance between any pair of points in the `∞ input is equal to
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the `1 distance between that pair in the `1 input. Thus, we can apply the
`1 embedding algorithm to the `1 input, and then undo the transformation,
and we obtain an `∞ embedding of an `∞ input.

3 Embedding with an Extremum Oracle

In this section we describe an O(1)-approximation algorithm for minimizing
the additive distortion in an embedding of a complete graph with distances
specified by D into the Euclidean plane. Define the spread ∆ of the metric
by ∆ = diam(D)/ε, where ε is the minimum additive distortion possible
and diam(D) is the diameter of D, i.e., the maximum distance in D. The
algorithm runs in polynomial time, multiplied by a factor of O(lg ∆) if ε is
not approximately known, given an extremum oracle for a promised embed-
ding f attaining minimum additive distortion ε. By exhaustive enumeration
of the possible oracle answers, this algorithm can be converted into an al-
gorithm without extra information having pseudo-quasipolynomial running
time 2O(log n·log2 ∆).

We view the algorithm as being given D and ε > 0, and the goal is either
to find an embedding of D into the plane with additive distortion O(ε) or to
report that no embedding with additive distortion at most ε exists. Here we
assume that ε > 0 (and thus ∆ is finite) because it is easy to test whether
a complete graph of distances can be embedded without distortion. If ε is
unknown, we can guess ε up to a constant factor in a standard way by trying
values of the form diam/2i for i = 0, 1, 2, . . . . This guessing multiplies the
running time by O(lg ∆), which is absorbed in the pseudo-quasipolynomial
time bound.

We use a geometric annulus (the difference between two disks of the
same radii) to represent approximately known distances. Define R(p, r, δ)
to be the annulus centered at point p with inner radius r − δ and outer
radius r + δ. The next lemma shows how two such annuli can help isolate a
point.

Lemma 5 Consider two points a and b at a distance r on the x axis, and
two radii ra and rb such that max{ra, rb} ≤ 2r. Then, for any ε ≤ r,
the intersection R = R(a, ra, ε) ∩ R(b, rb, ε) is enclosed in a vertical slab
[x0 − 4ε, x0 + 4ε], where x0 = (r2 + r2

a − r2
b )/2r.

Proof By a suitable translation, we may assume without loss of generality
that a = (0, 0) and b = (r, 0). Any point (x, y) ∈ R must satisfy (ra − ε)2 ≤
x2 + y2 ≤ (ra + ε)2 and (rb − ε)2 ≤ (x − r)2 + y2 ≤ (rb + ε)2. Subtracting
these two bounds, the terms quadratic in x and y cancel out, and we obtain
that any point (x, y) ∈ R must satisfy |x−(r2+r2

a−r2
b )/2r| ≤ ε|ra−rb|/r ≤

ε(ra + rb)/r ≤ 4ε. Thus (x, y) is in the vertical slab [x0− 4ε, x0 + 4ε] where
x0 = r2 + r2

a − r2
b . 2

Using this tool, we show how to guess approximate x coordinates; the
following lemma is also useful in Section 4.
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Lemma 6 Given a complete graph G = (V,E) with distances specified by D,
and given 0 < ε < diam(D)/2, we can compute in polynomial time a set of
guesses of the form x : V → R such that, if there is an embedding f of G
into the Euclidean plane of minimum additive distortion ε, at least one guess
satisfies, for a suitable translation and rotation f̃ of f , |f̃x(v)− x(v)| ≤ 5ε
for all v ∈ V . We can also ensure that the x coordinates are distinct in each
guess.

Proof First we guess the diameter pair (a, b) in the embedding f , that is,
the pair that maximizes ‖f(p)−f(q)‖, by trying all pairs such that D[a, b] ≥
diam(D)− 2ε. (The diameter pair must satisfy this property because f has
additive distortion ε.) By suitable translation and rotation f̃ of f , we can
assume that f̃(a) = (0, 0) and f̃y(b) = 0. Therefore we can assign x(a) = 0
and x(b) = D[a, b], and we have that x(a) = f̃x(a) and |x(b)− f̃x(b)| ≤ ε.

To guess the remaining x coordinates f̃x(v) for vertices v /∈ {a, b}, we
proceed as in Bădoiu’s algorithm [Băd03]. For any such vertex v, define the
region Rv = R(a,D[a, v], ε) ∩R(b, D[b, v], ε). Because D[a, v] ≤ diam(D) ≤
D[a, b] + 2ε < 2D[a, b], we can apply Lemma 5 and set x(v) to the center
x0 of the vertical slab. Because |x(b) − f̃x(b)| ≤ ε and at worst the errors
add, we have that |x(v)− f̃x(v)| < 5ε.

If two x coordinates are equal, we perturb them slightly, to guarantee
that all x coordinates are distinct. By a sufficiently small perturbation, we
preserve that |x(v) − f̃x(v)| < 5ε for all vertices v. Therefore we obtain a
suitable guess x. 2

We assume in the rest of this section that ε = 1, by scaling the entries
in D by 1/ε. Thus ∆ = diam(D).

We claim that it suffices to consider embeddings g with x coordinates
given by a suitable guess of Lemma 6. Consider the translated and rotated
optimal embedding f̃ . Construct f ′ by setting f ′x(v) = x(v) and f ′y(v) =
f̃y(v) for all vertices v. By Lemma 6, ‖f̃(v) − f ′(v)‖ < 5ε (for a suitable
guess). By the triangle inequality, | ‖f ′(v)− f ′(w)‖−‖f̃(v)− f̃(w)‖ | < 10ε,
so the additive distortion of f ′ is at most ε + 10ε = 11ε.

In addition, we require that each y coordinate in the embeddings we
construct is a multiple of ε. By a similar argument as above, this assumption
increases the additive error by at most ε, to c′ε = 12ε.

The algorithm uses the divide-and-conquer paradigm to compute the y
coordinates in an embedding g (using the x coordinates given by the guess
of Lemma 6). First, we compute the median xm of the x coordinates of the
vertices as mapped by g. Let V + be the set of all points p ∈ V such that
g(p) has x coordinate larger than the median xm, and let V − = V − V +.
The algorithm proceeds by creating the set of constraints on g(V +) and
g(V −). The constraints have two properties:
1. The constraints are feasible; namely, f ′ satisfies them.
2. For any mapping g satisfying the constraints, we have | ‖g(p)− g(q)‖ −

D[p, q]| ≤ c, for all p ∈ V + and q ∈ V −; here c is a certain global
constant.
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These properties allow us to compute g(V +) and g(V −) (while enforcing
the constraints) recursively and independently from each other.

The constraints are of the form “gy(p) ∈ Y (p)”, where Y (p) is a finite
set of intervals. They are constructed as follows. For i ≥ 1, define Ii =
(xm + 2i−1 − 1, xm + 2i − 1]; for i ≤ −1, define Ii = −I−i. For each Ii,
the algorithm queries the extremum oracle to obtain a point pi

up ∈ V ,
f ′x(pi

up) ∈ Ii, such that f ′y(pup) is maximum. Similarly, the algorithm obtains
pi

down. In addition, the algorithm obtains the values f ′y(pi
up) and f ′y(pi

down)
for each i.

With the oracle’s answers in hand, the algorithm imposes the following
new constraints, for each i, d ∈ {up, down}, and p ∈ V :

1. “gy(pi
d) = f ′y(pi

d)”;
2. if f ′x(p) ∈ Ii, then “gy(p) ∈ [f ′y(pi

down), f ′y(pi
up)]”; and

3. “g(p) ∈ R(f ′(pi
d), D[pi

d, p], c′)”. (This latter condition can be expressed
as a restriction on gy(p).)

As mentioned above, after imposing the constraints, the algorithm re-
curses to find g(V +) and g(V −) independently. At the leaf level of recursion
(i.e., when we are given only one point p), the algorithm sets gy(p) to be
an arbitrary y coordinate satisfying all constraints (if it exists). If no such
y coordinate exists, the algorithm concludes that there is no acceptable
embedding for the guess of Lemma 6 and this set of oracle answers.

The oracle’s answers can be implemented by trying all possible choices
of the guessed variables. Each combination of a guess from Lemma 6 and
the oracle answers leads to a different execution of the algorithm, ending
with either a failure or a final embedding g whose additive distortion can be
checked to be at most c′ε. The total number of such choices is bounded by
2O(log2 ∆), because there are at most O(∆) different potential values for the
y coordinates of f ′. The claimed bound for the running time T (n) follows
from the recursion T (n) = 2O(log2 ∆)[T (n/2)+nO(1)]. Note that, if we could
compute the oracle’s answers in polynomial time, our algorithm would have
polynomial running time as well.

It is easy to see that the constraints imposed at all stages are consistent
with f ′. It remains to show that, after g(V +) and g(V −) satisfying the
constraints are found, we then have | ‖g(p) − g(q)‖ − D[p, q]| ≤ c, for all
p ∈ V +, q ∈ V −, and some global constant c > 0. This is done via the
following two lemmas.

Lemma 7 Consider any two points a = (x, y) and b = (x′, y′), such that
x′ ≥ x/2. Define b′ = (x′, y) and I = {0} × R. Then for any r there exists
r′ such that I ∩R(a, r, c′) ⊂ R(b′, r′, c) for a fixed constant c.

The interpretation (and usage) of this lemma is as follows. Consider the
points g(p) and g(q) as above, and assume that gx(p) ∈ Ii, i < 0, and
gx(q) ∈ Ij , j > 0, such that (i, j) 6= (−1, 1). (We will take care of the
case (i, j) = (−1, 1) later.) In the procedure described above, we impose
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constraints on g(p) of the form “g(p) ∈ R(a, r, c′)”, for d ∈ {down, up}, r =
D[pj

d, p], and a = f ′(pj
d). However, it will be more convenient to consider a

different constraint, namely “g(p) ∈ R(b′, r′, c)”, where b′ = (f ′x(q), f ′y(pj
d)),

because in this way f ′(q) and b′ have the same x coordinate, a property
used in the next lemma. However, we do not know f ′(q), so we cannot
impose the second constraint explicitly. Fortunately, Lemma 7 guarantees
that the latter constraint is implied by the former. Note that the assumption
x′ ≥ x/2 is satisfied by the construction of the intervals Ii and Ij .

Proof (of Lemma 7) Without loss of generality, we can assume that I ∩
R(a, r, c′) is nonempty. In addition, we assume that I ∩ R(a, r, c′) consists
of two disconnected components. (If it consists of only one component, the
proof is similar.) Finally, without loss of generality, we can assume that
y = 0. Denote the upper component (with larger y coordinates) by Y =
{0}×[yd, yu]. Let qd = (0, yd), qu = (0, yu). Note that y2

u+x2 = (r+c′)2, and
y2

d + x2 = (r− c′)2. By symmetry, it suffices to ensure that Y ⊂ R(b′, r′, c).
Define r′ = ‖b′ − qu‖ = x′

2 + y2
u. Consider any (0, z) ∈ Y . We need to

show (1) ‖b′− (0, z)‖2 ≤ (r′ + c)2 and (2) ‖b′− (0, z)‖2 ≥ (r′− c)2 or r′ < c.
First, ‖b′ − (0, z)‖2 = x′

2 + z2 ≤ x′
2 + y2

u = r′
2. Second, ‖b′ − (0, z)‖2 ≥

x′
2 + y2

d ≥ r′
2 − 2r′c + c2.

By plugging in the expressions for y2
d, r′

2, and then y2
u, we obtain equiv-

alently that

x′
2 + (r − c′)2 − x2 ≥ [(r + c′)2 − x2] + x′

2 − 2r′c + c2,

which simplifies to 2r′c− c2 ≥ 2c′r.
Because r′ ≥ max{x′, yu}, r′ ≤ x+yu, and (by the assumption) x′ ≥ x/2

and r′ ≥ c, it follows that the last expression is satisfied if c ≥ 4c′. This
proves the lemma. 2

The next lemma is about the following configuration of points: a =
(0, ya), b = (0, yb), c = (x, yc), and d = (x, yd). For any ra, rb, rc, rd, and s,
define two sets:

S1 = {(0, y) : ya < y < yb} ∩R(c, rc, s) ∩R(d, rd, s),
S2 = {(x, y) : yc < y < yd} ∩R(a, ra, s) ∩R(b, rb, s).

Lemma 8 The difference maxu∈S1,v∈S2 ‖u − v‖ − minu∈S1,v∈S2 ‖u − v‖ is
at most 3s.

Before we prove this lemma, we show how the two lemmas together
imply that, for any two points p ∈ V − and q ∈ V + satisfying the imposed
constraints, we have ‖g(p) − g(q)‖ = ‖f ′(p) − f ′(q)‖ ± O(1) as desired.
To show this implication, we consider two cases. Let f ′x(p) ∈ Ii and let
f ′x(q) ∈ Ij .
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d

ra−s

Fig. 3 Proof illustration of Lemma 8.

Case 1: i = −1, j = 1. Let yup = max[f ′y(p−1
up ), f ′y(p1

up)] and ydown =
max[f ′y(p−1

down), f ′y(p1
down)]. If yup − ydown ≤ c2 for c2 larger than, say,

10c′, then the statement follows. Otherwise, if yup − ydown > 10c′, then
for any u ∈ {p, q}, the set

([−1, 1]× R) ∩i{−1,1},d∈{up,down} R(f ′(pi
d), D[pi

d, u], c′)

has constant diameter. Thus the statement again follows.
Case 2: By Lemma 7 we can assume that the points pi

up, pi
down, and p (as

well as pj
up, pj

down, and q) have the same x coordinates. Then we apply
Lemma 8.

It remains only to prove Lemma 8.

Proof (of Lemma 8) Let z1 ∈ S1 and z2 ∈ S2 be any two points such that
‖z1−z2‖ = max{‖u−v‖ : u ∈ S1, v ∈ S2}. Similarly, let t1 ∈ S1 and t2 ∈ S2

be any two points such that ‖t1 − t2‖ = min{‖u− v‖ : u ∈ S1, v ∈ S2}. Let
yp denote the y coordinate of point p. Without loss of generality, we can
assume that yz1 < yz2 < yd.

We claim that, if yt2 ≤ yz1 , then z1 = t1. If yz1 < yt1 , then by decreasing
yt1 , we decrease ‖t1 − t2‖. If yz1 > yt1 , then by decreasing yz1 , we increase
‖z1 − z2‖. Thus, z1 = t1, and in this case ‖z1 − z2‖ − ‖t1 − t2‖ ≤ 2s.

It remains to analyze the case that yt2 > yz1 . In this case it is easy to
see that, as long as ya < yz1 , we can increase ya and decrease ra such that
t2 and z2 continue to belong to S2. Therefore, without loss of generality, we
can assume that a = z1 and ra + s = ‖z1 − z2‖.

Similarly, we apply the same idea to d and t1: we note that yt1 < yz2 and,
by decreasing yd, we can assume that d = z2 and rd +s = ra +s = ‖z1−z2‖.
It is easy to see that, in this case (see Fig. 3), we have ‖t1− t2‖ ≥ ra− 3s =
‖z1 − z2‖ − 3s. We conclude that ‖z1 − z2‖ − ‖t1 − t2‖ ≤ 3s. 2

4 Embedding with Order Type

In this section we consider the situation in which we are given all pairwise
Euclidean distances between points in the plane as well as the “order type”
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of the points. The order type of a set of (labeled) points in the plane specifies,
for each triple (p, q, r) of points, the orientation of that triple, i.e., whether
visiting those points in order (forming a triangle) proceeds clockwise or
counterclockwise (or, in degenerate cases, collinear).

While we present the initial algorithm assuming that we know the entire
order type, we later relax the assumption to knowing only the orientations
of all triples including a fixed point p. This relaxation reduces the amount
of required extra information from

(
n
3

)
orientations to

(
n−1

2

)
orientations. In

fact, this information is equivalent to knowing the counterclockwise order
of points around point p.

Orientations can be very sensitive to small perturbations, and we are
told only approximate information about the pairwise distances between
points, so for orientations to be useful we need to know a range in which
they apply. For a set of points in the plane, we call a set of triples of points
totally δ-robust if perturbing the x and y coordinates of every point by at
most ±δ does not change the orientations of any of the triples in the set. A
set of orientations is δ-robust if perturbing the x and y coordinates of any
single point by at most ±δ does not change the orientation of any of the
triples in the set. Obviously, total δ-robustness implies δ-robustness, but in
fact, the two notions are equivalent up to constant factors:

Lemma 9 If a set of triples is 3δ-robust, then it is totally δ-robust.

Proof If the set of triples is not totally δ-robust, there must be a pertur-
bation of the points such that some triple (p, q, r) in the set changes orien-
tation, i.e., p crosses the line segment between q and r. Because the total
movement of p, q, and r in such a situation is at most 3δ, we can instead
change the orientation of (p, q, r) by fixing q and r (and all other points
except p) and just perturbing p by 3δ. But this contradicts the assumption
that the set of triples is 3δ-robust. 2

Our embedding algorithm assumes that the given orientations are totally
δ-robust, for a particular choice of δ related to the distortion of the desired
embedding. By Lemma 9, it suffices to assume that they are 3δ-robust. More
precisely, the main theorem of this section is as follows:

Theorem 4 Suppose that we are given a complete graph with specified edge
lengths, and we are given an orientation for each triple of points involving
one common point. Suppose we are promised that there is an embedding
into the Euclidean plane with additive distortion ε in which these triples
involving one common point have the specified orientations and are totally
cε-robust (or 3cε-robust). Then in polynomial time, multiplied by a factor
of O(lg ∆) if ε is not approximately known, we can compute an embedding
f of the graph into the Euclidean plane with additive distortion at most cε,
for a global constant c.

Proof First we guess ε up to a constant factor as in Section 3 by trying
values of the form diam(D)/2i for i = 0, 1, 2, . . . , where diam(D) is the
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maximum distance in the given metric D. Then we apply Lemma 6 to
guess the x coordinates of the vertices up to an additive ±5ε. By setting
c ≥ 5, robustness tells us that the orientations remain valid within this
fixing of x coordinates. Also, changing the x coordinates of the promised
embedding f according to this assignment increases the additive distortion
by at most 10ε.

Next we show how to assign the y coordinates of f such that, for every
pair (v, w) of vertices, |D[v, w] − ‖f(v) − f(w)‖2| ≤ 3ε (not counting the
distortion introduced by fixing the x coordinates). Because the x coordinates
are fixed, this constraint forces fy(v)− fy(w) to lie within the union of (at
most) two intervals, one interval for when fy(v) ≥ fy(w) and the other for
when fy(v) ≤ fy(w). We show how to obtain the y coordinates by setting
up a linear program, using the orientations to disambiguate between the
two intervals.

We define a graph G whose vertex set is the same as the input graph.
The edges of G are of two types: strong and weak. We connect vertices
v and w by a strong edge in G if D[v, w] ≥

√
(fx(v)− fx(w))2 + 3ε2. We

connect two points v and w by a weak edge in G if there are two points
u1 and u2, connected via paths of strong edges to w but not to v, such
that D[v, w] >

√
(fx(v)− fx(w))2 + ε2 and fx(u1) ≤ fx(v) ≤ fx(u2). The

proofs of the following lemmas are very similar to Claims 4.1 and 4.2 of
Bădoiu [Băd03] and hence are omitted.

Lemma 10 No two connected components of G overlap in x extent; that is,
there is a vertical line (not passing through any vertices) that separates the
vertices of the first component from the vertices of the second component.

Call an edge {v, w} oriented up if fx(v) ≤ fx(w) and fy(v) ≤ fy(w),
and call an edge {v, w} oriented down if fx(v) ≤ fx(w) and fy(v) ≥ fy(w).

Lemma 11 If we fix the orientation of an edge of G, we can uniquely de-
termine the orientation of all other edges in the same connected component.

By the definition of a strong edge, if there is no strong edge between
two points v and w, the horizontal distance already fixed as fx(v)− fx(w)
is “good enough” for a 3ε-approximation. To ensure that the distortion
remains sufficiently small, we form the constraint D[v, w] + ε ≥ ‖f(v) −
f(w)‖, which is equivalent to the pair of linear constraints

−
√

(D[v, w] + ε)2 − (fx(v)− fx(w))2

≤ fy(v)− fy(w)

≤
√

(D[v, w] + ε)2 − (fx(v)− fx(w))2.
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For any edge {v, w} ∈ E(G) that is oriented up and for which fx(v) ≤
fx(w), we form this linear constraint on fy:

√
(fx(w)− fx(v))2 + (fy(w)− fy(v))2 − ε

≤ D[v, w]

≤
√

(fx(w)− fx(v))2 + (fy(w)− fy(v))2 + ε,

or equivalently,

√
D[v, w]2 − 2εD[v, w] + ε2 − (fx(w)− fx(v))2

≤ fy(w)− fy(v)

≤
√

D[v, w]2 + 2εD[v, w] + ε2 − (fx(w)− fx(v))2.

We have a similar relation for edges {v, w} ∈ E(G) that are oriented down.

Now, using Lemmas 10 and 11 and the description above, we can obtain
a cε-approximation solution for the problem provided that G has only one
connected component. However, if there are several connected components,
each connected component can be oriented up or down, and the total num-
ber of cases can be exponential. Instead, we use the given orientations of
triples to disambiguate the orientations of components. Because the orien-
tations are totally cε-robust, and we guess the x and y coordinates within
ε+10ε+3ε = 14ε total additive distortion (counting the ε distortion in f),
the orientations remain correct if we set c ≥ 14. Without loss of generality,
we assume that the leftmost component is oriented up. Now consider a point
v in this component. We show that, for each other component C, we can
use orientations of triples involving v to determine whether C is oriented
up or down. Consider a strong edge (u, w) ∈ C. (Such a strong edge should
exist, because otherwise C has only one point and its orientation is trivial.)
Because there is no strong edge between u and v, the segment connecting
u to v is almost horizontal (see the definition of a strong edge). Using this
property, using that (u, w) is a strong edge, and using the orientation of the
triple (v, u, w), we can determine the orientation of edge (u, w) and thus
by Lemma 11 the orientation of the whole component C. Thus, fixing the
orientation of the leftmost component, we can determine the orientation of
all edges of other components. Finally, by setting up the following linear
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program, we obtain the desired approximation embedding:√
D[v, w]2 − 2εD[v, w] + ε2 − (fx(w)− fx(v))2

≤ fy(w)− fy(v)

≤
√

D[v, w]2 + 2εD[v, w] + ε2 − (fx(w)− fx(v))2

if {v, w} ∈ E is oriented up and fx(w) ≥ fx(v),√
D[v, w]2 − 2εD[v, w] + ε2 − (fx(w)− fx(v))2

≤ fy(v)− fy(w)

≤
√

D[v, w]2 + 2εD[v, w] + ε2 − (fx(w)− fx(v))2

if {v, w} ∈ E is oriented down and fx(w) ≥ fx(v),

−
√

(M [v, w] + ε)2 − (fx(v)− fx(w))2

≤ fy(v)− fy(w)

≤
√

(D[v, w] + ε)2 − (fx(v)− fx(w))2

if {v, w} /∈ E.

2

5 Embedding with Distribution Information

In this section we consider embedding the complete graph on n vertices into
the Euclidean plane while approximately minimizing additive distortion of
specified edge lengths that come from a kind of adversarial distribution.
Roughly speaking, we are given the promise that the distances satisfy that,
after perturbing each distance within ±ε, the resulting distances are ex-
actly the pairwise distances between n points sampled uniformly from the
unit square [0, 1]2. More precisely, the specified distances come from first
randomly sampling n points uniformly from the unit square, then exactly
measuring their Euclidean distances, and then adversarially perturbing each
distance within ±ε. Our goal is to construct an embedding with additive
distortion O(ε).

Theorem 5 There is a polynomial-time algorithm that, given a complete
graph with edge lengths arising from the adversarial distribution described
above, finds an embedding that has additive distortion O(ε) with probabil-
ity 1 − o(1), as long as ε = ω(1/

√
n). The algorithm is deterministic; the

probability is taken over the uniform sample of points in the unit square.

Proof Let r be any value such that r = ω(1/
√

n) and r = O(ε). The algo-
rithm first guesses a “frame” for the square, and then uses a “triangulation”
approach relative to this frame:

1. For every quadruple (v1, v2, v3, v4) of vertices (the frame), construct the
following embedding f :
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(a) Embed vi, i ∈ {1, 2, 3, 4}, as follows: f(v1) = (0, 0), f(v2) = (0, 1),
f(v3) = (1, 1), and f(v4) = (1, 0).

(b) Embed every other vertex w to an arbitrary point f(w) in the region

Rw = [0, 1]2 ∩
⋂

i=1,2,3,4

R
(
f(vi), D[vi, w], ε + 2

√
2r

)
,

where R(p, r, δ) is the annulus centered at point p with inner radius
r−δ and outer radius r+δ. If Rw is empty, we ignore this (incomplete)
embedding and skip this iteration of the loop.

2. Report the embedding f with the smallest additive distortion.

This algorithm has the feature that every constructed embedding maps
the vertices into the unit square. It remains to analyze the quality of the best
embedding f found. Let f∗ denote the uniformly random embedding into
the unit square that we assume exists, and which has additive distortion ε.

We start by showing that there is a good choice of the frame. The fol-
lowing claim follows from basic calculations:

Claim With probability 1 − o(1), each of the four r × r subsquares of the
unit square that each share a corner with the unit square contain f∗(v) for
some v ∈ V .

We condition on the event that there is at least one vertex v1, v2, v3, and
v4 mapped via f∗ to the lower-left, lower-right, upper-right, and upper-left
corner subsquares, respectively. (By Claim 5, this event happens with proba-
bility 1−o(1).) Consider the iteration of Step 1 of the algorithm that chooses
this quadruple of points for the frame. If we modify f∗ by performing the
assignment as in Step 1(a) of the algorithm, then the resulting embedding
has additive distortion at most ε + 2

√
2r. Therefore, in this iteration, every

region Rw includes f∗(w) and is thus nonempty.
It suffices to show that the diameter of each set Rw is O(ε+r). Consider

any vertex w other than v1, v2, v3, and v4. We need the following claim,
which can be proved using the same type of argument as in the proof of
Theorem 4:

Claim Consider any two points p, q ∈ [0, 1]2 and any r1, r2, δ > 0 such that
r1, r2 = O(‖p − q‖). The set R(p, r1, δ) ∩ R(q, r2, δ) is contained in a strip
of width O(δ) whose direction (i.e., an infinite line contained in the strip)
is orthogonal to the line passing through p and q.

Recall that Rp is an intersection of four annuli (and the unit square). Ap-
plying Claim 5 to the annuli around points (0, 0) and (1, 0), we conclude
that Rp is contained in a vertical strip of width O(ε+ r). Applying Claim 5
to the annuli around points (0, 0) and (0, 1), we conclude that Rp is con-
tained in a horizontal strip of the same width. It follows that the diameter
of Rp is O(ε + r) as claimed, and therefore that the additive distortion of
the embedding f computed by the algorithm is O(ε + r). 2



Low-Dimensional Embedding with Extra Information 21

6 Embedding with Range Graphs

In this section we are interested in embedding a graph with specified edge
lengths into the line subject to the following condition. An embedding f :
V → R of a graph G = (V,E) with edge lengths specified by D satisfies
the range condition if, for every three points p, q, r ∈ V , (a) if {p, q} ∈ E
and {p, r} /∈ E, |f(p) − f(q)| ≤ |f(p) − f(r)|, and (b) if {p, q}, {p, r} ∈ E,
|f(p) − f(q)| ≤ |f(p) − f(r)| precisely if D[p, q] ≤ D[p, r]. Among all such
embeddings, we will find one that minimizes the additive distortion with
respect to the specified edge lengths on G. Part (b) of this definition will
be satisfied provided the difference between adjacent distances in a near-
optimal embedding is at least the additive distortion.

6.1 The Exact Case

In this subsection we consider embedding with zero distortion:

Lemma 12 Given a graph G with edge lengths specified by D, we can check
in polynomial time whether there is an embedding f that satisfies the range
condition and matches D exactly on the edges of f , and construct such an
embedding if it exists.

Proof Without loss of generality we assume that the graph G is connected.
Let p be the leftmost point in an embedding f into the line that satisfies the
conditions of the lemma. We guess p by enumerating all |V | possibilities.
Without loss of generality, p has coordinate 0. All neighbors of p in G lie to
the right of p. Let q be such a neighbor. Let r be a neighbor of q but not a
neighbor of p. By the range condition, we have |f(p)−f(r)| > |f(p)−f(q)|.
Therefore, f(r) > f(q) and thus f(r) = f(q) + D[q, r]. By traversing G
in a breadth-first manner, we can reconstruct f . The running time of our
algorithm is O(|V | · |E|). 2

6.2 The Additive Error Case

In this subsection we consider the case when the optimal embedding has
minimum additive distortion ε. We say an edge (p, q) ∈ G is a forward edge
if f(p) ≤ f(q) and a backward edge if f(p) > f(q). We call this distinction
the orientation of an edge. Note that if (p, q) is a forward edge then (q, p)
is a backward edge.

Lemma 13 Given a graph G with edge lengths specified by D for which
there is an embedding f that satisfies the range condition, and for any two
incident edges {p, q} and {q, r} in G, we can determine the orientation of
(q, r) in f given the orientation of (p, q) in f using just D.
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Proof Without loss of generality (p, q) is a forward edge and D[p, q] >
D[q, r]. By part (b) of the range condition, if D[p, r] < D[p, q], then
(q, r) must be a backward edge. By both parts of the range condition, if
D[p, r] > D[p, q] or D[p, r] is unknown, then (q, r) must be a forward edge.

2

Theorem 6 Given a graph G with edge lengths specified by D, we can con-
struct in polynomial time an embedding f that satisfies the range condition
and matches D up to the minimum possible additive distortion subject to
the range condition.

Proof Let (p, q) be an edge in G. Without loss of generality we can assume
(p, q) is a forward edge. Lemma 13 implies that we know the orientation of
all the incident edges. By applying this argument multiple times, we can
determine the orientation of all the edges within the connected component
of G containing p. We cannot determine the relative orientation between
different connected components, but this is not necessary. By placing the
locally embedded connected components far away from each other, the re-
sulting embedding satisfies the range condition. Knowing the orientations,
we can construct the following linear program which minimizes additive
distortion:

minimize ε

subject to f(p) + D[p, q]− ε < f(q) < f(p) + D[p, q] + ε

if (p, q) is a forward edge,

f(p)−D[p, q]− ε < f(q) < f(p)−D[p, q] + ε

if (p, q) is a backward edge.

2

In Section 7 we show that embedding a graph with given edge lengths
in two-dimensional `1 and `2 space, even using exact distances and a more
restricted form of range-condition, is NP-hard.

7 Hardness Results

Saxe [Sax79] proved that deciding the embeddability of a given graph with
exact `2 edge lengths is strongly NP-hard in d dimensions, for any d ≥
1. Independently, Yemini [Yem79] proved weak NP-hardness of the same
problem for d = 2 with a simple reduction from Partition. Here we prove
weak NP-hardness for both `1 and `2 in two dimensions, even when the
graph satisfies the constant-range condition: two vertices v, w are connected
by an edge precisely when their distance is at most a fixed range r. This
condition is a special case of the (variable) range condition defined in Section
6, and hence our hardness results apply under that restriction as well. One
interesting feature of our restricted form of the problem is that the problem
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is not hard in one dimension, and thus our proofs require us to use the
structure of two dimensions. In contrast, previous hardness proofs start
with 1D, and then trivially extend to higher dimensions.

7.1 `2 Case

Theorem 7 It is NP-hard to decide whether a given graph with exact `2
edge lengths and satisfying the constant-range condition has an embedding
with zero distortion.

Our reduction from Partition is sketched in Fig. 4. The range is 1.1L,
where L is a large number to be chosen later. In any embedding of our
graph, all vertices lie roughly on a square grid with edge lengths L/2. We
use strips of k vertices spaced every L/2 units to build rigid bars of length
kL/2; the strips are rigid because each vertex can see the next two vertices
in the strips. We use right isosceles triangles with edge lengths L/2, L/2,
and L/

√
2 to force angles of 90◦. All other pairs of vertices have distance at

least
√

5
/

2 > 1.1L, so are not within range.
For a given instance a1, a2, . . . , an of Partition, we construct 2n edges,

two with length (L + ai)/2 for each i, and force them all to be parallel. We
choose L large enough so that

∑n
i=1 ai < 0.1L. For each pair of edges of

length (L + ai)/2, we also create a pair of edges of length L/2, so that the
absolute horizontal shift caused by these four edges is (L + ai) − L = ai.
Each such quadruple of edges can be independently flipped so that the shift
is either ai or −ai. Finally, we add another connection between the two
extreme edges which forces the total shift to be zero. Thus, a distortion-free
embedding corresponds to a solution to Partition and vice versa.

7.2 `1 and `∞ Case

We prove the first hardness result about embedding with exact `1 or `∞
distances:

Theorem 8 It is NP-hard to decide whether a given graph with exact `∞
edge lengths (or, equivalently, exact `1 edge lengths) and satisfying the
constant-range condition has an embedding with zero distortion.

The proof is similar to the `2, except that the gadgets are slightly more
complicated; see Fig. 5. The radius r is now exactly L. We use a sequence
of attached L × L boxes in place of a strip of vertices. As before, this
construction acts as a rigid bar, except that it can be flipped. (In Fig. 5,
vertices p and q can be swapped.) To perturb a length by ai from a multiple
of L, we add a small ai × ai box and attach it in the middle of the strip.
This box is in fact rigid and cannot be flipped with respect to its neighbors.
Thus, the construction can be plugged into Fig. 4 and we have the theorem.
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Fig. 4 Our reduction from Partition to
`2 embedding of a graph satisfying the
constant-range condition. In the reduc-
tion the ai’s are much smaller than L,
and in this drawing the ai’s are drawn as
zero.

Fig. 5 Analogous gadgets for use in
Fig. 4 for the `∞ case. Here ai is drawn
larger than reality. Dotted edges are
present, but not necessary for rigidity.

8 Open Problems

An important open problem in this area is whether there is a polynomial-
time algorithm for approximately minimizing additive distortion given
all pairwise distance information and no extra information. Our pseudo-
quasipolynomial-time algorithm is one step in this direction. The analogous
problem for multiplicative distortion seems even harder.
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A general theme of our work is to consider the case in which we do
not know all distances. Another approach for making this case tractable is
to constrain the connectivity to something less than n − 1 (for the com-
plete graph). For example, what can we say about c-connected graphs for
sufficiently large c, or cn-connected graphs for c < 1? These special cases
will still likely require extra information, because even for the case where
we know all pairwise distances, we do not know approximation algorithms
without extra information except for `1 and additive distortion [Băd03].

It would seem natural to obtain angle estimates in a graph G “for free”
using (approximate) distances in G ∪G2, by analyzing triangles (p, q, r) in
G ∪ G2. There are two problems with this approach. The first problem is
that two vertices p, q in a triangle may be much closer to each other than
to the third vertex r, and the multiplicative errors on distances allow p and
q to spin around each other and allow p and q to have any angle. This
problem can be surmounted by assuming that the ratio of lengths between
any two incident edges is bounded. The second, more serious problem is
that it is difficult to decode the orientations of triangles and hence the signs
of the angles using purely distance information. We conjecture that this
information can be decoded using distances in G∪G2 ∪G3 ∪G4 ∪G5 ∪G6,
because 6-connected graphs have unique embeddings [JJ05].

Even with just distance information, the complexity of one interesting
variation remains unresolved. Given a graph that is generically uniquely
embeddable, in the sense that almost any assignment of edge lengths induces
a unique embedding, can we construct the unique embedding for almost any
assignment of edge lengths? Jackson and Jordán [JJ05] recently showed that,
in polynomial time, we can test whether a graph has this property, but the
proof is not entirely constructive. Another example of an NP-hard problem
that can be solved in polynomial time almost always is Subset Sum. Our
hardness reductions for embedding are based on Subset Sum, so there is
hope that nongeneric examples are the only obstruction to polynomial-time
algorithms.

In this paper we have focused on embedding metrics into the plane, but it
would be natural to try to extend our work to slightly higher dimensions, in
particular three dimensions which is important in some applications. Some
of our results extend relatively easily. For example, in fixed dimension, given
the approximate angle of every edge with respect to every coordinate axis
(with additive error), and given distances with multiplicative error, we can
apply the constant-factor approximation algorithms described in Sections
2.2 and 2.4.
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ČHH01. S. Čapkun, M. Hamdi, and J.-P. Hubaux. GPS-free positioning in mo-
bile ad-hoc networks. In Proceedings of the 34th Hawaii International
Conference on System Sciences, pages 3481–3490, January 2001.

CL92. C. Coullard and A. Lubiw. Distance visibility graphs. Internatational
Journal of Computational Geometry and Applications, 2(4):349–362,
1992.

Con91. R. Connelly. On generic global rigidity. In P. Gritzman and B. Sturm-
fels, editors, Applied Geometry and Discrete Mathematics: The Victor
Klee Festschrift, volume 4 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 147–155. AMS Press, 1991.
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