
Energy-Efficient Algorithms

Erik D. Demaine ∗

MIT CSAIL
32 Vassar Street

Cambridge, MA 02139
edemaine@mit.edu

Jayson Lynch∗

MIT CSAIL
32 Vassar Street

Cambridge, MA 02139
jaysonl@mit.edu

Geronimo J. Mirano∗

MIT CSAIL
32 Vassar Street

Cambridge, MA 02139
geronm@mit.edu

Nirvan Tyagi∗
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139

ntyagi@mit.edu

ABSTRACT
We initiate the systematic study of the energy complexity of algo-
rithms (in addition to time and space complexity) based on Lan-
dauer’s Principle in physics, which gives a lower bound on the
amount of energy a system must dissipate if it destroys informa-
tion. We propose energy-aware variations of three standard models
of computation: circuit RAM, word RAM, and transdichotomous
RAM. On top of these models, we build familiar high-level prim-
itives such as control logic, memory allocation, and garbage col-
lection with zero energy complexity and only constant-factor over-
heads in space and time complexity, enabling simple expression
of energy-efficient algorithms. We analyze several classic algo-
rithms in our models and develop low-energy variations: compari-
son sort, insertion sort, counting sort, breadth-first search, Bellman-
Ford, Floyd-Warshall, matrix all-pairs shortest paths, AVL trees, bi-
nary heaps, and dynamic arrays. We explore the time/space/energy
trade-off and develop several general techniques for analyzing al-
gorithms and reducing their energy complexity. These results lay a
theoretical foundation for a new field of semi-reversible computing
and provide a new framework for the investigation of algorithms.

CCS Concepts
•Theory of computation→Models of computation; Design and
analysis of algorithms;

Keywords: Reversible Computing; Landauer’s Principle; Algo-
rithms; Models of Computation

1. INTRODUCTION
Landauer limit. CPU power efficiency (number of computations
per kilowatt hour of energy) has doubled every 1.57 years from
1946 to 2009 [14]. Within the next 15–60 years, however, this
trend will hit a fundamental limit in physics, known as Landauer’s
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Principle [19]. This principle states that discarding one bit of in-
formation (increasing the entropy of the environment by one bit)
requires kT ln 2 energy, where k is Boltzmann’s constant and T is
ambient temperature, which is about 2.8·10−21 joules or 7.8·10−28

kilowatt hours at room temperature (20◦C). (Even at liquid nitro-
gen temperatures, this requirement goes down by less than a factor
of 5.) Physics has proved this principle under a variety of different
assumptions [19, 30, 17, 26, 18], and a recent Nature paper verified
it experimentally [6]. Most CPUs discard many bits of information
per clock cycle, as much as one per gate; for example, an AND
gate with output 0 or an OR gate with output 1 “forgets” the exact
values of its inputs. To see how this relates to Landauer’s prin-
ciple, consider the state-of-the-art 15-core Intel Xeon E7-4890 v2
2.8GHz CPU. In a 4-processor configuration, it achieves 1.2 · 1012

computations per second at 620 watts, 1 for a ratio of 7.4 · 1015

computations per kilowatt hour. At the pessimistic extreme, if ev-
ery one of the 4.3 · 109 transistors discards a bit, then the product
3.2 · 1025 is only three orders of magnitude greater than Landauer
limit. If CPUs continue to double in energy efficiency every 1.57
years, this gap will close in less than 18 years. At the more op-
timistic extreme, if a 64-bit computation discards only 64 bits (to
overwrite one register), the gap will close within 59 years. The
truth is probably somewhere in between these extremes.

Reversible computing. The only way to circumvent the Lan-
dauer limit is to do logically reversible computations, whose in-
puts can be reconstructed from their outputs, using physically adia-
batic circuits. According to current knowledge, such computations
have no classical fundamental limitations on energy consumption.
General-purpose CPUs with adiabatic circuits were constructed by
Frank and Knight at MIT [10]. The design of reversible comput-
ers is still being actively studied, with papers on designs for adders
[29], multipliers [28], ALUs [27], clocks [31], and processors [32]
being published within the last five years. AMD’s CPUs since
Oct. 2012 (Piledriver) use “resonant clock mesh technology” (es-
sentially, an adiabatic clock circuit) to reduce overall energy con-
sumption by 24% [8]. Thus the ideas from reversible computing
are already creating energy savings today.

But what can be done by reversible computation? Reversible
computation is an old idea, with reversible Turing machines being
proved universal by Lecerf in 1963 [21] and ten years later by Ben-
nett [3]. Early complexity results showed that any computation can
be made reversible, but with a quadratic space overhead [4] or an
exponential time overhead [20, 37], in particular models of com-
putation. More recent results give a trade-off with subquadratic
space and subexponential time [7]. These general transforms are

1We follow Koomey et al.’s [14] definitions, using Cisco’s measured
SPECint_rate_base2006 of 2,320 to estimate millions of computations per
second (MCPS).
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too expensive; in particular, in a bounded-space system, consum-
ing extra space to make computations reversible is just delaying the
inevitable destruction of bits.

The relationship between thermodynamics and information the-
ory is described by Zurek [40]. In a series of papers, Li, Tromp,
and Vitanyi discuss irreversible operations as a useful metric for en-
ergy dissipation in computers and study the trade-off between time,
space, and irreversible operations. An energy cost based on Kol-
mogorov complexity [24], a precise but uncomputable measure of
the information content of a string, is introduced in [22] and further
explored in [5, 36, 23]. These papers study algorithms for Bennett’s
pebble game as well as simulating Turing machines; however, they
still focus on universal results, eshrew RAM models, and analyze
problems more from a complexity than an algorithms perspective.

Irreversibility is just one source of energy consumption in current
chips, and several other models of computation attempt to capture
them individually: switching energy of VLSI circuits [12], dynamic
and leakage power loss in CMOS circuits [15, 16], and I/O or mem-
ory access [11]. Albers [1] surveys many algorithmic techniques
for reducing energy consumption of current computers, including
techniques like sleep states and power-down mechanisms, dynamic
speed scaling, temperature management, and energy-minimizing
scheduling. Ultimately, however, we believe that irreversibility will
become a critical energy cost shaping the future of computing, and
a topic now ripe for algorithmic analysis.

Our results. This paper is the first to perform a thorough
algorithmic study of partially reversible computing, and to ana-
lyze realistic time/space/energy trade-offs. We define the (Lan-
dauer/irreversibility) energy cost, and use it to explore reversible
computing in a novel manner. Although there are many other sources
of energy inefficiency in a computer we believe the Landauer en-
ergy cost is a fundamental and useful measure. A key perspective
shift from most of the reversible computing literature (except [23])
is that we allow algorithms to destroy bits, and measure the num-
ber of destroyed bits as the energy cost. This approach enables the
unification of classic time/space measures with a new energy mea-
sure. In particular, it enables us to require algorithms to properly
clean up all additional space by the end of their execution, and data
structures to be properly charged for their total space allocation.

We introduce three basic models for analyzing the energy cost of
word-level operations, similar to the standard word models used in
most algorithms today: the word RAM, the more general transdi-
chotomous RAM, and the realistically grounded circuit RAM. Our
models allow arbitrary computation to be performed, but define a
spectrum of “irreversibility”, from reversible (free) computation to
completely destructive (expensive) computation. On top of these
basic models (akin to assembly language), we build a high-level
pseudocode for easy algorithm specification, by showing how to
implement many of the familiar high-level programming structures,
as well as some new structures, with zero energy overhead and only
constant-factor overheads in time and space:

1. Control logic: If/then/else, for/while loops, jumps, function
calls, stack-allocated variables.

2. Memory allocation: Dynamic allocation and deallocation
of fixed-size or variable-size blocks, in particular implement-
ing pointer-machine algorithms.

3. Garbage collection: Reference-counting and mark-and-sweep
algorithms for finding no-longer-used memory blocks for au-
tomatic deallocation.

4. Logging and unrolling: Specific to energy-efficient com-
putation, we describe a new programming-language feature
that makes it easy to turn energy into space overhead, and
later remove that space overhead by playing it backwards.

Primitive Time Space in Log Energy Thm.
(ops) (bits) (bits)

Control Logic
Paired Jump Θ(1) 1 0 3.1
Variable Jump Θ(1) 1 + w 0 3.1
Protected If Θ(1) 0 0 3.2
General If Θ(1) 1 0 3.2
Simple For loop Θ(l) 0 0 3.3
Protected For loop Θ(l) 0 0 3.4
General For loop Θ(l) lg l 0 3.5
Function call Θ(1) 0 0 3.6
Memory Management
Free lists Θ(N) Θ(wN) 0 3.7
Reference Counting Θ(N) Θ(wN) 0 3.8
Mark & Sweep Θ(N) Θ(wN) 0 3.9

Table 1: Summary of our reversible primitives analyses and results
including control logic, memory management, and garbage collec-
tion. In this table, w is the word size, l is the number of loop
iteration, and N represents number of memory objects.

These models open up an entire research field, which we call
energy-efficient algorithms, to find the minimum energy required
to solve a desired computational problem within given time and
space bounds. We launch this field with several initial results about
classic algorithmic problems, first analyzing the energy cost of ex-
isting algorithms, and then modifying or designing new algorithms
to reduce the energy cost without significantly increasing the time
and space costs. Table 2 summarizes these results.

Although there are many practical papers about minimizing en-
ergy in computation (favoring instructions that use somewhat less
energy than others), the algorithms community has not made it a
standard measure to complement time and space because, without
the idea of reversibility, energy is simply within a constant-factor
of time. By contrast, in our model, the energy cost can be anywhere
between 0 (for reversible computation) and t ·w where t is the run-
ning time (number of word operations) and w is the number of bits
in a word.

Consequences. Reducing the energy consumption of many
computations by several orders of magnitude (n) will have tremen-
dous impact on practice. Computer servers alone constitute 23–31
gigawatts of power consumption, which translates to $14–18 bil-
lion annually and 1.1–1.5% of worldwide electricity use [13]; there
are roughly 50 times as many PCs with an annual growth rate of
12% [38]; and there are about as many smartphones as PCs [9].
Improved energy efficiency would save both environmental impact
and money. Reducing energy consumption would also improve the
longevity of batteries in portable devices (laptops, phones, watches,
etc.), or enable the use of smaller and lighter batteries for similar
performance. Perhaps most interestingly, lower energy consump-
tion would lead to faster CPUs, as cooling is the main bottleneck
in increasing clock speeds; reducing the energy consumption by a
factor of α, we expect to be able to run the CPU roughly α times
faster. For example, the world record for CPU clock speed of 8.429
GHz was set by AMD with liquid nitrogen cooling [33].

Our approach is ambitious in that it requires rethinking both
software (algorithms) and hardware. Our belief is that building a
rich algorithmic theory for (partially) reversible computation, and
showing the orders of magnitude in possible energy reduction for
important problems, will prove to hardware makers that reversibil-
ity is a lucrative feature worth exploring intensely, even before it
becomes inevitable by hitting the Landauer Limit.



Algorithm Time Space (words) Energy (bits) Thm.
Sorting Algorithms
Comparison Sort Θ(n lgn) Θ(n) Θ(n lgn) 6.2
Reversible Comparison Sort Θ(n lgn) Θ(n) 0 6.3, 6.4
Reversible Insertion Sort Θ(n2) Θ(n) 0 6.5
Counting Sort Θ(n+ k) Θ(n+ k) Θ(n+ k) 6.6
Reversible Counting Sort Θ(n+ k) Θ(n+ k) 0 6.8
Graph Algorithms
Breadth-first Search Θ(V + E) Θ(V + E) Θ(wV + E) 6.9
Reversible BFS[10] Θ(V + E) Θ(V + E) 0 6.10
Bellman-Ford Θ(V E) Θ(V ) Θ(V Ew) 6.12
Reversible Bellman-Ford Θ(V E) Θ(V E) 0 6.13
Floyd-Warshall Θ(V 3) Θ(V 2) Θ(V 3w) 6.14
Reversible Floyd-Warshall [10] Θ(V 3) Θ(V 3) 0 6.15
Matrix APSP Θ(V 3 lg V ) Θ(V 2) Θ(wV 3 lg V ) 6.17
Reversible Matrix APSP [10] Θ(V 3 lg V ) Θ(V 2 lg V ) 0 6.16
Semi-reversible Matrix APSP Θ(V 3 lg V ) Θ(V 2) wV 2 lg V 6.16
Data Structures
Standard AVL Trees (build) O(n lgn) O(n) O(w · n lgn)

(search) O(lgn) O(1) O(lgn) 5.4
(insert) O(lgn) O(1) O(w lgn) 5.5
(k deletes) O(k lgn) O(1) O(w lgn) 5.6

Reversible AVL Trees (build) O(n lgn) O(n) 0
(search) O(lgn) O(1) 0 5.7
(insert) O(lgn) O(1) 0 5.8
(k deletes) O(k lgn) O(k) 0 5.9

Standard Binary Heap (insert) O(lgn) O(1) O(lgn) 5.10
(delete max) O(lgn) O(lgn) O(w lgn) 5.11

Reversible Binary Heap (insert) O(lgn) O(1) 0 5.10
(delete max) O(lgn) O(lgn) 0 5.12

Dynamic Array (build) O(n) O(n) 0
(query) O(1) O(1) 0 5.3
(add) O(1) O(1) 0 5.3
(delete) O(1) O(1) 0 5.3

Table 2: Summary of our algorithmic analyses and results. In this table, n is the problem size or number of elements in the data-structure, w
is the word size, lg is log2, and in graph algorithms, V is the number of vertices, and E is the number of edges.

Guide. This paper has several sections and does not necessar-
ily need to be read in order or in full, depending on the reader’s
interest. We recommend reading Sections 2.2 and 2.4 before con-
tinuing onto later parts of the paper, to set up the model which is
used extensively in the rest of the paper. The remainder of Section 2
further explores our energy models and useful variations. The re-
maining sections of the paper can be read in any preferred order.
Parts of Sections 3–6 use results from previous sections, but these
should remain understandable without having seen the prior proofs.
Section 3 constructs and analyzes basic control logic and memory
management, to enable high-level pseudocode for algorithm spec-
ification. Section 4 provides some general techniques we have de-
veloped for constructing (semi-)reversible algorithms. Sections 5
and 6 analyze several classic algorithms and data structures, and
construct new algorithms and data structures that are more energy
efficient. Section 7 poses open problems.

2. ENERGY MODELS
In the following sections we present three different models of com-
putation which define an energy complexity that attempts to capture
the energy loss from Landauer’s Principle. We begin with a circuit
model due to its intuitiveness and similarity to early work done on
reversible logic and computation. We then build up RAM mod-

els which bear far more similarity to those used for the analysis of
algorithms.

2.1 Energy Circuit Model
At the lowest level we will consider logical gates. Every gate is a
Boolean function g : x→ y. The energy cost of a gate is defined as
the log of the size ratio of the input space, X , to the output space,
Y = g(X). Thus, energy E = lg

(
X
Y

)
, whose units are bits. The

energy cost cannot be negative because a given input cannot map
to more than one output. Here we forbid randomized computation.
Alternatively, one could allow the creation of b random bits at an
energy cost of b. Also, the energy cost is zero exactly when the
function is bijective in which case we call the gate reversible.

2.2 Energy Word RAM Model
The Energy Word RAM model allows any contiguous segment of
memory of size w to be accessed in constant time and defines a
fixed set of operations that can take in O(1) word sized inputs in
constant time. We also assume memory allocation is handled in a
reversible manner. This will become a more reasonable assumption
later, when we show linked-lists and stacks can be implemented re-
versibly. The program and operations have the following restric-
tions. First, we restrict ourselves to the operations typically found



in high-level languages as well as their reversible analogues. Sec-
ond, the operation’s energy costs should be calculated based off of
what can be constructed in the circuit model. Third, all reversible
operations must come paired with their inverse operation. Finally,
all Energy Word RAM programs must return the machine to its
original state, with the exception of a copy of the output living
somewhere in memory. This can be done simply but expensively by
irreversibly zeroing out every bit and paying the associated energy
cost.

The reversible operations we allow include in-place addition and
subtraction (e.g., a += b), increment and decrement (e.g., a +=
1), swapping two variables, testing for equality or less-than rela-
tion, copying a variable into an initially empty variable

(COPY(a, b) ≡ b += a)

and destroying a known copy of a variable

(DESTROYCOPY(a, b) ≡ b −= a)

We have introduced here a useful notation, that of underlining vari-
ables whose values are empty, which shall serve us in writing pseu-
docode as well. The irreversible operations we allow include over-
writing one variable with another, and computing the bitwise AND
or OR of two variables.

In this model, we intend that our lowest level pseudocode cor-
respond to an assembly-like language. For simplicity we will con-
tinue to work with variables and locations in memory as though
they are all stored in RAM, rather than deal with registers, paging,
and other complications that may arise depending on the computer
architecture. At this level we also explicitly number every line of
our program and grant the code access to the program counter, PC,
which is the location in memory of the current instruction. At every
instruction the PC is incremented, but it can also be manipulated
manually, allowing jumps among other operations. It is very easy
to make code irreversible by manipulating the PC, as this is implic-
itly adding control logic to the program. The instruction set we will
be using in this paper is the same as the one with which we defined
our Word RAM model. For an instruction set for a reversible com-
puter that has been built see Appendix B of Frank’s Thesis [10] or
[32].

2.3 Energy Transdichotomous RAM Model
The Energy Transdichotomous RAM model is computationally the
most powerful and flexible. As with the Word RAM model, we
allow access to memory segments of size w in constant time and
assume memory allocation is done reversibly. Generally we will
assume that w = Ω(lgn), making the word size capable of index-
ing the entire input of the problem. We also allow any operations
on O(1) words to be performed in constant time; however, every
algorithm can only use a constant number of different operations.
The energy cost of an operation is simply the log of the ratio of
the input space to the output space, as in the circuit model. Note
that this is a lower bound on the energy cost of the operation in the
circuit model, and thus a lower bound in the Energy Word RAM
model. Finally, we still need to leave the computer in its initial
state, except for a copy of the output.

This model is convenient to work in because it is relatively easy
to calculate the energy cost of many operations and the flexibility
of choosing operations allows us to exploit information in the sys-
tem without having to work out the details of how it would be im-
plemented. For example, when dividing an integer by four would
generally incur two bits of energy loss or two bits of garbage; how-
ever, if we happen to know that the number is even, there is really

only a single bit of information being lost. Instead of having to
worry about how to perform shifts and additions to save this bit,
the Transdichotomous RAM model allows us to have a ‘divide by
four when evenly divisible by 2’ operation with the restriction that
it only takes even inputs.

We now develop some conventions for writing programs in the
Transdichotomous RAM Model. All lines are of the form TUPLE =
TUPLE. Both tuples must contain the same number of elements,
and the number of elements must be O(1). The left tuple is a list
of all of the values in memory which are used in the computation
being performed on this line, including those simply being over-
written. The right tuple contains expressions representing the val-
ues that will be in the corresponding variables on the left. These
expressions must contain no more than O(1) constant time opera-
tions. One interesting convention about this language is every vari-
able implicitly serves two purposes depending on its location. On
the left, all variables refer to the memory location where they are
stored, and on the right they refer to the values being represented at
those memory locations.

As we did above, here we shall annotate variables whose value
is known to be zero (often new, unassigned variables) with an un-
derline. This information is often critical to the energy cost of an
expression. For example, (a, b, c) = (a, b, a + b) would cost w
units of energy because we are erasing every bit in c before replac-
ing it with the value a + b. However, (a, b, c) = (a, b, a + b) has
no energy cost because the input has the value of c assumed to be
zero, thus reducing the input space by a factor of 2w and making
the number of inputs and outputs the same.

The following are some examples of common operations written
in the format. All operations are assumed to be integer operations
with reasonable overflow and rounding conventions. The following
examples cost zero energy:

• COPY: (a, b) = (a, a)

• DESTROYCOPY: (a, b) = (a, b− a)

• ADD: (a, b) = (a+ b, b)

• LESSTHAN: (a, b, c) = (a, b, a < b)

2.4 High-level Pseudocode
Although the previous section provides a nice, clean way to ana-
lyze the energy, space, and time complexity of an algorithm; we
may want a more concise and C-like language. Past research on
reversible programming languages has focused on fully reversible
programming languages and architectures. The first high-level re-
versible programming languages developed were Janus [25][39]
and R [10]. The first reversible architecture, Pendulum, was de-
veloped by Vieri [35][34]. Along with Pendulum, Vieri introduced
a reversible low-level instruction set, PISA, which is used as a ba-
sic reversible instruction set for many future works. Most recently,
this architecture has been further improved with the development
of Bob [32] using a slightly modified version of PISA known as
BobISA, providing more efficient branch handling and address cal-
culation. Axelsen [2] presented the first compilation techniques to
translate high-level Janus to low-level PISA, two independently de-
veloped reversible languages, and showed that his techniques can
be extended for use in any high-level reversible language.

We modeled our pseudocode off of these previous high and low
level reversible languages while also adding a few new commands
to allow for partial reversibility. We now allow lines of the form
VARIABLE = EXPRESSION as well as for loops, while loops,
if/else statements, and subroutine calls. We also introduce log blocks



x = x+ y + z high

(x, y, z) = (x+ y + z, x, z) intermediate

101 tempx = x low
102 x += y
103 y −= x
104 x += z
105 y += tempx
106 y += tempx
107 tempx −= y

Figure 1: Simple example of code in high, intermediate, and low-
level pseudocode.

a = x > y
counter += a

(a) garbage data
not unrolled

log:
a = x > y

counter += a
unroll

(b) logged high-
level

a = x > y
counter += a
a −= x > y
dealloc(a)

(c) logged low-
level / automatic
unroll

Figure 2: Three examples detailing the mechanics of logged code.

and unroll statements in Section 2.4.1. On lines where we are as-
signing a variable, we assume that every input in the expression
will remain unchanged in its memory location after the computer
performs the operation and that the variable on the left-hand side
will have its value replaced by the value of the expression. If this
is a reversible operation, the variable will merely be changed as
appropriate; if it is an irreversible operation, then the variable will
be changed and an additional energy cost will be incurred based on
the model being used.

Figure 1 gives some simple examples of equivalent code in the
three different levels of pseudocode conventions we’ve developed
(high, intermediate, low). The high level is our C-like language.
The intermediate language converts high level control logic to jumps
and labels. The low level breaks it down further to an assembly-
like language. Future sections will use one or more conventions as
needed for clarity.

2.4.1 Logging and Unrolling

Dealing with garbage data tends to become tedious when writing
reversible computer code. For example, suppose that we were com-
paring two variables, a and b, and that we wanted to use the result
of this comparison to increase some counter; see Figure 2a.

In a normal computer, by the function’s end, awould be garbage-
collected automatically; however, in our reversible computer a naive
garbage collection algorithm would destroy the information stored
in a, clearing whatever value it held and costing a word of energy.
Thus, the reversible algorithm programmer must handle the task of
deallocating a manually.

We call the process of using a series of commands to directly
reverse some portion of the code unrolling. Manually writing all
such commands can be tedious and is prone to error. To expedite
the process, we introduce the high-level keywords log and unroll:

In Figure 2b, the line a = x > y is included inside the log inden-
tation block, and so is to be reversed at the call to unroll. For much
longer programs, this extra syntax can save the programmer a great
deal of effort that would otherwise be spent writing reverse code.
Note that the log and unroll commands only exist in the highest-
level language, and are translated into their manual equivalent at
compile-time. The above program, therefore, would compile to the
low-level program seen in Figure 2c.

The rules for unrolling are straightforward. Reversible com-
mands can be unrolled simply by including their inverse commands
in reverse calling order. Unrolling reversible control logic is dis-
cussed in Section 3.1.

To allow our model to unroll semi-reversible programs, which
may include irreversible commands, we introduce the log stack, a
data structure onto which the program can push extra bits of infor-
mation to be used later to invert the otherwise-irreversible opera-
tions. We keep track of our position in the log stack with the log
pointer, lp. In the Transdichotomous model, every operation must
have its inverse and the process for logging that operation explicitly
specified. Furthermore, we assume that this garbage is encoded as
efficiently as possible and thus only requires as many bits of space
as are needed to distinguish the input space from the output space.
Once again, when we log lines with operations that were previously
irreversible, we are implicitly defining new operations and should
take appropriate precautions. In our Word RAM model, these op-
erations, their inverses, and operations capable of interfacing with
lp and memory must be specified.

2.4.2 Promise Notation

We introduce another notational convention that will assist in writ-
ing low-energy pseudocode for the Transdichotomous RAM model.
At the end of a standard line of code, one may add a comma, the
keyword “assert”, and then a claimed Boolean expression restrict-
ing the values of the involved variables. Some useful examples
include:

IsTrue = 0, assert 0 ≤ IsTrue ≤ 1
x = x/y, assert 6 | x

Here IsTrue may have been the result of a comparison and is
known to be either 0 or 1. Thus the energy cost of destroying it
is only 1 bit instead of w bits. In the second example, we might
know that the problem being computed has some symmetries that a
compiler might not see which restrict the values x can take on. As-
serts allow us to implicitly define functions which have a restricted
input space and thus reduce energy costs. Given the convenience
of defining functions in this manner, we must be very careful that
we are still using only O(1) different operations in our algorithm.

3. REVERSIBLE PRIMITIVES
In this section, we develop many high-level primitives commonly
used throughout algorithms, but which need special care to be done
in an energy-efficient manner. Before proceeding, we should dis-
cuss in slightly more detail the architecture of our theoretical semi-
reversible computer. Our computer only has a single mode of op-
eration, always incrementing the program counter with every in-
struction. Reversing operations comes from writing the inverse
operation in a later section of code, rather than having a separate
reversal mode which travels backward along the program counter,
inverting those operations. This gives us more flexibility in how to



handle irreversible sections of code, and the manner in which we
reverse operations which are not dependent upon each other. How-
ever, it comes at the cost that we cannot recover the value of the
program counter. Thus this design will have to incur an energy cost
of w every time the computer is reset. Because we can run many
programs between restarts, we do not consider this to be of major
consequence.

3.1 Control Logic
Following Frank [10], we can make branching logic reversible with
constant space overhead using paired branching with the destina-
tion of a branch being a branch that points back. Thus, we have
symmetry, and when running backward, we can just follow the
branch we arrived on. However, because we are not working in
a fully reversible model, there are some caveats we must pay at-
tention to: all reversible control logic in this section depends on
all of the code within the control sequence being reversible. If this
is not the case, we can make no guarantees about the correctness
when irreversible operations are being performed within some con-
trol logic, especially if they are manipulating the variables the con-
trol logic depends on.

In Section 2.2 we noted that we can do comparisons reversibly
with a single bit of extra space. In this section, we look at jumps,
branches, conditionals, for loops, and function calls.

Here we consider the most basic building blocks of control logic,
alterations to the program counter in the form of jumps and branches
(conditional jumps). Jumps can be performed by a reversible ad-
dition to the program counter, we use notation goto, gotoifeq, and
gotoifneq. However, if the program counter is allowed to change,
we can no longer assume every line was reached by an increment
to the program counter, thus creating an irreversible situation. To
deal with this, all program counter jumps must be paired with a
comefrom, comefromifeq, or comefromifneq statement. In our
pseudocode, we allow for goto to direct an absoloute or relative
jump and note that a compiler can transform absolute to relative, as
is used in most reversible architectures.

THEOREM 3.1. Jumps can be implemented reversibly with con-
stant factor increases in time and space and up to an additive extra
word of space per jump.

PROOF. All jumps must be paired with comefrom statements.
In the case of a regular comefrom statement, the program knows
that it reached this location via a jump and thus will jump back in
the reverse. However, it is rare that an unconditional jump such
as this exist. In the more general case, the program must decide
whether the comefrom was reached via a jump or from the line
above by an increment in the program counter. To address this, we
log two things upon jumping: (1) the length of the jump and (2) a
bit indicating that a jump occurred. We then use a comefromif to
check this bit upon reversing. At the corresponding reverse come-
fromif we’ll pop the value off the log stack and use it to either
change the program counter or not depending on whether the code
jumped to that location.

We can make an additional optimization if a comefrom state-
ment only has one corresponding goto. Because we know the
jump location corresponding with the comefrom, this can be im-
plemented reversibly by noting the jump length directly in the source
code and not logging. In this case we only have a single bit of stor-
age for logging whether the jump was taken.

3.1.1 Conditional Statements
We distinguish between two different types of conditionals, a pro-
tected if statement and a general if statement. A protected if state-

ment is one in which the conditional is not modified within the if
statement.

THEOREM 3.2. Protected If statements can be implemented re-
versibly with constant-factor increases in time and space, and gen-
eral If statements with an extra bit of overhead in space.

We now examine a special case of for loops. A simple for loop is
one in which a variable i iterates over the values 1 through k, each
time executing some piece of code which does not alter i or k.

THEOREM 3.3. Simple for loops can be implemented reversibly
with constant-factor increases in time and space.

We consider an extension of the simple for loop. A for loop has
internal conditions if all variables used in the condition of the for
loop only exist within the scope of the for loop. That value is pro-
tected if it is never changed irreversibly. We define a protected for
loop as a for loop with protected, internal conditions.

THEOREM 3.4. A protected for loop can be performed reversibly
with constant factor overhead in time and space.

THEOREM 3.5. A general for loop can be performed reversibly
with constant factor overhead in time and an extra word of space
representing the number of loop executions.

THEOREM 3.6. Function calls can be implemented reversibly
with constant-factor increases in time and space.

THEOREM 3.7. Memory allocation using free lists can be done
reversibly with constant-factor overheads in time and space.

Garbage collection often uses a technique known as reference
counting. Reference counting keeps track of the number of refer-
ences to an object or resource and deallocates the space when it is
no longer referenced. In our analysis, we do not charge the cost of
freeing or destroying the objects to the algorithm. Since this de-
struction would need to happen regardless of what sort of garbage
collection, if any, was performed we believe the energy costs in-
volved are not a fair representation of the work done by the garbage
collector itself.

THEOREM 3.8. Reference Counting can be done reversibly with
constant-factor overhead in space and time.

THEOREM 3.9. Mark and Sweep can be done reversibly with
constant-factor overhead in space and time.

4. ENERGY REDUCTION TECHNIQUES
This section overviews some general techniques that have been
helpful in constructing reversible algorithms and proves some gen-
eral theorems about algorithms sharing certain properties.

4.1 Complete Logging
One very simple, yet surprisingly useful technique is to simply log
every step of an algorithm. This incurs a space cost of O(t(n))
words where t(n) is the runtime of the algorithm. Although this
seems wasteful, the prevalence of linear time algorithms or linear
time sub-routines in algorithms makes this important to remember.



4.2 Reversible Subroutine
Earlier we saw that function calls can be implemented reversibly.
We now give a stronger result for being able to use some reversible
subroutines efficiently.

THEOREM 4.1. If we have a fully reversible subroutine whose
only effect on the program is through its return value, one need only
store the inputs and outputs to this subroutine to later unroll it with
only a constant-factor overhead in time.

PROOF. To do this, we use a slightly more complicated, two-
step unrolling process. First, after the subroutine has initially run,
we copy out the output and immediately unroll the subroutine. This
copy of the output looks no different to the rest of the program
from what would normally be computed, and we’ve already stipu-
lated that the subroutine cannot alter the program through any other
means. When it comes time to unroll the subroutine, we may have
lost important logged information needed to take us from the out-
put back to the input. At this point, we run the subroutine forward,
recovering all of that needed information. Next we delete the copy
of the output and unroll the subroutine normally.

4.3 Data Structure Rebuilding
When attempting to implement data structures which support in-
sert and delete operations reversibly, we run into a new challenge.
Often the insertion or deletion operation will create some amount
of garbage data which is necessary to reverse it in the future. We
also need the result of the operation to remain in place, so we can-
not immediately reverse the operation. Thus over the life of the
data structure, its size will depend on the total number of insert
and delete operations, rather than just the number of elements in
the data structure. To circumvent this we can use a technique we
call periodic unwinding. Note, this technique depends exceedingly
on what is considered the data-structure and what is an algorithm
that uses the data-structure. This is discussed more below and in
Section 5.

THEOREM 4.2. If a data structure which allows reversible in-
sertions, deletions, and traversals can be constructed reversibly
from k insertions in O(k) time and space, and its operations can
be performed reversibly with constant-factor overhead in time and
space, then it can be maintained reversibly in amortized time with
constant-factor overheads in space and time via periodic unwind-
ing.

PROOF. If there are only O(n) deletions, then we can simply
log and unroll all of the operations. If not, we need to keep track of
the number of insertions and deletions that have occurred because
the last rebuilding. We will keep track of these counts and incre-
ment them as part of the insertion or deletion routine. We also track
the number of elements in the data structure. Whenever a delete is
called, we then check to see whether the number of deletions is
more than twice the number of nodes in the data structure. If this
is true, we will proceeded to rebuild the data structure. We perform
a reversible traversal of the tree, with the addition that we make an
extra copy of the inserted data at every node. Now that we have
this copy, we can proceed to unroll the data structure, clearing the
log. Once this is done we construct a new data structure with the
same values as before the reversing, but with none of the accumu-
lated garbage. Construction of the new data structure takes O(n)
time. To trigger a rebuilding, we must have called delete a larger
number of times than the size of the data structure we are building.
We charge the amortized constant cost per element being added to

the new data structure to the number of deletes performed, giving
us constant amortized time. Our counters and copies of the data all
require O(n) space, meaning we never use more than a constant-
factor overhead in space.

With this method, after rebuilding and clearing the log, the data
structure can no longer provide any information about past items
which were deleted from the data structure. This is covered by
the assumption that the algorithm interacting with the data struc-
ture makes copies of all of its inputs and if it needs them to reverse
itself, it is responsible for maintaining that information. Thus, de-
pending on how the data structure is being used, this technique can
be superfluous or very powerful.

5. DATA STRUCTURES
Data structures are meant to be used in the context of an algorithm.
In the standard model for algorithms, we can draw a nice abstrac-
tion between these two and analyze their properties separately. We
also wish to do so in the energy complexity model; however, we
need to be more careful about the responsibilities of the data struc-
ture and the algorithm for maintaining information and reversibil-
ity. First, we assume the data structure is only accessed through
the prescribed operations; we don’t want the algorithm irreversibly
altering stored elements or manually altering the data structure in
an unknown way. Second, if it is a reversible data structure, ev-
ery operation must have a reverse operation. Third, when inserting,
the algorithm gives a copy of the data to the data structure and is
responsible for maintaining its own reversibility after an insert has
been reversed. Fourth, the algorithm will handle zeroing of the bits
of elements removed from the data structure. For this purpose, the
common delete operation will be replaced with Extract(x) which
removes an element from a data structure and returns it; however,
we will generally still call this operation delete. Fifth, for a re-
versible algorithm, it is responsible for making the correct calls to
reverse functions to reset the data structure.

This is certainly not the only way to treat this interface. We could
just as well require the data structure to remember all of the calls
performed on it so it could reverse itself upon command. Similarly,
we could imagine that a deleted item cannot be handed back to the
algorithm, but must in some way be removed by the data structure,
most likely when unrolling. We’ve chosen our conventions because
it more closely matches our idea of how subroutines should work
and because it is clearer to us how to analyze such cases.

5.1 Stacks and Linked Lists
THEOREM 5.1. Doubly-linked lists can be implemented

reversibly with constant-factor overheads in time and space.

COROLLARY 5.2. Stacks, queues, and dequeues can be imple-
mented reversibly with constant-factor overheads in time and space.

5.2 Dynamic Arrays
THEOREM 5.3. Dynamic arrays can be implemented reversibly

with constant time and space overhead with an extra bit of space
for ADD/ DELETE operations. Size of the structure grows with the
number of ADD/ DELETE operations.

PROOF. We now consider how to handle these operations re-
versibly. Because both ADD/DELETE operations work at the end of
the array, we check the length attribute to find where to perform
the reverse operation. For REVERSE-ADD, we remove the element



and decrement length. And for REVERSE-DELETE, we must log
the deleted element to add it back and increment length. We must
also consider how to handle table doubling. On an ADD/DELETE
operation, table doubling (or halving) occurs based on the result
of a single comparison of length and size. We can log a single bit
representing the result of this comparison for each ADD/DELETE
operation that will indicate whether a table doubling (or halving)
needs to be reversed.

This bit is necessary in order to undo table doubling because we
can not determine whether a table doubling operation occurred just
by looking at the resulting length and size attributes. For example,
consider a table with length n and size 2n where the last operation
was an ADD. This state could have been reached in two ways. (1)
length n−1, size n incurring a table double ; (2) length n−1, size
2n.

We maintain the dynamic array to preserve the order and length
of its elements in the reverse direction, thus a REVERSE-QUERY
operation can be run in the same way as a QUERY operation by
simply making the same query again. Periodic rebuilding of this
data structure follows from Theorem 4.2 because all operations are
reversible with constant factor overhead and rebuild can be done in
linear time.

5.3 AVL Trees
Using and maintaining standard AVL trees incurs an energy cost
proportional to the time of the associated operations.

THEOREM 5.4. SEARCH(x) can be performed on standard AVL
trees in Θ(lgn) time, O(1) auxiliary space and O(lgn) energy.

THEOREM 5.5. INSERT(x) can be performed on standard AVL
trees in Θ(lgn) time, O(1) auxiliary space and O(w lgn) energy.

THEOREM 5.6. DELETE(x) can be performed on standard AVL
trees in Θ(lgn) time, O(1) auxiliary space and O(w lgn) energy.

We will show that, provided only SEARCH and INSERT oper-
ations are invoked, reversible AVL trees can be maintained with
only constant-factor auxiliary space consumption. If DELETE is to
be invoked, then the structure will accumulate an extra Θ(k) words
of space for k DELETE operations invoked over the lifetime of the
tree. Such space consumption can still be made reasonable within
the context of a larger algorithm, provided that runs of INSERT and
DELETE form a small part of the algorithm, and are unwound peri-
odically to refresh log space.

Since these algorithms employ only conditional branches which
do not modify their conditions (for example, in SEARCH when
comparing a value against a node of the tree to choose a branch,
we leave the value of the comparison intact post-search), they are
completely reversible with no logging penalty.

THEOREM 5.7. SEARCH(x) can be performed on reversible AVL
trees in Θ(lgn) time, O(1) auxiliary space and 0 energy.

PROOF. Provided that our reversible AVL tree is constructed us-
ing two-way nodes, performing SEARCH(x) reversibly is straight-
forward. Upon reaching a node v in the tree, we compare its value
with x and use the resulting bit to determine whether to jump left or
right. After jumping, as we have maintained in memory a pointer
back to v, we can compare x to v again to destroy this bit and free
the space gain. Once the final node is reached and our answer is
found or determined to be absent, we can log our result somewhere
and reverse our computation to destroy any remaining garbage bits.
This procedure uses constant auxiliary space, and produces our an-
swer reversibly in O(lgn) time.

INSERT is the next operation we address. It includes the task
of reversibly rebalancing the tree, a slightly more complicated task
than that of SEARCH.

From a given tree, there may be multiple legal trees that under-
went a different rotation to produce it. Thus, if we didn’t store
any auxiliary information about the AVL rotations as we performed
them, it would not be possible to immediately reverse a tree’s con-
figuration. A key insight into the space consumption of this process
is to note that, for a tree containing n unique elements, each of those
elements must occupy at least Ω(lgn) bits of space each on aver-
age (in the word model in particular, each element takes a constant
w = Θ(lgn) bits of space). Thus, we must store a Θ(lgn)-sized
entry to a rotation log for each inserted element. The space cost of
this logging is absorbed into the space cost of the element’s value
in the tree itself. This is the premise of the following theorem:

THEOREM 5.8. INSERT(x) for x not yet present in the reversible
AVL tree can be performed in Θ(lgn) time, preserving the Θ(n)
space cost of the tree and using 0 energy.

PROOF. Insertion consists of traversing the reversible AVL tree,
adding the new element to the tree, and making any rotations that
are necessary to balance the tree.

Traversing the tree can be done reversibly as in SEARCH(x), and
we refer to its proof for reversibility. Once we know where x is to
be added into the tree, we create a new node for it and proceed to
rebalance the tree.

During the balancing step, rotations begin at the lowest level and
proceed upward. To perform our operations reversibly, we will
keep a log of every rotation performed at each of the lgn levels
of the tree. For each level, we will store 01 for a right-rotation, 10
for a left-rotation, and 00 for no rotation. By keeping this log, we
have enough information to go in the reverse direction, proceeding
from the top of the tree to its bottom and checking x’s value against
those of the encountered nodes to progress. In this way, we keep
our INSERT(x) action reversible.

Each log entry need only store a number of bits proportional in
size to the maximum height of the tree. Because there are n unique
entries in the tree at any given time, each call to INSERT incurs only
O(lgn) bits of space cost. Thus our log, which stores Θ(lgn) ad-
ditional bits per element, results in only a constant-factor increase
in the space consumption of the tree. This holds even if deletions
from the tree have also been performed, as inserting into a tree
will always grow the tree’s space consumption asymptotically by
Ω(lgn) bits per insertion, while the log size will grow by O(lgn)
bits per insertion. The space consumption of the tree is thus pre-
served to within constant factors.

THEOREM 5.9. DELETE(x) can be incorporated into reversible
AVL trees, takingO(lgn) time and incurring an additional Θ(k lgn)
= O(kw) bits or O(k) words of space for k delete operations.

5.4 Binary Heaps
THEOREM 5.10. Binary Heaps can have items inserted irre-

versibly with Θ(lgn) time, Θ(1) space, and Θ(lgn) energy; or
reversibly with Θ(lgn) time, Θ(1) space, and 0 energy.

THEOREM 5.11. Binary Heaps can have the root node deleted
irreversibly with Θ(lgn) time, Θ(lgn) space, and Θ(w lgn) en-
ergy.

THEOREM 5.12. Binary Heaps can have the root node deleted
reversibly with Θ(lgn) time, Θ(lgn) space, and 0 energy.



As with AVL trees, binary heaps subject to k insertions and dele-
tions will accumulate an extra O(k) space to be maintained. In
some cases this can be resolved by periodic unwinding.

6. ALGORITHMS
This section includes the analysis for the time, space, and energy
complexity of several standard algorithms in our model. We also
give a number of improved algorithms. Some of our results for al-
gorithms with zero energy complexity are similar to results claimed
or proved in [10] about reversible algorithms. However, we prove
these results within our own model, which differers slightly from
[10].

6.1 Sorting
Sorting is among most fundamental and well understood algorith-
mic problems. In this section we give reversible algorithms for
comparison and counting sorts which match the time and space
complexities of know irreversible algorithms. It is especially in-
teresting to see this is achievable despite the known entropy change
during comparison sorts which give us a lower bound on their time
complexity.

6.1.1 Comparison Sort
THEOREM 6.1. A comparison sort destroying its input must con-

sume Ω(lgn!) energy.

We can achieve this energy bound with Merge Sort. Merge Sort
takes in an array of numbers, recursively calls itself on half of the
array until it reaches the sorted array of size 1. It then merges the
returned arrays by iteratively comparing the smallest values in each
array and moving it to the beginning of a new sorted array.

THEOREM 6.2. Comparison sort destroying its input can be
done in Θ(n lgn) time, Θ(n) space, and Θ(n lgn) energy.

If we do not destroy the input and are careful with our algorithm,
we can do better:

THEOREM 6.3. Comparison sort, not destroying its input, if
performed on an array of n w-bit elements with lgn = O(w), can
be done reversibly in Θ(n lgn) time, Θ(n) auxiliary space, and 0
energy.

PROOF. This algorithm is a modification of Merge Sort. In sum-
mary, we will we augment each element of the array with its index
in the array, and so-equipped shall reversibly merge sort the ele-
ments in Θ(n lgn) time. After we remove these indices from the
sorted array, the output of the algorithm will be the original array
L and a sorted copy of the array Lsorted.

During a traditional Merge Sort, there are three main steps: di-
viding the array in two, recursing on each half of the array, and
merging the two resultant arrays into a complete, sorted array.

The first step, dividing an array in two, is reversed trivially:
Given the two resultant lists of such an operation L[r : s] and
L[s+ 1 : t], the original subarray L[r : t] is their concatenation.

The second step, recursing, will be reversible if our entire algo-
rithm is reversible. We know the base case of sorting a size-1 array
is reversible, and thus if steps 1 and 3 of our algorithm are also
reversible, then this recursive step will be as well.

The third step, in contrast to the first two, presents us with some
difficulties. Given a resultant, fully-merged subarrayLsorted[r : t],

it is not at all obvious how to go backwards, i.e. how to reproduce
the input subarrays Lsorted[r : s] and Lsorted[s+ 1 : t]. Informa-
tion will be lost in this merge step, and to allow our algorithm to be
done reversibly, we must find some way to preserve it.

Our augmentation makes this step possible. Before sorting, we
transform L into a new array L′ of twice the size, which consists
of the elements of L each augmented with their index in L. Thus,
the elements of our array are 2-tuples (v, i) of each element’s value
and original location in L. The above transformation is sufficient
to make the merge step reversible. To see why, consider any step
in the algorithm in which we are trying to merge two sorted sub-
arrays L[r : s] and L[s + 1 : t]. Denote the merge subroutine that
we are trying to compute as Ms+ 1

2
(L[r : s], L[s + 1 : t]); that

is, we are merging around a pivot s + 1
2

, determined by which
step of the algorithm we are presently carrying out. All elements
(v, i) with i < s + 1

2
must have come from L[r : s], and ele-

ments with i > s + 1
2

from L[s + 1 : t]. Given a resultant array
Lsorted[r : t] = Ms+ 1

2
(Lsorted[r : s], Lsorted[s+ 1 : t]), we can

reverse the merge operation step-by-step simply by checking each
element’s index against the pivot s+ 1

2
to determine where it came

from. This enables us to construct two-way branches that perform
the merge in a way that is instantaneously reversible. Because the
pivot is fixed for each step in the algorithm, no information is lost
in computing and decomputing it, and thus this step of the algo-
rithm may be implemented reversibly with only constant additional
auxiliary space.

The output of the above algorithm is a listL′sorted of (v, i) tuples
sorted in the v keys (whereas our original list L′ was “sorted” in the
i keys).

Now we need only remove the auxiliary indices from the ele-
ments (v, i) to produce our unaugmented sorted list Lsorted. This
step must be handled with care to ensure that every step is re-
versible. We begin by reproducing the original array L via a single
pass over L′sorted, a simple operation that has not yet destroyed any
data. Next, we copy out Lsorted, the final, sorted array that we care
about. What remains is to dismantle L′sorted, and here we shall
employ a special trick: We will perform a single pass over the orig-
inal array L, and for every value v encountered we will perform
a logged binary search for this element in the unaugmented sorted
list Lsorted. When the element is found, we will know the value
v, index i, and the location of the element (v, i) in the augmented
sorted array L′sorted. This is sufficient to destroy this element, set-
ting its entry to zero before unrolling the log of our binary search.
The complete dismantling operation uses only Θ(lgn) additional
logging space total, and only takes time Θ(n lgn), so our runtime
and space consumption are preserved.

This algorithm is instantaneously reversible at every step, and
could be implemented using only simple for loops and two-way
conditional branches. Thus, the algorithm is completely reversible
under our model. Given an array of size n = O(2w) which oc-
cupies nw space in memory, we can reversibly comparison-sort
the array using Θ(nw) bits of auxiliary space in Θ(n lgn) time,
matching the best irreversible algorithm to within constant-factors
of space and time.

THEOREM 6.4. Comparison sort, not destroying its input, can
be done reversibly on an array of n d-bit elements which require
nd space in Θ(n lgn) time, Θ(nd) auxiliary space, and 0 energy.

PROOF. As we saw in the preceding theorem, reversible com-
parison sort is straightforward to perform if we first augment each
element in the array with a number corresponding to its index in
the original list. When the size of the values d is Ω(lgn), then we



attain the optimum space bound as the lgn-sized indices get ab-
sorbed into the space cost of the d-bit elements. However, we are
faced with a conundrum when d is o(lgn).

To handle this case, we shall employ counting sort in order to re-
duce the problem of sorting L to the problem of sorting the unique
keys of L. We utilize a reversible AVL tree (described in Sec-
tion 5.3) to achieve this.

This algorithm works by reducing the array L only to its unique
elements, to sort those elements, and finally to perform a Counting
Sort of the original array, consulting our sorted elements to deter-
mine the final order. Let k be the number of distinct elements of L.
We employ a reversible AVL tree, with actions carefully specified
so as to keep them reversible. First, we read the distinct elements of
L into the tree, bringing it to a sizeO(kd), and keeping anO(n)-bit
uniqueness log and an O(nd)-bit rotation log (see reversible AVL
trees discussion) as we go. This step takes O(n lgn) time. Next,
we apply Counting Sort on the original array (see Section 6.1.2),
consulting the static tree in O(lgn) time for each element and
achieving the O(n lgn) runtime in this step as well. The output
array may be copied and the entire algorithm reversed (Note: not
an unrolling of a log, but rather an execution of a reversed version
of the algorithm) to leave us with our desired arrays L and Lsorted.

This algorithm works by reducing the array L only to its unique
elements, to sort those elements, and finally to perform a Counting
Sort of the original array, consulting our sorted elements to deter-
mine the final order. Let k be the number of distinct elements of L.
We employ a reversible AVL tree, with actions carefully specified
so as to keep them reversible. First, we read the distinct elements of
L into the tree, bringing it to a sizeO(kd), and keeping anO(n)-bit
uniqueness log and an O(nd)-bit rotation log (see reversible AVL
trees discussion) as we go. This step takes O(n lgn) time. Next,
we apply Counting Sort on the original array (see Section 6.1.2),
consulting the static tree in O(lgn) time for each element and
achieving the O(n lgn) runtime in this step as well. The output
array may be copied and the entire algorithm reversed (Note: not
an unrolling of a log, but rather an execution of a reversed version
of the algorithm) to leave us with our desired arrays L and Lsorted.

In terms of the intricate details glossed over above, the most in-
volved are in the first step: reversibly constructing a reversible AVL
tree out of the unique elements of L. We proceed as follows: mak-
ing a single pass over our array L, we add every element into the
tree. If an element is the first of its exact value to be encountered,
we store a corresponding uniqueness bit as true and add the element
to the tree. If an element’s value already exists in our tree, we store
its uniqueness bit as false and move on (never adding duplicates to
the tree). These n uniqueness bits allow us to reverse the algorithm,
as we know for which elements we modified the tree and on which
ones we did not. By theorem 5.8, these insertions take Θ(nd) space
and O(n lgn) time.

Once the AVL tree is constructed, the rest of the algorithm is a
straightforward Counting Sort with a slower Θ(lg k) lookup time,
yielding theO(n lg k) time which is optimal for Comparison-based
Sort. In addition to the fully-reversible AVL tree data structures,
our algorithm employs only simple for-loop passes over the input
and reversible two-way branching in the AVL tree, ensuring its re-
versibility. The entire algorithm takes Θ(nd) space and O(n lgn)
time, matching the best irreversible comparison sorts up to constant-
factors of space and time.

THEOREM 6.5. Reversible Duplicated Insertion Sort runs in
Θ(n2) time, Θ(n) space, and 0 energy.

6.1.2 Counting Sort

Counting sort involves counting the number of elements at or be-
low a specific value, and then running through them and adding
them to an array based on how many elements are below them.
This achieves Θ(n + k) time and space where k is the size of the
maximum integer to be sorted.

THEOREM 6.6. Counting Sort can be done in Θ(n + k) time,
Θ(n+ k) space, and Θ(wn+ lg k) energy.

THEOREM 6.7. If all entries are unique, then Counting Sort
has an energy complexity of Θ(lgn+ lg k) energy.

THEOREM 6.8. Reversible Counting Sort can be done in Θ(n+
k) time, Θ(n+ k) space, and 0 energy.

6.2 Graph Algorithms
Frank [10] argues that Breadth-first Search and Depth-first search
can be done reversibly. We reproduce this result in our model and
give a different analysis.

THEOREM 6.9. Breadth-first Search runs in Θ(V + E) time,
Θ(V ) space, and Θ(wV + E) energy.

THEOREM 6.10. Reversible Breadth-first Search can runs in
Θ(V ) time, Θ(V + E) space, and 0 energy.

COROLLARY 6.11. Reversible Depth First Search can runs in
Θ(V + E) time, Θ(V ) space, and 0 energy.

6.3 Bellman-Ford
THEOREM 6.12. Bellman-Ford runs in Θ(V E) time, Θ(V +

E) space, and Θ(V Ew) energy.

THEOREM 6.13. Reversible Bellman-Ford runs in Θ(V E) time,
Θ(V E) space, and 0 energy.

6.4 Floyd-Warshall
Frank [10] argues that the Floyd-Warshall algorithm can be adapted
to run reversibly with Θ(V 3) space. This is a substantial increase
in space to make the program reversible and thus save energy.

THEOREM 6.14. Floyd-Warshall runs in Θ(V 3) time, Θ(V 2)
space, and Θ(V 3w) energy.

THEOREM 6.15. Reversible Floyd-Warshall runs in Θ(V 3) time,
O(V 3) space, and 0 energy.

6.5 All Pairs Shortest Path via (min,+) Ma-
trix Multiplication

Another algorithm for solving APSP involves using the adjacency
matrix representation of a graphA and noticing that the relaxations
over the edges can be expressed by calculating a new matrix, C,
whose entries are given by cij =

k
min(aik + akj). Further, this

operation is associative, so we can speed up the calculation by us-
ing repeated squaring. Thus we have O(lg V ) iterations over (V 2)
elements which take O(V ) time to compute. Frank [10] claims
without proof that this leads to a reversible algorithm that runs in
Θ(V 3 lg V ) time and Θ(V 2 lg V ) space. We give a proof of this
result.



THEOREM 6.16. Reversible APSP using repeated squaring with
(min,+) matrix multiplication runs inO(V 3 lg V ) time,O(V 2 lg V )
space, and 0 energy.

THEOREM 6.17. APSP using repeated squaring with (min,+)
matrix multiplication runs in O(V 3 lg V ) time, O(V 2) space, and
O(wV 3 lg V ) energy.

We now present a new variation on APSP which demonstrates a
non-trivial trade-off between energy and space. By exploiting re-
versible subroutines, we’re able to reach the APSP with repeated
squaring bounds on time and space, but beat it in energy cost.
The reversible, semi-reversible, and standard APSP using repeated
squaring demonstrate there are semi-reversible algorithms that ac-
tually achieve bounds not reached by the fully reversible or fully
irreversible counterparts.

THEOREM 6.18. Semi-reversible APSP using repeated squar-
ing with (min,+) matrix multiplication runs in O(V 3 lg V ) time,
O(V 2) space, and O(wV 2 lg V ) energy.

PROOF. To begin, we will examine how each individual entry
in the matrix is updated. Say we have a graph represented by ad-
jacency matrix W = (wi,j), and a matrix L(m) = (l

(m)
i,j ) repre-

senting the shortest paths between two vertices with path length at
most m. Each entry is updated as

l
(m+1)
i,j =

1≤k≤|V |
min

(
l
(m)
i,j + wk,j

)
This subroutine runs inO(V ) time andO(wV ) energy and can thus
be trivially made reversible by logging everything, using O(V )
time and space. We replace our normal update function with the
new reversible one, and by Theorem 3.6 we have a new, more en-
ergy efficient algorithm. The subroutine does not use asymptoti-
cally more time than before, the temporary use of O(V ) space is
much smaller than that needed to store the matrices and is freed
upon completion of the subroutine, and the energy cost drops by
a factor of V which reduces the algorithms total energy cost by a
factor of V .

7. FUTURE DIRECTIONS
This paper built up a framework for designing and analyzing the
energy cost of algorithms caused by irreversibility, and started the
quest for positive results for basic algorithms and data structures.
In many cases, we obtained fully reversible versions of algorithms,
but other problems seem more resistant. For example, is there a
reversible all-pairs shortest path algorithm with only constant fac-
tor overheads in time and space? We managed to give a reduced-
energy semi-reversible algorithm for the problem, but a fully re-
versible algorithm still seems elusive. Shortest-path algorithms
more generally seem like a category that are difficult to make re-
versible, as they use very little space and make frequent use of
rewriting old values. We anticipate other graph problems such as
max-flow/min-cut may also be challenging and interesting for sim-
ilar reasons.

There are more fundamental algorithms that should be given high
priority given their use in many other results: hashing, predeces-
sor data structures (e.g., van Emde Boas trees), max-flow/min-cut,
Fast Fourier Transforms, and dynamic programming. Geometric
algorithms offer more nontrivial challenges to attain reversibility,
such as line intersection, orthogonal range finding, convex hull, and
Delaunay triangulations. We also see the field of machine learn-
ing being an interesting target for analysis in the semi-reversible

model: these algorithms often have significantly higher time com-
plexities than space complexities, fundamental updates (such as
Bayes’ rule) which appear reversible, and many conditional updates
or data overwrites.

One important question for any practical application is how to
deal with long-running programs. Although we are perfectly happy
to log some auxiliary information during the execution of a specific
program, it may be more problematic to maintain reversibility for
the entire operating system of a computer or a long-lived database.
This is an area we believe ideas like semi-reversibility and periodic
rebuilding will become particularly important.

There are some areas where we see slight extensions of the model
opening up interesting questions. First, incorporating randomness
seems a practical necessity and carries interesting thermodynamic
implications depending on how it is modeled. Assuming there is
an energy cost associated with the production of randomness (say,
equal to the number of random bits), this may give further rea-
son to investigate exactly how much randomness is needed for an
algorithm’s correctness. Streaming algorithms and other models
where the working space is much smaller than the problem input
seem like a rich source of problems. Because we now use sublin-
ear space, our trivial transform is no longer applicable. Further, the
larger the gap in space and time, the less ability we have to accrue
garbage. Finally, succinct data structures, which try to minimize
the bits of space used up to sublinear factors, seem like another
challenge: many of our transforms double or triple the space being
used by an algorithm, while in the succinct setting, this overhead
must be considered.

Finally, a major open direction is to obtain lower bounds. The
additional constraints on semi-reversible algorithm design might
allow showing algorithms cannot be obtained without some mini-
mum time-space-energy trade-off.
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