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Abstract

This paper considers scheduling tasks while minimizing the power consumption of one or
more processors, each of which can go to sleep at a fixed cost α. There are two natural versions of
this problem, both considered extensively in recent work: minimize the total power consumption
(including computation time), or minimize the number of “gaps” in execution. For both versions
in a multiprocessor system, we develop a polynomial-time algorithm based on sophisticated
dynamic programming. In a generalization of the power-saving problem, where each task can
execute in any of a specified set of time intervals, we develop a (1 + 2

3α)-approximation, and
show that dependence on α is necessary. In contrast, the analogous multi-interval gap scheduling
problem is set-cover hard (and thus not o(lg n)-approximable), even in the special cases of just
two intervals per job or just three unit intervals per job. We also prove several other hardness-
of-approximation results. Finally, we give an O(

√
n)-approximation for maximizing throughput

given a hard upper bound on the number of gaps.

1 Introduction

Power is a growing concern in computer science, motivated by batteries increasing in capacity
much more slowly than computation power, and by small mobile devices such as cell phones,
PDAs, and sensors increasing in prevalence; see, e.g., the recent surveys in theory [IP05] and in
practice [BBM00]. A common approach in practice for reducing power consumption is to add
a “sleep state” which requires essentially no power but disallows computation. However, each
transition from the sleep state to the regular, active state consumes a fixed amount of power, so we
cannot simply go to sleep whenever computation is not required. The scheduling problem is thus
to determine when to switch to the sleep state in order to minimize the total power consumption.

We consider two precise formulations of this problem. In power minimization [ISG03, AIS04],
the objective is to minimize the total transition costs plus the total time spent in the active state.
In gap scheduling [Bap06, FHKN06], the device goes into a sleep state whenever it is idle, and the
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objective is to minimize the total number of transitions (because the time spent in the active state
is fixed by the input jobs). Though minimizing total power (as in power minimization) is the most
natural measure, minimizing the number of transitions (as in gap scheduling) seems stronger from
the point of view of approximation algorithms.

In all previous work on these problems, tasks have arrival times, deadlines, and processing
times, and the goal is to find a pre-emptive schedule that satisfies all deadlines. We consider a
generalization, called multi-interval scheduling, in which each task has a list of one or more time
intervals during which it can execute (e.g., when the necessary resources are available), and the
goal is to complete every task. One practical special case of this generalization, also considered in
this paper, is multiprocessor scheduling where each task can run on any processor, and individual
processors can go into the sleep state. (To see that multiprocessor scheduling is a special case of
interval scheduling, view the processor executions as laid out one after the other, so that idle gaps
correspond; then a task with an arrival time and deadline becomes executable in an arithmetic
sequence of time intervals.) This problem is particularly interesting given the increasing prevalence
of multicore and multiprocessor architectures.

Previous work. It remained a challenging open problem for several years whether the offline
version of both problems, in the one-interval case where each job has one interval (arrival time
and deadline), was NP-hard or polynomially solvable. For exact solutions, offline power saving and
offline gap scheduling are the same problem (they differ only with respect to approximation). This
open problem was posed at the 2002 Dagstuhl Seminar on Online Algorithms, and in [ISG03, IP05].

Most preliminary work on this problem considered power saving, which is easier in terms of
approximation. For offline power saving, Irani, Shukla, and Gupta [ISG03] developed a polynomial-
time 3-approximation. For online power saving, where jobs become known only at their arrival time,
Augustine, Irani, and Swamy [AIS04] obtained a (3 + 2

√
2)-competitive strategy, while the best

lower bound on competitive ratio is 2 [ISG03, Bap06].
The open problem was finally solved by Baptiste [Bap06], who gave a surprising and clever

dynamic program that solves the offline one-interval problem (both power saving and gap schedul-
ing) optimally in polynomial time. At his SODA 2006 talk, he posed a harder version of this open
problem: what about multi-interval scheduling? This is the topic of our paper.

Offline one-interval gap scheduling also has a simple greedy 3-approximation algorithm [FHKN06].
The algorithm tries all possible gaps and chooses the largest gap that still leaves a feasible schedule
(whose existence can be checked by maximum-cardinality matching). Then it removes this interval
of time and repeats the process until no more gaps can be introduced. An initial analysis shows that
this greedy algorithm is an O(lg n)-approximation, by analogy to set cover, but with substantially
more work, it is proved to be a 3-approximation.

Note that, without a power or gap objective, the offline one-interval problem is one of the most
basic and fundamental scheduling problems. This problem has a simple optimal greedy solution,
earliest deadline first, as well as other approaches via linear programming or bipartite matching.

Our focus is on offline problems, because multi-interval power saving and even one-interval
gap scheduling are not interesting in the online context. If an online algorithm is guaranteed to
find a feasible schedule whenever possible, then it must follow the earliest-deadline-first schedule,
executing jobs whenever they become available. For multi-interval scheduling, the earliest-deadline-
first schedule is not well-defined, and indeed any online algorithm cannot find a feasible schedule
when possible. To see this, suppose two jobs come at time 0, one with intervals [0, 1] and [1, 2] and
the other with intervals [0, 1] and [2, 3]; we cannot tell which job to run at time 0, for fear of a third
job coming at time 1 or 2 and requiring immediate execution. On the other hand, for one-interval
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gap scheduling, suppose n jobs arrive at time 0 with a deadline of 3n, and n jobs arrive at times
n, n + 2, n + 4, . . . with deadlines of one unit after their arrival. The optimal gap schedule waits
for the n latter jobs to arrive and schedules the former n jobs in between the gaps, for a gap cost
of O(1). Any online solution guaranteed to find a feasible solution must schedule the former n jobs
immediately, for a gap cost of n, to handle the instance where the latter jobs are instead 2n jobs
arriving at times n, n+ 1, n+ 2, . . . . So any correct online algorithm must have a competitive ratio
of at least n.

Our results. Our first positive result (Section 2) is for the important case of (one-interval)
multiprocessor scheduling, which can be viewed as a special case of multi-interval scheduling where
each task can execute in an arithmetic sequence of time intervals with fixed period. Here we obtain
a polynomial-time algorithm, nontrivially building on the dynamic program of [Bap06] by obtaining
additional structure. Somewhat surprisingly, the running time of the dynamic is polynomial in both
n and the number p of processors, not e.g. nO(p). Because our algorithm is exact, it solves both the
power-saving and gap versions of the problem.

For multi-interval power saving with a transition cost of α, we develop a (1+ 2
3α)-approximation

algorithm (Section 3). This result builds on some classic previous work on set packing by Hurkens
and Schrijver [HS89]. (In maximum set packing, given a collection of sets, the goal is to find a
maximum subcollection of pairwise-disjoint sets.) We also show that no polynomial-time approxi-
mation factor can be independent of α unless P = NP (Section 4.2). Furthermore, if α is part of
the input, we show that multi-interval power saving is set-cover hard (Section 4.1), and therefore
cannot be approximated within a o(lg n) factor unless P = NP [Fei98].

Next we show through a series of reductions that multi-interval gap scheduling is set-cover hard,
even in two special cases. In the first case (Section 5.1), each job has only two intervals (two-interval
gap scheduling). In the second case (Section 5.2), each job has at most three intervals each of which
is one unit in length (three-unit gap scheduling). Slightly more positive (Section 5.3), if each job
has at most two intervals each of which is one unit in length (two-unit gap scheduling), then we
show that the problem is equivalent to the variation where all intervals of all jobs are disjoint
(disjoint-interval gap scheduling), which we prove cannot be approximated within any constant
factor.

Finally, we consider swapping the roles of the hard constraint and the objective function in gap
scheduling (Section 6). Namely, if we allow at most k gaps (i.e., at most k “restarts”), what is the
maximum number of jobs that we can schedule? We give an O(

√
n)-approximation algorithm for

this minimum-restart problem. A simple example of this scenario is hiring a consultant who bills
by the day. The consultant goes home whenever there is no work to do; if you ask the consultant
back later that day, it counts as a new day (restarting). Each job can be executed at specified
times during specified days, but not at night, so the consultant goes home each night. What can
you get the consultant do given a hiring budget of only k days?

2 Multiprocessor Gap Scheduling: Homogeneous Arithmetic In-
tervals

In multiprocessor gap scheduling, we have p processors P1, P2, . . . , Pp and n jobs j1, j2, . . . , jn; each
job ji has an integer arrival time ai, integer deadline di, and unit processing time. A feasible
schedule assigns each job ji to a unique processor/time pair (pi, ti) where the integer ti satisfies
ai ≤ ti ≤ di. A gap on processor Pq is a finite maximal interval of time during which no jobs are
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scheduled on Pq. Our goal is to determine whether there is a feasible schedule, and if so, to find
one that minimizes the total number of gaps summed over all processors.

Building on Baptiste’s clever dynamic program [Bap06], we obtain the following result:

Theorem 1 There is a (n7p5)-time algorithm for p-processor gap scheduling of n jobs.

The p-processor problem can be seen as a special case of the multi-interval problem, where each
job has p intervals and the intervals for a job are of the form I, I + x, I + 2x, . . . , I + (p− 1)x. To
see this connection, view the processor executions as laid out one after the other on the timeline,
where each processor runs for less than x units.

Thus, as a consequence of Theorem 1, we also obtain a polynomial-time algorithm for arithmetic
p-interval scheduling when the arithmetic series all have the same long period x. This result is
in surprising contrast to our negative results: for example, 2-unit gap scheduling, where each
job’s intervals are necessarily arithmetic, is inapproximable within any constant factor. The only
difference in this case is that the arithmetic series have different (and possibly small) periods.

Before we can describe our dynamic program, we need a structural result characterizing some
optimal solutions:

Lemma 1 Any feasible instance of multiprocessor gap scheduling has an optimal solution in which,
if a job j is scheduled at time t on processor Pq, then all lower-numbered processors P1, P2, . . . , Pq−1
are also occupied at time t.

Proof: Permuting jobs and idleness among processors does not affect feasibility; it could only
affect the number of gaps. Instead of counting gaps, we can count the jobs for which the previous
time unit of their own processor lacks a job. For any time t, suppose that the optimal solution has
` jobs scheduled during time unit t and `′ jobs scheduled during time unit t + 1. We know that
at least `′ − ` gaps must created at the boundary between times t and t + 1. If we move the jobs
at time t to the ` lowest-numbered processors P1, P2, . . . , P`, and move the jobs at time t + 1 to
the `′ lowest-numbered processors P1, P2, . . . , P`′ , then the number of gaps in the schedule on the
boundary between times t and t+ 1 is not more than `′ − `. Therefore, by moving all jobs in this
way, the total number of gaps does not increase. 2

Now we can present our dynamic program for multiprocessor gap scheduling:

Proof of Theorem 1: We use dynamic programming to solve the problem. Define Ct1,t2,k,q,`1,`2
to be the number of gaps in the optimal solution for our subproblem defined as follows. We want
to schedule jobs j1, j2, . . . , jk in the interval I = [t1, t2]. We are promised that the release time
of each ji is within I and that, among all jobs with release time in I, j1, j2, . . . , jk are those with
earliest deadlines. We are given that, at time t2, we can only use processors Pq+1, Pq+2, . . . , Pp
numbered greater than q: processors P1, P2, . . . , Pq are assumed to be occupied. We are required
to schedule exactly `1 jobs at time t1 and `2 jobs at time t2. By Lemma 1, the former `1 jobs must
be schedule on processors P1, P2, . . . , P`1 , while the latter `2 jobs must be scheduled on processors
Pq+1, Pq+2, . . . , Pq+`2 .

To solve the subproblem, we consider the job jk that has the latest deadline among the jobs
j1, j2, . . . , jk. For this job to actually be jk, we presort the jobs by increasing deadline at the
beginning of the algorithm. Suppose that jk is scheduled at time t′ and suppose that t′ is maximal
among all optimal solutions. Suppose that there are i jobs scheduled after t′ and there are k− i−1
jobs (excluding jk) scheduled at or before t′. The jobs scheduled after jk must be released after t′;
otherwise, we could swap the scheduled times of jk and of such a job, which is feasible because jk
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has the latest deadline among the jobs, thereby resulting in a greater t′, a contradiction. In this
way, we reach two subproblems with intervals [t1, t

′] and [t′+ 1, t2]. We also know that the number
of jobs that must be scheduled in the first and second intervals (excluding jk itself) are k − i − 1
and i respectively.

Now we consider two possibilities: (1) t′ < t2 and (2) t′ = t2. In the first case, we can suppose
an optimal solution in which jk is scheduled on the first processor: if some other job is scheduled
on that processor, we can swap its assignment with jk’s. Therefore, at time t′, the jobs of the first
interval cannot be scheduled on the first processor, which can be represented by setting q′ = 1 for
this subproblem. The subproblem for the second interval simply inherits q′ = q. In the second
case, we can suppose an optimal solution in which jk is scheduled on the (q+ 1)st processor: again,
if some other job is schedule on that processor, we can swap its assignment with jk’s. Thus, at
time t′ = t2, the jobs cannot be scheduled on the first q + 1 processors in the subproblem, so we
set q′ = q + 1. In this case there is no second subproblem.

For calculating Ct1,t2,k,q,`1,`2 , we have four cases: (1) t′ = t2; (2) t′ = t2− 1; (3) t1 < t′ < t2− 1;
and (4) t′ = t1. In the first case, Ct1,t2,k,q,`1,`2 can be computed directly from Ct1,t2,k−1,q+1,`1,`2−1.
In the second case, we need to guess the number `′ of processors occupied at time t′ = t2−1. In this
way, the solution can be computed using values Ct1,t2−1,k−i−1,1,`1,`′ and Ct2,t2,i,q,`2,`2 for 0 ≤ `′ ≤ p.
In the third case, we need to guess the numbers of processors occupied at times t′ and t′ + 1, call
them `′ and `′′ respectively. Thus the solution can be calculated using the values Ct1,t′,k−i−1,1,`1,`′

and Ct′+1,t2,i,q,`′′,`2 for 0 ≤ `′, `′′ ≤ p. Finally, in the fourth case, similar to the second case, we can
find the solution using the values Ct1,t1,k−i−1,1,`1,`1 and Ct1+1,t2,i,q,`′,`2 for 0 ≤ `′ ≤ p.

As in Baptiste’s dynamic program [Bap06], we can argue that the number of choices for t1 and
t2 is polynomial in n. Specifically, Baptiste proved that there is an optimal schedule in which the
starting time of any job i is within distance n of some release date or deadline. Hence, t1, t2, and t′

can have at most n2 values. Therefore, the size of array C is n2×n2×n×p×p×p = n5p3. We use
O(p2n2) operations to calculate each entry of the array C. Thus, the total number of operations
needed for solving the problem is O(n7p5). 2

As mentioned in the introduction, because our algorithm is exact, it essentially solves both the
power-minimization and gap-scheduling problems. However, there is a subtle difference, which we
now address. In the multiprocessor power-minimization problem, a processor is allowed to stay in
the active state even during a gap (when no job is scheduled). Thus a gap of length ` incurs a cost
of min{`, α}. We show that the polynomial-time dynamic program described above can be adapted
to solve this problem as well.

Lemma 2 Any feasible instance of multiprocessor power minimization has an optimal solution
in which, if a processor Pq is in the active state at time t, then all lower-numbered processors
P1, P2, . . . , Pq−1 are also in the active state at time t.

Proof: The proof is almost identical to the proof of Lemma 1. Instead of counting the gaps, we
can simply count the active time units of the processors which the processor is in sleep state in the
previous time unit. Suppose that in optimal solution, we have n1 active processors in time unit t
and n2 active processors in time unit t+ 1 (for an arbitrary t). We know that at least n2−n1 gaps
will be created here. If we move active time units to the first processors, the number of produced
gaps will not be more than this. Therefore, by moving all active time units to the first processors,
the total number of gaps will not increase. 2

Now using Lemma 2 and because permuting jobs or scheduling a job in another active state of
a processor does not change the number of gaps, we conclude that there is an optimal solution in

5



which, for any time unit t, if there are a active processors and b ≤ a processors are executing a job
during time unit t, then exactly the first b processors are executing a job and the first a processors
are in the active state during time unit t. Now the following theorem can be concluded with the
new active state.

Theorem 2 The multiprocessor power minimization problem can be solved in polynomial time even
if a processor can be in the active state without executing a job.

Proof: The proof is similar to the proof of Theorem 1. We define Ct1,t2,k,l,p1,p2 as before, except
that p1 and p2 are no longer the number of occupied processors in time units t1 and t2; instead, p1
and p2 are the number of processors that are in the active state during time units t1 and t2. The
rest of the proof is the same. 2

3
(
1 + 2

3
α
)
-Approximation for Multi-Interval Power Minimization

In the multi-interval power minimization problem, we have n jobs j1, j2, . . . , jn; each job ji has a
unit processing time and a specified set of times Ti at which it can execute. A feasible schedule is
an assignment of each job ji to a unique integer time ti ∈ Ti. A gap is a finite maximal interval
of time during which no jobs are scheduled. The processor might be in active state even in gaps.
The power consumption of a schedule is the number of time units during which the processor is in
active state, plus α times the number of transitions to the active state. Our goal is to determine
whether there is a feasible schedule, and if so, to find one that minimizes the power consumption.

Every schedule is within a 1 + α factor of optimal, because each job incurs power consumption
of either 1 (for execution) or 1 + α (for waking up and execution). In Section 4.2, we show that
such a dependence on α is necessary. In this section, we reduce the dependence on α:

Theorem 3 For any constant ε > 0, multi-interval power minimization has a polynomial-time(
1 +

(
2
3 + ε

)
α
)
-approximation algorithm.

We start with a preliminary result about extending partial schedules which exploits the con-
nection between scheduling and bipartite matching:

Lemma 3 Given a feasible schedule S′ for some subset of n′ ≤ n jobs that uses g gaps, if there
exists a feasible schedule for all n jobs, then we can construct a feasible schedule S for all n jobs
that uses at most g + n− n′ gaps.

Proof: We start with schedule S′ for the n′ and iteratively add additional jobs from the n − n′
remaining jobs. We construct a bipartite graph G = (X∪Y,E) with bipartition (X,Y ), where X is
the set of jobs and Y is the set of time units. We place an edge e = (ji, t) ∈ E precisely when job ji
is allowed to be scheduled at time t, i.e., t ∈ Ti. Our current schedule S corresponds to a matching
in graph G that leaves some subset of vertices in X unmatched. The existence of a feasible schedule
for all jobs implies the existence of a matching in G that matches every vertex in X. Therefore,
the problem of adding another job to the schedule reduces to finding an augmenting path in G,
which can be solved in time polynomial in the number n of jobs; see, e.g., [Wes96]. Reversing an
augmenting path adds exactly one new execution time to the schedule, thus increasing the number
of gaps by at most one. After reversing n−n′ such augmenting paths, we reach a feasible schedule
S for all n jobs using at most n− n′ + g gaps. 2
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Our next lemma requires some notation. Given a feasible schedule S that performs a subset
of some n′ ≤ n jobs, let TS denote the set of n′ time units during which the jobs are scheduled.
Also let LS,k,i = {t | t ≡ i (mod k) and t + m ∈ TS for all 0 ≤ m < k}, and let L′S,k,i = {t | t′ ≤
t < t′ + k for some t′ ∈ LS,k,i}. Define a span to be a maximal interval of time in which jobs are
scheduled (the opposite of a gap). Thus the number of spans is one more than the number of gaps.

Lemma 4 Suppose that S is a feasible schedule of all n jobs in M spans. For any k > 1, there is
an i with 0 ≤ i < k such that |LS,k,i| ≥ n−M(k−1)

k .

Proof: For each i with 0 ≤ i < k, let Ti = TS \L′S,k,i. Consider an arbitrary span of S, I = [t1, t2].
We prove that average size of I ∩ Ti for 0 ≤ i < k is at most k − 1. We consider three cases:
(1) |I| < k; (2) k ≤ |I| ≤ 2k− 2; and (3) |I| > 2k− 2. In the first case, |I| < k, the claim is trivial.

In the second case, |I| ≤ 2k−2, so for |I|−k+1 values of i, |I∩Ti| = |I|−k, while for the other

values |I ∩ Ti| = |I|. Hence the average size of Ti is
[
(|I| − k + 1)(|I| − k) + (2k − |I| − 1) |I|

]
/k =

k2−k
k = k − 1.

In the third case, |I| > 2k−2, so at least one member of L′S,k,i appears in I. Thus, for any i with
0 ≤ i < k, |I ∩Ti| is strictly less than |I|. The time units of I that are in Ti form two time intervals
[t1, t1 +ai−1] and [t2− bi+1, t2] where ai and bi are nonnegative integers and |Ti∩ I| = ai+ bi. By

definition, we have ai+1 ≡ ai + 1 (mod k) and bi+1 ≡ bi − 1 (mod k). Therefore,
∑k−1

i=0 ai = k(k−1)
2

and
∑k−1

i=0 bi = k(k−1)
2 . We conclude that the average size of |I ∩ Ti| = ai + bi is k − 1.

Because we have M spans, the average size of Ti is at most M(k−1) and there exists an 0 ≤ i < k

such that |Ti| ≤M(k− 1). Thus we have L′S,k,i = n−Ti ≥ n−M(k− 1) and LS,k,i ≥ n−M(k−1)
k . 2

Next we show a connection to k-set packing. In this problem, we are given a collection C of
subsets of an underlying base set S, with the property that each set in C has cardinality at least k,
where k ≥ 3. A set packing is a subcollection C ′ ⊆ C of disjoint sets: X ∩ Y = ∅ for X,Y ∈ C ′.
The goal is to find a set packing of maximum cardinality. Hurkens and Shrijver [HS89] developed
a (k2 + ε)-approximation algorithm for the k-set packing problem, for any ε > 0.

Lemma 5 Suppose that there exists a feasible schedule S of all n jobs inM spans. For any constant

k > 1 and any ε > 0, there is a polynomial-time algorithm that schedules
(
n−M(k−1)

)
·
(

2
k+1 − ε

)
jobs in n−M(k−1)

k

(
2

k+1 − ε
)

+ 1 spans.

Proof: For any i with 0 ≤ i < k, we construct an instance of (k+1)-set packing problem as follows.
The underlying base set S is {j1, j2, . . . , jn} ∪ {t | t ≡ i (mod k)}. The collection C is defined as
follows: if ja0 , ja2 , . . . , jak−1

is a sequence of jobs, and if there exists a time t ∈ S such that, for any
l with 0 ≤ l < k, jal can be scheduled at time t + l, then we insert set {ja0 , ja1 , . . . , jak−1

, t} into
the collection C. By Lemma 4, for some i, this instance of the (k + 1)-set packing problem has a

set packing of size at least n−M(k−1)
k . The polynomial-time approximation algorithm [HS89] gives

us a set packing of size at least A = n−M(k−1)
k

(
2

k+1 − ε
)

. Therefore, we can schedule k A jobs in

these A intervals, implying at most A gaps and thus at most A+ 1 spans. 2

Combining Lemmas 3 and 5, we obtain the following result:

Corollary 1 Suppose that there exists a feasible schedule S of all n jobs in M spans. For any
constant k > 1 and any ε > 0, there is a polynomial-time algorithm that schedules all jobs in

n−
(
n−M(k−1)

k

)
·
(

2
k+1 − ε

)
· (k − 1) + 1 spans.
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We are now ready to conclude a polynomial-time
(
1 +

(
2
3 + ε

)
α
)
-approximation algorithm:

Proof of Theorem 3: Suppose that the optimal solution has M spans. For simplicity, we assume
that the last job also incurs a cost of α to return the system to the sleep state; this assumption can
be avoided by a suitable tweaking of ε.

By Corollary 1, if we let k = 2, we can schedule all jobs in
(
2
3 + ε

)
n+
(
1
3 − ε

)
M spans. Thus the

power consumption is at most n+
((

2
3 + ε

)
n+

(
1
3 − ε

)
M
)
α if we keep processor in the active state

precisely when it is doing a job. Now we consider two cases to compute the optimal cost. First, if
α ≤ 1, then it is cost effective to keep processor in the sleep state between spans. Thus the optimal

solution has a power consumption of n + M α. Because both fractions
n+( 2

3
+ε)nα
n and

( 1
3
−ε)Mα

Mα

are at most 1 +
(
2
3 + ε

)
α, the upper bound on the approximation factor

n+(( 2
3
+ε)n+( 1

3
−ε)M)α

n+M α is

also at most 1 +
(
2
3 + ε

)
α. On the other hand, if α > 1, then the optimal solution has a power

consumption of at least n+M . We know that n
n+M ≤ 1 and

(( 2
3
+ε)n+( 1

3
−ε)M)α

n+M ≤
(
2
3 + ε

)
α. Thus

the approximation factor is at most 1 +
(
2
3 + ε

)
α. 2

4 Hardness of Approximation for Multi-Interval Power Minimiza-
tion

In this section we prove inapproximability results for multi-interval power minimization (as defined
in Section 3). Our results are based on reductions from versions of set cover, and assume only that
P 6= NP.

4.1 Ω(lgn) Hardness

First we prove that, if the transition cost α is part of the input, then the problem is set-cover hard:

Theorem 4 Multi-interval power minimization has no polynomial-time o(lg n)-approximation al-
gorithm unless P = NP.

Proof: We give an approximation-preserving reduction from set cover, which is not o(lg n)-
approximable unless P = NP [Fei98]. Let (E,C) be an instance of set cover, where E = {e1, e2, . . . , en}
is the universe of elements and C = {c1, c2, . . . , cs} is a collection of subsets of E. We build an
instance of multi-interval power minimization as follows. For each set ci ∈ C, construct an interval
Ii of length |ci|. Construct these intervals so that the distance between any two of them is larger
than n3. For each element ei ∈ E, define a job ji that is allowed to be executed during any interval
Ik for which ei ∈ ck. Also construct one interval Is+1 of size 1 and a job js+1 that is allowed to be
executed only during Is+1. Define α = n.

A set cover S of size k is easy to convert into a solution to multi-interval power minimization
with cost (1 + k)n. For each job, assign it to the interval Ii corresponding to a set ci ∈ S. (By
definition of set cover, such a set always exists.) Within each interval Ii, execute the assigned jobs
consecutively. (Because the length of interval Ii is |ci|, there is enough time to execute the at most
|ci| assigned jobs.) The number of spans is thus k plus one for the extra interval I ′, so the number
of gaps is k, for a power consumption of n+ k α = n+ k n.

Conversely, a solution to multi-interval power minimization with cost (1 + k)n can also be
converted into a set cover of size at most k. If k ≥ n, such a set cover is trivial: pick any set
for each element in E. Otherwise, we construct a set cover S consisting of each set ci whose
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corresponding interval Ii executes at least one job. The processor cannot stay awake between two
intervals, because the > n3 distance would incur a power consumption of more than n3 > (1 + k)n
(assuming n ≥ 2). Thus the number of spans is at least the number of intervals that execute at
least one job, counting I ′, which is |S|+ 1. Hence the number of gaps is at least |S|, so the power
consumption is at least n + |S|α = n + |S|n. But we supposed that the power consumption is
(1 + k)n, so (1 + k)n ≥ n+ |S|n, i.e., |S| ≤ k.

Because these transformations scale uniformly by a factor of n (other than the negligible ±1), a
o(lg n)-approximation for multi-interval power minimization would imply a o(lg n)-approximation
for set cover, and thus P = NP. 2

4.2 Ω(lgα) Hardness

Next we prove that the approximation factor must depend on α at least logarithmically:

Theorem 5 Multi-interval power minimization with transition cost α has no polynomial-time
o(lgα)-approximation algorithm unless P = NP.

Proof: The reduction is similar to that of Theorem 4. In this case, however, the source problem
is a restriction of set cover, B-set cover, where every set ci has size at most B. This problem is not
ε lgB-approximable for some ε > 0 assuming P 6= NP [Tre01]. The only difference in our reduction
is that we let α = B instead of n. As before, we can show that there is a set cover of size k if and
only if the constructed instance of multi-interval power minimization has a schedule with power
consumption n+ k α = n+ k B.

Suppose that the optimal schedule has a power consumption of n+ k B. Because each set has
size at most B, the optimal set cover has size at least n/B, and hence k ≥ n/B. Thus k B ≥ n.

Now, if we had an (12ε lgB)-approximation for multi-interval power minimization, we would
obtain a schedule with power consumption at most (n + k B) 1

2ε lgB. Because k B ≥ n, this
approximate power consumption is at most n + k B ε lgB. Using the equivalence, we obtain a set
cover of size k ε lgB. In other words, we obtain a (ε lgB)-approximation to set cover, which for
sufficiently small ε > 0 implies that P = NP. 2

5 Hardness of Approximation for Gap Scheduling

In the multi-interval gap scheduling problem, we have n jobs j1, j2, . . . , jn; each job ji has a unit
processing time and a specified set of times Ti at which it can execute. A feasible schedule is an
assignment of each job ji to a unique integer time ti ∈ Ti. A gap is a finite maximal interval of
time during which no jobs are scheduled. Our goal is to find a feasible schedule that minimizes the
number of gaps.

For simplicity, we define one of the infinite intervals to be a gap as well. This change does not
change the optimal solution, and has a negligible impact on approximation.

5.1 Ω(lgn) Hardness for 2-Interval Gap Scheduling

To get started, we prove that (general) gap scheduling is set-cover hard:

Theorem 6 Multi-interval gap scheduling has no polynomial-time o(lg n)-approximation algorithm
unless P = NP.
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Proof: This result follows by a simple adaptation of the proof of Theorem 4. We can use the same
reduction from set cover. Before we showed that there is a set cover of size k if and only if the
constructed instance has a power consumption of n+ k α. But such a power consumption implies
having exactly k gaps. Thus there is a set cover of size k if and only if there is a feasible schedule
with k gaps. Therefore, a o(lg n)-approximation for multi-interval gap scheduling would imply a
o(lg n)-approximation for set cover, and thus P = NP. 2

Corollary 2 It is NP-hard to approximate multi-interval gap scheduling within a o(lgN) factor,
where N is the size of input.

Proof: According to [Fei98], it is NP-hard to approximate set cover within a o(lg n) factor even
when the input size is bounded from above by a polynomial of the number of elements. Thus,
approximating set cover within a o(lgN) factor is also NP-hard where N is the size of input. Using
the reduction in Theorem 6, we conclude the hardness result for multi-interval gap scheduling. 2

Theorem 7 It is NP-hard to approximate 2-interval gap scheduling within a o(lgN) factor, where
N is the size of input.

Proof: We give an approximation-preserving reduction from multi-interval gap scheduling to 2-
interval gap scheduling. For an arbitrary job j in a given instance of multi-interval gap scheduling,
if the number of intervals assigned to j is greater than two, we can replace j by some new jobs each
executable in exactly two intervals.

Suppose that a given job j can be executed in k intervals. We assign a new interval to this job,
called an extra interval, whose length is 2k − 1. We create k dummy jobs such that ith dummy
job could only be executed in the 2i− 1-st unit of extra interval. Additionally, for each interval Ii
(1 ≤ i ≤ k) assigned to j, we add job ri which could be executed either in Ii or in extra interval. We
put the extra intervals related to all jobs consecutively such that no gap may be formed between
them. In this way, we produce an instance of 2-interval gap scheduling because neither dummy
jobs nor ris have more than two intervals to be executed in.

There is an optimal solution in the presented construction such that extra interval is completely
occupied; no gap is within extra interval. If there exists a free unit in extra interval, there must
be at least one job which could run in that unit. By moving this job to that position, it fills the
space between two dummy jobs; therefore, the overall number of gaps will not increase. Iterating
the process can fill all extra intervals completely.

If all extra intervals are completely filled, it means that exactly one of the ris assigned to each
j is out of extra interval. This ri must be executed in the corresponding Ii. Thus, an algorithm
selects the appropriate Ii for each job and performs the job somewhere in it; a selected job related
to j can be executed in all places which j could. Therefore, the jobs which are out of extra interval
would completely resemble the instance of multi-interval gap scheduling. Thus, the solution for
this instance of 2-interval gap scheduling has exactly one more gap than the related instance of
gap scheduling because extra interval itself creates a gap. We remark that all extra intervals come
consecutively and there is no free space between them.

To avoid the excessive gap which comes from extra interval, we try to put extra interval exactly
after the last occupied unit. Although we do not know the exact positions where a job will occupy
in the optimal solution, we can guess that by trying all possible positions. In this way, the excessive
gap will be destroyed and the solution for 2-interval gap scheduling will be exactly the same as the
one for multi-interval gap scheduling. In our construction, the input size of 2-interval gap scheduling
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problem is bounded above by a polynomial of the input size of multi-interval gap scheduling. We
conclude that the logarithm of input sizes of these two instances are of the same order. Therefore,
2-interval gap scheduling cannot be approximated within a o(lgN) factor. 2

5.2 Ω(lgn) Hardness for 3-Unit Gap Scheduling

Theorem 8 It is NP-hard to approximate 3-unit gap within o(lgN) factor, where N is the size of
input.

Proof: We show that 3-unit gap can solve multi-interval gap scheduling to conclude that 3-unit
gap cannot be approximated within o(lgN) factor. For an arbitrary job j in a given instance of
multi-interval gap scheduling, if the number of time units assigned to j is greater than three, we
replace j by some new jobs such that each job can be executed in at most three time units.

Suppose that a given job j can be executed in k units say t1, . . . , tk. We assign a new interval to
this job called extra-interval whose length is 2k−1. We create k dummy jobs such that ith dummy
job can only be executed in the 2i−1-st unit of extra-interval. For each unit ti where 1 ≤ i ≤ k−1,
we add a job ji which could be run in the 2ith or ((2i + 2) mod 2k)th unit of extra-interval or in
ti. We also add a job jk which could be run in tk or in the second or fourth place of extra-interval.
We put all extra-intervals consecutively, thus, no gap will be formed between them. According to
the construction, each ji can be run in exactly 3 units. Therefore, if we replace j by jis for all jobs,
we reach an instance of 3-unit gap.

According to the above construction, every combination of k−1 jobs ja1 , ja2 , . . . , jak−1
could be

scheduled to fill extra-interval completely. If {a1, a2, . . . , ak−1} = {1, 2, . . . , k−1}, then we perform
job ji in the 2ith unit of extra-interval. Otherwise, suppose that we want to run jk instead of
another job say jq. If q = 1 or q = 2, we can schedule jk exactly in its place. Otherwise, for each
job ji where 1 ≤ i ≤ q − 1, perform it in (2i + 2)nd unit of extra-interval. In this way, 2qth place
of extra-interval will be filled and the second unit in extra-interval will be free. Now, we schedule
jk in the second unit. Therefore, extra-interval can be filled with every set of k − 1 jobs.

There is an optimal solution in the presented construction such that extra-interval is completely
occupied; no gap is within extra-interval. If there exists a free unit in extra-interval, using the
previous statement, there must be at least one job which could run in that unit. By moving this
job to that position, it fills the space between two dummy jobs; therefore, the overall number of
gaps will not increase. Iterating the process can fill all extra-intervals completely.

If all extra-intervals are completely filled, it means that exactly one of the jis assigned to each j
is out of extra-interval. This ji must be executed in the correspondent ti. Thus, an algorithm can
select the appropriate ji for each job j; Therefore, a selected job related to j can be executed in all
places which j could. In this way the jobs which are out of extra-interval would completely resemble
the multi-interval gap scheduling instance. The solution for this instance of 3-unit gap has exactly
one more gap than the related instance of multi-interval gap scheduling because extra-interval itself
creates a gap. We remark that all extra intervals come consecutively and there is no free space
between them.

To avoid the excessive gap which comes from extra-interval, we try to put extra-interval exactly
after the last occupied unit. Although we do not know the exact positions where a job will occupy
in the optimal solution, we can guess that by trying all possible positions. In this way, the excessive
gap will be destroyed and the solution for 3-unit gap will be exactly the same as the one for multi-
interval gap scheduling. If we create additional job ji only for necessary units (the units which
an optimal solution may use them), according to [Bap06, Prop. 2.1] the input size of 3-unit gap
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problem is bounded from above by a polynomial of the input size of multi-interval gap scheduling
problem. We conclude that the logarithm of input sizes of these two instances are of the same
order. Therefore, the 3-unit gap problem also could not be approximated within the o(lgN) factor.

2

5.3 Ω(1) Hardness for 2-Unit and 1-Unit Gap Scheduling

A gap’ is a sequence of consecutive time units in which no job interval exists, and consequently,
no job can be scheduled. We can suppose that, in the 2-unit and 1-unit gap scheduling problems,
each gap’ has one time unit. Otherwise, we could reduce the gap’ to one time unit, and because no
job can be scheduled in a gap’, reducing it does not change the problem.

Theorem 9 A polynomial-time c-approximation algorithm for disjoint-unit gap scheduling yields a
polynomial-time (c+ε)-approximation algorithm for two-unit gap scheduling; and a polynomial-time
c-approximation algorithm for two-unit gap scheduling yields a polynomial-time (c+ε)-approximation
algorithm for disjoint-unit gap scheduling.

Proof: Consider an instance of two-unit gap scheduling with jobs J1, J2, . . . , Jn. For 1 ≤ i ≤ n, let
Ti be the set of units during which job Ji can be scheduled, with |Ti| ≤ 2. We construct a bipartite
graph G(X,Y ) which X is the set of jobs and Y =

⋃n
i=1 Ti. There is an edge between job Ji and

time unit t if and only if t ∈ Ti. We can schedule the jobs for different connected components
of graph G independently. Consider a connected component H(X ′, Y ′) of G which contains jobs
X ′ = {Ja1 , Ja2 , . . . , Jak} and time units Y ′ = {t1, t2, . . . , tk′}. Let E′ be the number of edges of
H. We know that |Tai | ≤ 2, thus, |E′| ≤ 2k. On the other hand, connectivity of H implies that
k + k′ − 1 ≤ |E′|, consequently, k′ ≤ k + 1. Because there exists a valid solution, all jobs of set
X ′ must be scheduled only in time units of Y ′ which implies that k ≤ k′. Therefore, k′ is equal to
k or k + 1. If k′ = k, it makes no difference how to schedule the jobs of set X ′, because all time
units will be used anyway. In the other case, where k′ = k+ 1, any scheduling leaves system idle in
exactly one of the time units Y ′ = {t1, t2, . . . , tk′}. We prove that, for any i with 1 ≤ i ≤ k + 1, all
k jobs can be scheduled in time units Y ′ − {ti}. We know that all jobs of set X ′ can be scheduled.
Without loss of generality, suppose that these jobs can be scheduled in time units t1, t2, . . . , tk
which means that there exists a matching M between vertices X ′ and Y ′− tk+1. We want to prove
that the jobs can be scheduled in time units Y ′ − {ti} (1 ≤ i ≤ k). There is a path P between
ti and tk+1 because ti and tk+1 are in the same connected component. According to the fact that
vertices of part X of this path have at most two neighbors, they occur in this path by their both
edges which one of them is in the matching M and the other one is not. Therefore, path P is an
alternating path of matching M . Switching the edges of this alternating path gives us a matching
that saturates vertex tk+1 and does not saturate vertex ti. Thus, we can schedule all jobs of set
X ′ in time units Y ′ − {ti}. We construct our instance of disjoint-unit gap scheduling problem as
follows. For connected components H(X ′, Y ′) where |Y ′| = |X ′| + 1, we put a job which can be
done in time units of the set Y ′. For any gap’ I = {t}, we put a job which can be scheduled only
in time unit t.

For any scheduling of the jobs in the new instance of the disjoint-unit gap scheduling problem,
there is a scheduling of jobs for the two-unit gap scheduling problem such that the state of the
system is reversed for all time units. Thus, the number of gaps in these two instances are almost
equal (differ by at most 1). This difference can create a 1/OPT additive difference in approximation
factors of these two problems, where OPT is the number of gaps in the optimum solution of the
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two-unit gap scheduling problem. Because the problem can be solved in polynomial time for small
values of OPT, the difference can be reduced to an arbitrarily small value ε.

Now consider an instance of disjoint-unit gap scheduling with jobs J1, J2, . . . , Jn. For 1 ≤ i ≤ n,
let Ti be the set of units during which job Ji can be scheduled, with |Ti ∩ Tj | = 0. For every job ji
with |Ti| = k > 1, we put k − 1 jobs. Suppose T = {t1, t2, . . . , tk}. The mth job can be done in tm
and tm+1, for all 1 ≤ m ≤ k − 1. For any gap’ I = {t}, we put a job that can be scheduled only in
time unit t. Similarly we can can show that the optimal solutions of these two instances are almost
equal (differ by at most one).

Construction of the new instances can be done in polynomial time because of the specific
constraints on the two-unit gap scheduling and the disjoint-unit gap scheduling instances. Thus
approximation factors of problem two-unit gap scheduling and disjoint-unit gap scheduling differ
by at most ε. 2

Using B-set cover, we show that disjoint-unit gap scheduling has no constant-factor approxi-
mation:

Theorem 10 It is NP-hard to approximate disjoint-unit gap scheduling within any constant fac-
tor c.

Proof: We prove that, if disjoint-unit gap scheduling can be approximated within a factor of c,
then B-set cover can also be approximated within the same factor, for any constant B. Let
(E,C) be an instance of B-set cover, where E = {e1, e2, . . . , em} is the universe of elements, and
C = {c1, c2, . . . , cs} is a set of subsets of E each of which has at most B elements. We convert the
B-set-cover instance into an instance of disjoint-unit gap scheduling. For each subset A ⊆ ci where
1 ≤ i ≤ s, let l be an interval whose length is equal to |A|, and suppose no two intervals like A
overlap. Consider a job ji for each element ei ∈ E. Let ji be executed in jth unit of interval l if ei
is the jth smallest element of A. Because B is constant, the number of subsets of each ci ∈ C is
constant, so the size of above instance of disjoint-unit gap scheduling is bounded from above by a
polynomial with respect to the size of B-set-cover instance. Next we show that, with the provided
construction, disjoint-unit gap scheduling is as hard as B-set cover.

The solution of B-set-cover instance could be changed into a solution with the same size for
disjoint-unit gap scheduling as follows; in a solution of B-set cover, we choose some sets of C such
that each element of the universe can be assigned to a chosen set. Suppose set ci is chosen and
A ⊆ ci is the set of assigned elements to ci. In disjoint-unit gap scheduling instance, we schedule
the correspondent jobs to elements of A exactly in the interval which we considered for A. Thus,
all jobs are scheduled and the number of gaps is equal to the solution of the B-set-cover instance.
On the other hand, a solution for disjoint-unit gap scheduling could also be converted to a valid
one for the B-set-cover instance; select a set if the correspondent interval of at least one of its
subsets contains some jobs. Because all intervals are disjoint, the number of gaps required for
performing all jobs cannot be less than the number of intervals with at least one execution. Hence,
a valid solution for disjoint-unit gap scheduling can create a solution of the same or smaller size
for the set-cover problem; consequently, the optimal solution for disjoint-unit gap scheduling can
be converted to the optimal solution for the set-cover instance. 2

Combining Theorems 9 and 10, we obtain the following result.

Corollary 3 It is NP-hard to approximate two-unit gap scheduling within any constant factor c.
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6 O(
√
n)-Approximation for Maximizing Throughput for Given

Gap Bound

The minimum-restart problem is a variation of multi-interval gap scheduling. As usual, we have
n jobs j1, j2, . . . , jn, and each job ji has a unit processing time and a specified set of times Ti at
which it can execute. We are also given a bound k on the number of gaps. Our goal is to find a
feasible schedule for the maximum number of jobs subject to having at most k gaps.

Theorem 11 There is an polynomial-time O(
√
n)-approximation algorithm for the minimum-

restart problem.

Proof: The approximation algorithm is greedy with k steps. In each step, we select the biggest
time interval [a, b] such that b−a+1 unscheduled jobs can be scheduled in it without any collision.
We can find such interval using a maximum matching algorithm in each iteration. Then we schedule
those b− a+ 1 jobs in it.

A working interval is a pair (I,X) where I is a time interval with size l and X is a set of l jobs
which can be scheduled in I without any collision. Suppose our algorithm chooses working intervals
A = {A1 = (I1, X1), A2 = (I2, X2), . . . , Ak = (Ik, X2)} respectively (A1 at first iteration, then A2

and so on). Let Y = {B1, B2, . . . , Bk} be the set of working intervals of the optimum solution. We
say two working intervals overlap if and only if either their time intervals overlap or intersection of
their set of jobs is not empty.

Now we prove that the number of jobs scheduled in optimum solution is no more than 2
√
n

times of the number of scheduled jobs in our solution. For any i, if Xi >
√
n then we have scheduled

at least
√
n jobs and our algorithm would be an O(

√
n)-approximation. In the other case, let Yi be

the set of working intervals in optimum solution which overlap with Ai and do not overlap with any
Ai′ for 1 ≤ i′ < i. We know that the number of scheduled jobs in any working interval of Yi is at
most the number of scheduled jobs in Ai otherwise we could choose that working interval instead
of Ai in our greedy algorithm. According to the fact that working intervals of Yi are disjoint and
all of them overlap with Ai, |Yi| is at most |Ii| + |Xi| = 2|Xi| because each time unit or job of Ai
can be used in at most one working interval of Yi. Consequently, the number of scheduled jobs
using working intervals of Yi is at most |Yi||Ai| ≤ 2|Xi||Ai| ≤ 2

√
n|Ai| which means that, for any i

with 1 ≤ i ≤ k, the number of scheduled jobs using working intervals of Yi is at most O(
√
n) times

of the number of scheduled jobs in Ai.
Let Y ′ be the set of working intervals in Y that do not overlap with any Ai with 1 ≤ i ≤ k, and

let A′ be the set of working intervals such as Ai such that Yi is empty. As we know, the number
of working intervals in Y is equal to the number of working intervals in A, thus, |Y ′| could not be
more than |A′|. According to the greedy algorithm, the number of scheduled jobs in any working
interval of A′ is not less than the number of scheduled jobs in any working interval of Y ′ because
the working intervals of Y ′ do not overlap with any working interval of A′. Therefore, the number
of scheduled jobs using working intervals of A′ is not less than the number of scheduled jobs of Y ′.
We conclude that the number of all scheduled jobs in our solution is not less than O(

√
n) times of

the number of scheduled jobs in optimum solution. 2
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