
Graph Threading1

Erik D. Demaine #2

Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, USA3

Yael Kirkpatrick #4

Department of Mathematics, Massachusetts Institute of Technology, USA5

Rebecca Lin #6

Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, USA7

Abstract8

Inspired by artistic practices such as beadwork and himmeli, we study the problem of threading a9

single string through a set of tubes, so that pulling the string forms a desired graph. More precisely,10

given a connected graph (where edges represent tubes and vertices represent junctions where they11

meet), we give a polynomial-time algorithm to find a minimum-length closed walk (representing a12

threading of string) that induces a connected graph of string at every junction. The algorithm is13

based on a surprising reduction to minimum-weight perfect matching. Along the way, we give tight14

worst-case bounds on the length of the optimal threading and on the maximum number of times this15

threading can visit a single edge. We also give more efficient solutions to two special cases: cubic16

graphs and the case when each edge can be visited at most twice.17

2012 ACM Subject Classification Mathematics of computing → Graph algorithms18

Keywords and phrases Shortest walk, Eulerian cycle, perfect matching, beading19

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.3720

Related Version arXiv Version: https://arxiv.org/abs/2309.1012221

Funding Yael Kirkpatrick: NSF Graduate Research Fellowship under Grant No. 214106422

Rebecca Lin: MIT Stata Family Presidential Fellowship23

Acknowledgements We thank Anders Aamand, Kiril Bangachev, Justin Chen, Alison Martin, Surya24

Mathialagan, and Zhecheng Wang for insightful discussions. We also thank anonymous reviewers for25

their helpful comments.26

1 Introduction27

Various forms of art and craft combine tubes together by threading cord through them to28

create a myriad of shapes, patterns, and intricate geometric structures. In beadwork [11],29

artists string together beads with thread or wire. In traditional ‘straw mobile’ crafts [19] —30

from the Finnish and Swedish holiday traditions of himmeli [4, 13] to the Polish folk art of31

paja̧ki [18] — mobile decorations are made by binding straws together with string. Artist32

Alison Martin has shown experiments where bamboo connected by strings automatically33

forms polyhedral structures by pulling the strings with a weight [15].34

For engineering structures, these techniques offer a promising mechanism for constructing35

reconfigurable or deployable structures, capable of transforming between distinct geometric36

configurations: a collection of tubes, loosely woven, can be stored in compact configurations37

and then swiftly deployed into desired target geometric forms, such as polyhedra, by merely38

pulling a string taut. Figure 1 shows a prototype of such a structure, illustrating the potential39

of this approach. The popular ‘push puppet’ toy, originally invented by Walther Kourt Walss40

in Switzerland in 1926 [17], also embodies this mechanism.41

In contrast to related work [12, 14], we study a theoretical formulation of these ideas:42

threading a single string through a collection of tubes to mimic the connectivity of a given43

© Erik D. Demaine, Yael Kirkpatrick, and Rebecca Lin;
licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 37; pp. 37:1–37:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:edemaine@mit.edu
https://orcid.org/0000-0003-3803-5703
mailto:yaelkirk@mit.edu
https://orcid.org/0009-0007-6718-7390
mailto:ryelin@mit.edu
https://orcid.org/0000-0003-4747-4978
https://doi.org/10.4230/LIPIcs.ITCS.2024.37
https://arxiv.org/abs/2309.10122
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Graph Threading

Figure 1 A deployable structure made from disconnected 3D-printed elements (white) connected
by string, which automatically shifts between soft (left) and rigid (right) states by pulling on the
endpoints of the string beneath the platform (black). This design was developed by the third author
in collaboration with Tomohiro Tachi.

graph; refer to Figure 2. Consider a connected graph G = (V,E) with minimum vertex44

degree 2, where each edge e ∈ E represents a tube and each vertex v ∈ V represents the45

junction of tubes incident to v. A graph threading T of G is a closed walk through G that46

visits every edge at least once, induces connected “junction graphs”, and has no ‘U-turns’.47

The junction graph J(v) of a vertex v induced by a closed walk has a vertex for each48

tube incident to v, and has an edge between two vertices/tubes every time the walk visits v49

immediately in between traversing those tubes.50

A threading T of G must have a connected junction graph J(v) for every vertex v ∈ V ,51

and must have no U-turns: when exiting one tube, the walk must next enter a different52

tube. Define the length |T | of T to be the total length of edges visited by T . For simplicity,53

we assume for much of our study that edges (tubes) have unit length — in which case |T |54

is the number of edge visits made by T — and then generalize to the weighted case with55

arbitrary edge lengths.56

Our Results. In this paper, we analyze and ultimately solve the Optimal Threading57

problem, where the goal is to find a minimum-length threading T of a given graph G. Our58

results are as follows.59

In Section 2, we give a local characterization of threading in terms of local (per-vertex60

and per-edge) constraints that help us structure our later algorithms and analysis.61

In Section 3, we prove tight worst-case bounds on two measures of an optimal threading T .62

First, we analyze the minimum length |T | in a graph with unit edge lengths, proving that63

2m− n ≤ |T | < 2m where m and n are the numbers of edges and vertices, respectively,64

and that both of these extremes can be realized asymptotically. Second, we prove that65

Erik D. Demaine, Yael Kirkpatrick, and Rebecca Lin 37:3

Figure 2 (a) The closed walk (red) on the graph (black) of a tetrahedron induces junctions
graphs (circled on the right) that are connected, and so it is a threading. (b) The union of junction
graphs is called the threading graph (Section 2.2).

T traverses any one edge at most ∆− 1 times, where ∆ denotes the maximum vertex66

degree in G, and that this upper bound can be realized. The second bound is crucial for67

developing subsequent algorithms.68

In Section 4, we develop a polynomial-time algorithm for Optimal Threading, even69

with arbitrary edge lengths, by a reduction to minimum-weight perfect matching.70

In Section 5, we develop more efficient algorithms for two scenarios: Optimal Thread-71

ing on cubic graphs, and Double Threading, a constrained version of Optimal72

Threading where the threading T is allowed to visit each edge at most twice.73

2 Problem Formulation74

Let G = (V,E) be a graph with n = |V | vertices and m = |E| edges. Assume until75

Section 4.2.2 that G’s edges have unit length. Recall that a threading of G is a closed walk76

through G that has no U-turns and induces a connected junction graph at each vertex. As77

an alternative to this ‘global’ definition (a closed walk), we introduce a more ‘local’ notion78

of threading consisting of constraints at each edge and vertex of the graph and prove its79

equivalence to threading.80

Before giving the formal definition of ‘local threading’, we give the intuition. A local81

threading assigns a nonnegative integer xuv ∈ N for each edge uv ∈ E, which counts the82

number of times the threading visits or threads edge uv; we refer to xuv as the count of uv.83

These integers are subject to four constraints, which we give an intuition for by arguing that84

they are necessary conditions for a threading. First, each uv must be threaded at least once,85

so xuv ≥ 1 for all uv ∈ E. Second, a threading increments the count of two edges at junction86

v every time it traverses v, so the sum of counts for all edges incident to v must be even.87

Third, forbidding U-turns implies that, if uv is threaded k times, then the sum of counts for88

the remaining edges incident to v must be at least k to supply these visits. Fourth, because89

the junction graph J(v) of v is connected, it has at least enough edges for a spanning tree —90

d(v)− 1 where d(v) denotes the degree of v — so the sum of counts of edges incident to v91

must be at least 2(d(v)− 1). More formally:92

ITCS 2024

37:4 Graph Threading

▶ Definition 1 (Local Threading). Given a graph G = (V,E), a local threading of G consists93

of integers {xuv}uv∈E satisfying the following constraints:94

(C1) xuv ≥ 1 for all uv ∈ E;95

(C2)
∑

u∈N(v) xuv ≡ 0 (mod 2) for all v ∈ V ;96

(C3)
∑

w∈N(v)\{u} xwv ≥ xuv for all uv ∈ E; and97

(C4)
∑

u∈N(v) xuv ≥ 2(d(v)− 1) for all v ∈ V .98

Optimal Local Threading (minimizing
∑

uv∈E xuv) is, in fact, an integer linear99

program, though this is not helpful algorithmically because integer programming is NP-100

complete. Nonetheless, local threading will be a useful perspective for our later algorithms.101

The observations above show that any threading T induces a local threading by setting each102

count xuv to the number of times T visits edge uv, with the same length: |T | =
∑

uv∈E xuv.103

In the following theorem, we show the converse and, thus, the equivalence of threadings with104

local threadings:105

▶ Theorem 2. We can construct a threading T of G from a local threading {xuv} of G such106

that T visits edge uv exactly xuv times. Hence |T | =
∑

uv∈E xuv.107

We shall prove this theorem in two parts. First, we show that it is always possible to form108

a junction graph at every vertex given a local threading (Section 2.1). Then we show that a109

closed walk can be obtained from the resulting collection of junction graphs (Section 2.2).110

2.1 Constructing a Connected Junction Graph111

Forming a junction graph J(v) at vertex v reduces to constructing a connected graph on112

vertices t1, . . . , td(v), where each vertex represents a tube incident with v, with degrees113

x1, . . . , xd(v), respectively. We shall construct J(v) in two steps, first in the case where (C4)114

holds with equality (Lemma 3) and then in the general case (Lemma 4).115

▶ Lemma 3. We can construct a tree S consisting of d vertices with respective degrees116

x1, . . . , xd ≥ 1 satisfying
∑d

i=1 xi = 2(d− 1) in O(d) time.117

Proof. We provide an inductive argument and a recursive algorithm. In the base case, when118

d = 2, x1 = x2 = 1, and so the solution is a one-edge path. For d > 2, the average xi value is119
2(d−1)

d which is strictly between 1 and 2. Hence there must be one vertex i satisfying xi > 1120

and another vertex j satisfying xj = 1. Now apply induction/recursion to x′ where x′
k = xk121

for all k /∈ {i, j}, x′
i = xi− 1, and xj does not exist (so there are n− 1 < n values), to obtain122

a tree S′. We can construct the desired tree S from S′ by adding the vertex j and edge ij.123

The recursive algorithm can be implemented in O(d) time as follows. We maintain two124

stacks: the first for vertices of degree > 1 and the second for vertices of degree 1. In each125

step, we pop vertex i from the first stack, pop vertex j from the second stack, and connect126

vertices i and j. We then decrease xi by 1 and push it back onto one of the stacks depending127

on its new value. This process continues until the stacks are empty. Each step requires128

constant time, and we perform at most
∑d

i=1 xi = O(d) steps, so the total running time is129

O(d). ◀130

▶ Lemma 4. Given a local threading {xe} and a vertex v ∈ V , we can construct a connected131

junction graph J(v) with no self-loops in O
(∑

u∈N(v) xuv

)
time.132

Erik D. Demaine, Yael Kirkpatrick, and Rebecca Lin 37:5

Algorithm 1 Constructing a Connected Junction Graph J(v)

1. R← ∅ ▷ Set of ‘redundant’ edges
2. x′

i ← xi for all i ∈ {1, . . . , d(v)}
3. Repeat until

∑d(v)
i=1 x

′
i = 2(d(v)− 1):

a. x′
α ← x′

α − 1 where x′
α = maxd(v)

i=1 x
′
i, breaking ties arbitrarily

b. x′
β ← x′

β − 1 where x′
β = maxi∈{1,...,d(v)}\{α} x

′
i, breaking ties arbitrarily

c. R← R ∪ {tαtβ}
4. Compute tree S on vertices t1, . . . , td(v) with degrees x′

1, . . . , x
′
d(v) (Lemma 3)

5. Return R ∪ S

Proof. We give the construction of a connected junction graph J(v), adopting the notation133

introduced at the start of this section. See Algorithm 1 for the corresponding pseudocode.134

Recall that a local threading {xe} is a set of integers satisfying the constraints specified135

in Definition 1. Label the edges incident to vertex v by the integers 1, . . . ,deg(v). The goal136

is to form a connected graph J(v) having a vertex ti for each i ∈ {1, . . . ,deg(v)}, where the137

degree of each ti is xi. We begin with an empty graph (Step 1) and initialize x′
i = xi for138

each i (Step 2), where x′
i represents the number of additional edges required for vertex ti to139

achieve its desired degree xi. While
∑d(v)

i=1 x
′
i > 2(d(v)− 1), we repeat the following steps:140

find the two largest values x′
α and x′

β (resolving ties arbitrarily), add an edge between their141

corresponding vertices tα and tβ , and decrement x′
α and x′

β by 1 (Step 3). The resulting x′
i142

values sum to 2(d(v)− 1), and we prove below that x′
i ≥ 1 for each i. Next, we construct a143

tree with vertex degrees x′
1, . . . , x

′
i via the algorithm in Lemma 3 (Step 4). We return the144

graph that follows from these two procedures.145

This graph contains no self-loops because we require α ̸= β (Step 3b). We further assert146

that the graph is connected. To prove this fact, we demonstrate the proper application of147

the inductive procedure outlined in the proof of Lemma 3 in forming a tree (Step 4). We148

only need to validate that x′
1, . . . , x

′
d(v) ≥ 1, as

∑d(v)
i=1 x

′
i = 2(d(v)− 1) is guaranteed upon149

the termination of the loop (Step 3). Suppose for contradiction that x′
k < 1. It follows that150

x′
k = 1 at the start of some iteration and was subsequently decremented, either via Step 3a151

or 3b. We consider these two cases:152

Case 1 (Step 3a, k = α): x′
k ≥ x′

i for all i ∈ {1, . . . , d(v)}, so153

d(v)∑
i=1

x′
i ≤ d(v) · x′

k = d(v) ≤ 2(d(v)− 1),154

a contradiction for any d(v) > 1, which is assumed.155

Case 2 (Step 3b, k = β): As x′
k ≥ x′

i for all i ∈ {1, . . . , d(v)} \ {α}, so156 ∑
i∈{1,...,d(v)}\{α}

x′
i ≤ (d(v)− 1) · x′

k = d(v)− 1.157

Recall that
∑d(v)

i=1 x
′
i = x′

α +
∑

i∈{1,...,d(v)}\{α} x
′
i ≥ 2d(v) is required to enter the loop.158

Hence, applying the above deduction, x′
α >

∑
i∈{1,...,d(v)}\{α} x

′
i, contradicting the below159

invariant (Equation 1) of the loop in Step 3.160

ITCS 2024

37:6 Graph Threading

Loop Invariant: The following invariant is maintained by the algorithm’s loop (Step 3),161

established on initialization via (C3):162

x′
i ≤

∑
j∈{1,...,d(v)}\{i}

x′
j for all i ∈ {1, . . . , d(v)} (1)163

We observe that
∑d(v)

i=1 xi decreases by 2 with every iteration: either both sides of Equation 1164

are reduced by 1, thereby maintaining the inequality, or the left-hand side remains unchanged165

while the right-hand side is reduced by 2. In the latter scenario, counts x′
α, x

′
β ≥ x′

i are166

updated in Steps 3a and 3b. Observe that x′
α ≥ 2 because

∑d(v)
i=1 x

′
i ≥ 2n is a prerequisite167

for loop entry. Letting x′′
i denote the value of x′

i at the beginning of the next iteration, we168

arrive at the desired conclusion:169

x′′
i = x′

i ≤ (x′
α − 2) + x′

β ≤
∑

j∈{1,...,d(v)}\{i}

x′
j − 2 =

∑
j∈{1,...,d(v)}\{i}

x′′
j .170

Running-Time Analysis: To perform Steps 3a and 3b efficiently, we maintain the x′ values171

in a monotone priority queue, specifically, an array A of lists A[0], A[1], . . . , A
[

maxd(v)
i=1 xi

]
,172

where each list Lj maintains the indices i for which x′
i = j. We can initialize this data173

structure in O
(
d(v) + maxd(v)

i=1 xi

)
time, which is O

(∑d(v)
i=1 xi

)
because each xi ≥ 1. We also174

maintain the largest array index j for which A[j] is nonempty, and the second-largest array175

index k for which A[k] is nonempty. To find and decrement the maximum value in the176

priority queue (as in Step 3a), we extract an index α from list A[j], decrement x′
α, and then177

append α to list A[x′
α] = A[j − 1]. If A[j] is now empty, we also decrement j; the new A[j] is178

guaranteed to be nonempty. To find and decrement the second-largest value in the priority179

queue (as in Step 3b), we extract β from A[j] if A[j] has an index other than α (i.e., has180

length > 1), and otherwise extract from A[k]; then we decrement x′
β , move β to the correct181

list, and optionally decrement either j or k as before. Each of these steps takes constant182

time, so the overall running time is O
(∑d(v)

i=1 xi

)
= O

(∑
u∈N(v) xuv

)
. ◀183

2.2 Obtaining a Closed Walk184

Now suppose we have a junction graph J(v) for every vertex v, obtained by repeatedly185

applying Lemma 4 to a given local threading. Our goal is to find a closed walk in G that has186

no U-turns and corresponds to these junction graphs.187

Define the threading graph to be the graph whose vertices correspond to tubes and188

whose edges are given by the union of all junction graphs (joining at vertices corresponding189

to the same tube). See Figures 2 and 3 for examples.190

In this threading graph, we find an Euler tour : a closed walk that visits each edge of the191

graph exactly once. The presence of an Euler tour through a threading graph is guaranteed192

because each vertex has even degree [2], specifically twice the count xe for vertex te. The193

tour can be computed in time linear in the number of edges of the input graph [9], which is194

O(
∑n

i=1 xi).195

To ensure that U-turns are avoided in the threading, we enforce that the Euler cycle does196

not consecutively traverse two edges of the same junction graph, which can be done in linear197

time by a reduction to forbidden-pattern Euler tours [3].198

Combining our results, we can convert a local threading {xe} of G to a corresponding199

threading of G in time O
(∑

v∈V

∑
u∈N(v) xuv+

∑n
i=1 xi

)
= O

(∑n
i=1 xi

)
. Later in Section 3.1,200

we will show that the optimal threading satisfies
∑n

i=1 xi = O(m), in which case our running201

time simplifies to O(m).202

Erik D. Demaine, Yael Kirkpatrick, and Rebecca Lin 37:7

Figure 3 The target model, a threading graph featuring junction graphs as cycles, and a
threading of the input model following an Eulerian cycle of the threading graph.

▶ Theorem 5. We can convert a local threading solution of G into a threading of G in203

O(
∑n

i=1 xi) time, which for an optimal threading is O(m).204

3 Worst-Case Bounds205

In this section, we prove tight worse-case upper and lower bounds on the total length of206

an optimal threading (Section 3.1) and on the most times one edge may be visited by an207

optimal threading (Section 3.2).208

3.1 Total Length209

Every graph G with minimum degree ≥ 2 has a double threading defined by assigning each210

junction graph J(v) to be a cycle of length d(v), as depicted in Figure 3. This threading211

results in each tube being traversed exactly twice, totaling a length of 2m. Thus an optimal212

threading has length at most 2m. We can approach this upper bound up to an additive213

constant by considering graphs with long sequences of bridges, such as the graph illustrated214

in Figure 4a. We shall later tighten this upper bound by considering graph properties215

(Lemma 9).216

Now we establish a lower bound on the total length of any threading:217

▶ Lemma 6. Any threading must have length at least 2m− n.218

Proof. Each junction graph J(v) is connected, so it contains at least d(v) − 1 edges, and219

every edge titj in J(v) necessitates visits to two tubes, ti and tj . By summing these visits220

across all junctions, we double-count visits to tubes. Thus, any threading {xuv} has length221 ∑
uv∈E

xuv = 1
2

∑
v∈V

∑
u∈N(v)

xuv ≥
1
2

∑
v∈V

2(d(v)− 1) =
↑

(handshaking)

2m− n.222

From the perspective of local threading, the inequality step follows from constraint (C4). ◀223

This lower bound is sometimes tight, such as in Figure 2a, which we give a special name:224

▶ Definition 7. A perfect threading is a graph threading of length 2m− n.225

By the analysis in the proof of Lemma 6, we obtain equivalent definitions:226

ITCS 2024

37:8 Graph Threading

▶ Lemma 8. The following are equivalent for a graph threading {xuv}:227

1. {xuv} is a perfect threading.228

2. Every junction graph J(v) is a tree, i.e., has exactly d(v)− 1 edges.229

3. Inequality (C4) holds with equality.230

Not every graph has a perfect threading (Figure 4b). A key observation is that bridges231

must be threaded at least twice. If we were to remove a bridge, the graph would have two232

connected components, and any closed walk on the entire graph would have to enter and233

exit each component at least once. Because the only way to pass between the two connected234

components is through the bridge, the walk would have to traverse the bridge at least twice.235

Hence, vertices whose incident edges are all bridges must have junction graphs containing236

at least d(v) edges. We call these vertices London vertices. A tighter lower bound is237

2m− n+ |L| where L is the set of London vertices in G. Note that this bound is determined238

by the number of London vertices rather than the number of bridges — a London vertex239

connected to multiple bridges only increases the bound by 1.240

Figure 4 (a) A graph with a minimum threading length of 2m − 6. (b) A vertex connected
to 6 disjoint parts of the graph (denoted as dashed circles). Each bridge incident to vertex v is at
least double-threaded, and hence (C4) holds at v as strict inequality, so the graph has no perfect
threading. (c) The vertex v has degree ∆ and is connected to ∆−1

2 loops (dotted) of length > 5. In
an optimal threading, the edge uv is threaded ∆ − 1 times.

Next, we consider an improved upper bound on the length of an optimal threading. While241

2m edge visits always suffice to thread a graph, the following lemma demonstrates that this242

number is never necessary, as any graph without vertices of degree 1 contains a cycle.243

▶ Lemma 9. Let C be a set of vertex-disjoint simple cycles in G, and let |C| denote the244

total number of edges in its cycles. In an optimal threading of G, at most 2m − |C| edge245

visits are needed.246

Proof. We use e ∈ C to denote edge e participating in some cycle in C. Define the set of247

integers {xe} where xe = 1 if e ∈ C and xe = 2, otherwise. By design,
∑

e∈E xe = 2m− |C|,248

and so it suffices to show that {xe} is a valid threading of G, i.e., {xe} satisfies constraints249

(C1)–(C4). Observe that each vertex v is either (1) covered once by a single cycle in C,250

meaning that two of its incident edges are single-threaded while the others are threaded251

twice, or (2) left uncovered, in which all of its incident edges are double-threaded. In both252

scenarios, all constraints are clearly met. Note that (C4) holds as an equality in a vertex253

covered once by a cycle in C. ◀254

In Section 5.2, we provide an efficient algorithm for computing a threading that achieves255

the above bound by reduction to finding the largest set of vertex-disjoint cycles.256

Erik D. Demaine, Yael Kirkpatrick, and Rebecca Lin 37:9

3.2 Maximum Visits to One Edge257

Each edge is threaded at least once in a graph threading, but what is the maximum number258

of times an optimal solution can thread an edge? In this section, we establish that no optimal259

threading exceeds ∆−1 visits to a single edge. This upper bound is tight, as demonstrated by260

edge uv in Figure 4c: Constraint (C4) requires multiple visits to at least one edge connected261

to v, and revisiting uv is the most economical when the loops incident to v are long. It is262

worth noting that bounding the visits to an edge by the maximum degree of its endpoints263

may not suffice for an optimal solution, as in the case of the left-most edge in Figure 4c,264

which is traversed ∆−1
2 > 2 times despite both its endpoints having a degree of 2.265

▶ Lemma 10. An optimal threading visits a single edge at most ∆− 1 times.266

Proof. If ∆ = 2, then G is a cycle, in which case the optimal threading traverses every edge267

once. Hence, for the remainder of this proof, we may assume ∆ ≥ 3.268

Suppose {xe} is an optimal threading of a graph G. Let uv = arg maxe∈E xe denote the269

edge with the highest count and assume for a contradiction that xuv ≥ ∆. For simplicity,270

we first assume that d(u), d(v) ≥ 3 and handle the case where d(u) = 2 or d(v) = 2 at the271

end. We shall show that we can remove two threads from uv without violating the problem272

constraints. That is, the set {x̂e} is a valid threading when defined as x̂e = xuv − 2 if e = uv273

and x̂e = xe, otherwise. This conclusion contradicts our assumption that {xe} is optimal.274

The key to this proof is the following:275

(C4): Because {xe} satisfies (C3),
∑d(v)−1

i=1 xuiv ≥ xuv ≥ ∆, and so276

∑
w∈N(v)

x̂wv = x̂uv +
d(v)−1∑

i=1
xuiv ≥ (∆− 2) + ∆ ≥ 2(d(v)− 1).277

By symmetry, u also satisfies (C4), and therefore (C4) is met by all vertices of G. We are278

left to show that {x̂e} satisfies (C1)–(C3).279

(C1): x̂uv > ∆− 2 ≥ 1. For any other edge x̂e = xe ≥ 1.280

(C2): Constraint (C2) is met as we do not modify the parity of any count.281

(C3): We now show (C3) is satisfied for v and by symmetry, u, and therefore met by all282

vertices of G. Let us denote the neighbors of v by u, u1, . . . , ud(v)−1. We have283 ∑
w∈N(v)\{u}

x̂wv =
∑

w∈N(v)\{u}

xwv ≥ xuv > x̂uv,284

so (C3) is satisfied for uv. We now demonstrate (C3) also holds for the remaining uiv’s. If285

d(v) ≥ 4, because xuv ≥ xuiv = x̂uiv by our choice of uv, we have286 ∑
w∈N(v)\{ui}

x̂wv ≥
(C1)

x̂uv + d(v)− 2︸ ︷︷ ︸
≥2

≥ (xuv − 2) + 2 = xuv ≥ x̂uiv,287

as desired. Otherwise, d(v) = 3. Without loss of generality, we want to show that288

xu1v ≤ x̂uv + x̂u2v = xuv + xu2v − 2.289

ITCS 2024

37:10 Graph Threading

Because xuv ≥ xu1v (by choice of uv) and xu2v ≥ 1 (from (C1)), this inequality holds in all290

cases except when xu1v = xuv and xu2v = 1. However, in this particular scenario, the sum of291

counts surrounding v amounts to 2xuv + 1, which contradicts (C2).292

If either endpoint of uv has degree 2, then we instead consider the maximal path w1, . . . , wℓ293

including uv such that all intermediate vertices have degree 2: d(w2) = . . . = d(wℓ−1) = 2.294

Thus d(w1), d(wℓ) ≥ 3 (as we are in the case ∆ ≥ 3) and uv = wiwi+1 for some i. Because295

{xe} is a valid threading, we must have xw1w2 = · · · = xwℓ−1wℓ
= xuv ≥ ∆. Now we modify296

the threading {xe} by removing two threads from each xwiwi+1 to obtain {x̂e}. Constraints297

(C1)–(C4) remain satisfied at the degree-2 vertices w2, . . . , wℓ−1. Finally, we can apply the298

proof above to show that the constraints remain satisfied at the end vertices w1 and wℓ of299

degree at least 3. ◀300

4 Polynomial-Time Algorithm via Perfect Matching301

In this section, we present our main result: a polynomial-time algorithm for computing302

an optimal threading of an input graph G. Our approach involves reducing Optimal303

Threading to the problem of min-weight perfect matching, defined as follows.304

A matching in a graph is a set of edges without common vertices. A perfect matching305

is a matching that covers all vertices of the graph, i.e., a matching of cardinality n
2 . If the306

graph has edge weights, the weight of a matching is the sum of the weights of its edges, and307

a min-weight perfect matching is a perfect matching of minimum possible weight.308

We begin by constructing a graph that possesses a perfect matching if and only if G has309

a perfect threading (Definition 7). This construction gives a reduction from determining310

the existence of a perfect threading to the perfect matching problem. Next, we extend this311

construction to ensure perfect matching always exists. In this extended construction, a312

perfect matching of weight W corresponds to a threading of length W +m, giving a reduction313

from Optimal Threading to finding a min-weight perfect matching.314

4.1 Determining Existence of a Perfect Threading315

By Lemma 8, a threading {xuv} of a graph G is a perfect threading if and only if it satisfies316

inequality (C4) with equality:317

(C∗4)
∑

u∈N(v) xuv = 2(d(v)− 1) for all v ∈ V .318

In fact, most of the other constraints become redundant in this case:319

▶ Lemma 11. {xuv} is a perfect threading if and only if it satisfies (C1) and (C∗4).320

Proof. If {xuv} satisfies (C∗4), then it satisfies constraint (C2), because 2(d(v) − 1) ≡ 0321

(mod 2). (C∗4) can be rewritten as xuv +
∑

w∈N(v)\{u} xwv = 2(d(v) − 1), and by (C1),322 ∑
w∈N(v)\{u} xwv ≥ d(v)− 1, so (C3) also holds. ◀323

Consider a vertex v and its neighbors u1, . . . , ud(v). We can think of constraint (C∗4) as324

allocating 2(d(v)− 1) units among xu1v, . . . , xud(v)v. First, we must allocate one unit to each325

xuiv in order to satisfy (C1). This leaves d(v)− 2 units to distribute among the edges.326

We show how to simulate this distribution problem by constructing a graph H that has a327

perfect matching if and only if, for every vertex v, we can distribute d(v)− 2 units among its328

neighboring xuiv. Thus H has a perfect matching if and only if G has a perfect threading.329

Given a graph G, define the graph H as follows; refer to Figure 5. For each edge330

uv ∈ E(G), create a perfect matching of duv := min{d(u), d(v)} − 2 disjoint edges (uvi, uvi),331

Erik D. Demaine, Yael Kirkpatrick, and Rebecca Lin 37:11

among 2 duv created vertices uv1, uv1, . . . , uvduv , uvduv .1 For each vertex v, create d(v)− 2332

vertices labeled v1, . . . , vd(v)−2. For every edge uv incident to v, add an edge between vertices333

vi and uvj for all 1 ≤ i ≤ d(v) − 2 and 1 ≤ j ≤ duv (forming a biclique). Note that any334

vertex of degree 2 disappears in this construction because of the −2 in each creation count.335

Figure 5 Construction of H and Ĥ from G, each with some matching in bold and a corresponding
threading to the matching labeled with counts.

▶ Theorem 12. G has a perfect threading if and only if H has a perfect matching.336

To prove Theorem 12, we will show how to translate between a perfect threading of G337

and a perfect matching of H. Given a matching M ⊆ E(H) of H, define a possible threading338

solution φ(M) = {xuv} by taking xuv to be 1 plus the number of edges (uvi, uvi) that are339

not included in M : xuv := 1 +
∣∣{(uvi, uvi) : 1 ≤ i ≤ duv} \M

∣∣.340

▷ Claim 13. If M is a perfect matching in H, then φ(M) is a perfect threading of G.341

Proof. By Lemma 11, it suffices to prove that φ(M) satisfies (C1) and (C∗4). The 1+ in342

the definition of φ(M) satisfies (C1). For every vertex v ∈ V , the vertices v1, . . . , vd(v)−2 are343

all matched to vertices of the form uvi; for each such matching pair, the edge (uvi, uvi) /∈M .344

Conversely, for any vertex uvi that is not matched to any vj , the edge (uvi, uvi) must be345

part of the matching. Hence, for each vertex v, the number of edges of the form (uvi, uvi)346

that are not included in M is exactly d(v)− 2. The sum
∑

u∈N(v) xuv includes this count347

and d(v) additional 1s, so equals (d(v)− 2) + d(v) = 2(d(v)− 1), satisfying (C∗4). ◀348

▷ Claim 14. For any perfect threading {xuv} of G, there exists a perfect matching M of H349

such that φ(M) = {xuv}.350

1 In the same way that uv and vu denote the same edge, we treat labels uv and vu as the same. Thus,
the notation uv̄i and v̄ui refers to the same vertex.

ITCS 2024

37:12 Graph Threading

Proof. Given a perfect threading {xuv} of G, we construct a perfect matching of H as follows.351

First, for every uv ∈ E(G), we match the edges (uv1, uv1), . . . , (uvduv−xuv+1, uvduv−xuv+1).352

We show that index duv − xuv + 1 is always non-negative; when it is zero, we match no such353

edges. By constraint (C∗4), xuv = 2(d(v)− 1)−
∑

w∈N(v)\{u} xwv. By constraint (C1), each354

term in the sum is at least 1, so xuv ≤ d(v)− 1. Thus xuv ≤ duv + 1, i.e., duv − xuv + 1 ≥ 0.355

With our matching so far, the number of unmatched vertices of the form uvi at each356

vertex v is
∑

u∈N(v)(xuv − 1). By (C∗4), this count is exactly 2(d(v)− 1)− d(v) = d(v)− 2.357

Thus we can match each of these unmatched vertices to a unique vertex vj to complete our358

perfect matching. ◀359

Claims 13 and 14 complete the proof of Theorem 12.360

4.1.1 Running-Time Analysis361

First, let us calculate the sizes of V (H) and E(H). Recall that H has d(v) − 2 vertices362

corresponding to every vertex v ∈ V (G), and up to 2(min{d(u), d(v)} − 2) ≤ 2∆ vertices363

corresponding to every edge uv ∈ E(G). Therefore, the maximum number of vertices in H is364 ∑
v∈V

(d(v)− 2) + 2
∑

uv∈E

∆ ≤ 2m− 2n+ 2m∆ = O(m∆).365

Now recall that H has min{d(u), d(v)} − 2 ≤ ∆ edges for every uv and at most ∆3 edges for366

every v. Thus, the total number of edges in H is upper-bounded by367

2
∑

uv∈E

∆ +
∑
v∈V

∆3 ≤ 2m ·∆ + n∆3 = O(n∆3).368

We conclude that H can be constructed in O(n∆3 +m∆) time.369

Micali and Vazirani [16] gave an algorithm that computes the maximum matching of370

a general graph in O(
√
nm) time, thereby enabling us to verify the existence of a perfect371

matching. It follows that we can determine a perfect matching of H in time372

O(
√
|V (H)| · |E(H)|) = O(

√
m∆ · n∆3) = O(n

√
m ·∆3.5).373

This running time exceeds the construction time of H, and so it is the final running time of374

our algorithm.375

Note that we can improve the bound on the size of H by considering the arboricity376

of G. The arboricity of a graph α(G) is defined as the minimum number of edge-disjoint377

spanning forests into which G can be decomposed [5]. This parameter is closely related to378

the degeneracy of the graph and is often smaller than ∆. Chiba and Nishizeki [5] show379

that
∑

uv∈E min{d(u), d(v)} ≤ 2mα(G), which would give us a tighter bound on the size of380

V (H).381

In summary, we can find a perfect threading of G, if one exists, by determining a perfect382

matching in H in O(n
√
m ·∆3.5) time.383

4.2 Finding an Optimal Threading384

Now we examine the general scenario where a perfect threading may not exist, i.e., (C4) may385

hold with a strict inequality for some vertex. The graph H constructed in Section 4.1 permits386

exactly 2(d(v) − 1) visits to vertex v. We aim to allow more visits to v while satisfying387

constraints (C2) and (C3).388

Erik D. Demaine, Yael Kirkpatrick, and Rebecca Lin 37:13

In a general threading, xuv ≤ min{d(u), d(v)}−1 (as argued in Claim 14) is not necessarily389

true. However, Lemma 10 gives us a weaker upper bound, xuv ≤ ∆ − 1, for any optimal390

threading. We therefore modify the construction from Section 4.1 in two ways. First, we391

generate ∆− 2 copies of every edge, regardless of the degree of its endpoints. Second, for392

every pair of edges uv and wv meeting at vertex v, we introduce an edge between uvi and393

wvj for all 1 ≤ i, j ≤ ∆ − 2. Intuitively, these edges represent threads passing through v,394

going from uv to wv, after having met the lower bound of 2(d(v)− 1) visits.395

More formally, we define a weighted graph Ĥ from G as follows; refer to Figure 5. For396

each edge uv ∈ E(G), create a weight-0 perfect matching of ∆− 2 disjoint weight-0 edges397

(uvi, uvi), among 2(∆− 2) created vertices uv1, uv1, . . . , uv∆−2, uv∆−2; these edges are black398

in Figure 5.399

For every vertex v, create d(v) − 2 vertices v1, . . . , vd(v)−2, and add a weight- 1
2 edge400

(vi, uvj) for every u ∈ N(v) and 1 ≤ i ≤ d(v)− 2, j ≤ ∆− 2; these edges are blue in Figure 5.401

Finally, for each pair of edges uv and wv incident to v, create a weight-1 edge (uvi, wvj) for402

every 1 ≤ i, j ≤ ∆− 2; these edges are green in Figure 5.403

▶ Theorem 15. G has a threading of length W +m with maxuv∈E(G) xuv ≤ ∆− 1 if and404

only if Ĥ has a perfect matching of weight W .405

To prove Theorem 15, we again show how to translate between a threading of G and406

a perfect matching of Ĥ. Given a matching M ⊆ E(Ĥ) of Ĥ, define a possible threading407

solution ψ(M) = {xuv} by taking xuv to be 1 plus the number of copies of uv not matched408

in M : xuv := 1 +
∣∣{(uvi, uvi) : 1 ≤ i ≤ ∆− 2} \M

∣∣.409

▷ Claim 16. If M is a perfect matching in Ĥ of weight W , then ψ(M) = {xuv} is a threading410

of G of length W +m with maxuv∈E(G) xuv ≤ ∆− 1.411

Proof. By definition of ψ(M), every xuv satisfies 1 ≤ xuv ≤ ∆ − 1. Thus, {xuv} satisfies412

(C1) and maxuv∈E(G) xuv ≤ ∆− 1.413

Let av(uv) denote the number of vertices uvi (for 1 ≤ i ≤ ∆ − 2) matched with some414

vertex vj , i.e., the number of blue edges incident to a vertex uvi that appear in M . Let415

bv(uv) denote the number of vertices uvi (for 1 ≤ i ≤ ∆− 2) matched with some vertex wvj ,416

i.e., the number of green edges incident to a vertex uvi that appear in M . Any other vertex417

uvi (not incident to either a blue or green edge in M) must be matched to its corresponding418

vertex uvi, which does not contribute to xuv. Hence, xuv = 1 + av(uv) + bv(uv).419

Next we prove that {xuv} satisfies constraint (C4). For every vertex v, we have420 ∑
u∈N(v) av(uv) = d(v) − 2, which implies

∑
u∈N(v)(xuv − 1) ≥ d(v) − 2, which is equi-421

valent to (C4).422

Next consider (C2). Any edge (uvi, wvj) present in M adds 1 to both bv(uv) and bv(wv),423

thereby ensuring
∑

u∈N(v) bv(uv) ≡ 0 (mod 2). Consequently,424 ∑
u∈N(v)

xuv ≡
∑

u∈N(v)

(av(uv) + 1) = 2(d(v)− 1) ≡ 0 (mod 2).425

Finally, consider (C3). Given that av(uv) ≤ d(v) − 2, we infer
∑

w∈N(v)\{u} av(uv) +426

d(v) − 1 ≥ av(uv) + 1. Additionally, for each vertex contributing to bv(uv), its matched427

vertex contributes to some bv(wv), so
∑

w∈N(v)\{u} bv(wv) ≥ bv(uv). Hence, we have428 ∑
w∈N(v)\{u}

xwv =
∑

w∈N(v)\{u}

(av(wv) + bv(wv) + 1) ≥ (av(uv) + 1) + bv(uv) = xuv.429

We conclude that {xuv} is a threading of G.430

ITCS 2024

37:14 Graph Threading

Lastly, we compute its length.431

The weight of M is determined by the number of blue and green edges it contains because432

the edges (uvi, uvi) have zero weight. Each of its blue edges of the form (vi, uvj) has weight433

1
2 and is accounted for once in av(uv), for a total weight of av(uv)/2. Each of its green edges434

of the form (uvi, wvj) has weight 1 and is counted twice — once in bv(uv) and once more in435

bv(wv) — for a total weight of bv(uv)/2. Hence, the weight W of the matching M is given by436

W =
∑
v∈V

∑
u∈N(v)

(
av(uv)

2 + bv(uv)
2

)
= 2

∑
uv∈E

xuv − 1
2 =

∑
uv∈E

xuv −m.437

Therefore {xuv} is a threading of G of length W +m.438

◀439

▷ Claim 17. For every threading {xuv} of G such that maxuv∈E(G) xuv ≤ ∆− 1, Ĥ has a440

perfect matching M such that ψ(M) = {xuv}.441

Proof. Let {xuv} be a threading of G satisfying xuv ≤ ∆− 1 for every edge uv ∈ E. Recall442

Lemma 4, where we demonstrate the construction of a junction graph J(v) for vertex v.443

For every vertex v ∈ V , we know by (C2) and (C4) that
∑

u∈N(v) xuv = 2(d(v)− 1) + 2k444

for some integer k. Note that J(v) has d(v) vertices and d(v)− 1 + k edges. Because J(v) is445

connected, we can thus select k edges from J(v) such that removing them will leave behind a446

tree. Denote these edges by (u1, w1), . . . , (uk, wk) where u1, . . . , uk, w1, . . . , wk ∈ N(v). For447

each edge (uℓ, wℓ), match a green edge of the form (uℓvi, w
ℓvj). For every edge uv connected448

to v, denote by bv(uv) the number of vertices of the form uvi currently matched, i.e., the449

number of times u appears as an endpoint among the k edges selected from J(v).450

Because the edges remaining in J(v) after removing (u1, w1), . . . , (uk, wk) form a tree,451

every neighbor of v must have at least one incident edge in J(v) that is not selected. Because452

the degree of tuv in J(v) is xuv, the number of matched vertices must satisfy bv(uv) ≤ xuv−1.2453

For each u ∈ N(v), let av(uv) = xuv − bv(uv)− 1. It is clear from our above observation454

that av(uv) ≥ 0. Given
∑

u∈N(v) bv(uv) = 2k, we have
∑

u∈N(v) av(uv) = d(v) − 2. It455

follows that we can match av(uv) vertices in uv1, . . . , uv∆−2 to an equal number of vertices456

in v1, . . . , vd(v)−2 using blue edges. After executing this procedure, all vertices of the form457

v1, . . . , vd(v)−2 will have been matched. Furthermore, the number of matched vertices of the458

form uvi is exactly av(uv) + bv(uv) = xuv − 1. We repeat this procedure for all vertices.459

Now, for every edge uv, there are two sets of unmatched vertices, each of size ∆− 2−460

(xuv−1) = ∆−xuv−1 uvi, of the form uvi and uvj , respectively. By rearranging the existing461

matches, we can ensure these vertices are exactly uv1, . . . , uv∆−xuv−1, uv1, . . . , uv∆−xuv−1.462

Then we can proceed to match every pair (uvi, uvi), for i ≤ ∆− xuv − 1, using a black edge.463

The above process results in a perfect matching M from the threading {xuv}. The number464

of edges of the form (uvi, uvi) included in the matching is precisely ∆ − xuv − 1. Hence,465

ψ(M) = {xuv}. ◀466

The above two claims complete the proof of Theorem 15. Lemma 10 establishes that467

an optimal threading visits an edge no more than ∆− 1 times, so Ĥ must have a perfect468

matching. Furthermore, if M is the min-weight perfect matching of Ĥ, then ψ(M) is the469

optimal threading of G. We can therefore find the optimal threading of G by finding the470

min-weight perfect matching of Ĥ and applying the reduction of Claim 16.471

2 Here tuv is a vertex representing the tube uv. See the notation in Section 2.1.

Erik D. Demaine, Yael Kirkpatrick, and Rebecca Lin 37:15

Note that the solution presented in this section can be readily adapted to address a472

constrained variant of Optimal Threading, where each edge is allowed to be traversed473

only a limited number of times by imposing limits on the number of vertex and edge copies474

created during the construction of Ĥ. This scenario arises, for example, when dealing with475

tubes of restricted diameter.476

4.2.1 Running-Time Analysis477

First, let us analyze the size of Ĥ: the graph contains ∆−2 vertices for each vertex v ∈ V (G)478

and 2(∆− 2) vertices for each edge uv ∈ E(G). Hence, the total number of vertices in Ĥ is479

O(m∆). In terms of edges, Ĥ includes ∆− 2 edges for each edge uv ∈ E(G) and no more480

than ∆4 edges for each vertex v ∈ V (G). Therefore, the total edge count in Ĥ is O(n∆4).481

As a result, the construction of Ĥ requires O(m∆ + n∆4) time.482

Next, we use the algorithm of Galil, Mical, and Gabow [10] to find a minimum weight483

perfect matching of Ĥ. This algorithm has time complexity O(nm logn), and so on Ĥ it484

runs in time485

O(|V (H)||E(H)| log(|V (H)|)) = O(m∆ · n∆4 · log(m∆)) = O(nm ·∆5 logn).486

As this term dominates the time for constructing Ĥ, we conclude that our algorithm for487

Optimal Threading runs in time O(nm ·∆5 logn).488

4.2.2 Extension to Weighted Graphs489

In this section, we adapt our Optimal Threading algorithm to weighted graphs representing490

structures whose edges have varying lengths. Specifically, we introduce a weight function491

ℓ : E → R+, where ℓ(e) represents the length of tube e. The goal of Optimal Threading492

is now to minimize the total length of a threading T , defined as
∑

e∈T ℓ(e). This problem493

is equivalent to the weighted version of Optimal Local Threading where we seek to494

minimize
∑

e∈E ℓ(e)xe subject to constraints (C1)–(C4).495

Our Optimal Threading algorithm hinges upon Lemma 10. Fortunately, this result496

holds for weighted graphs. In the proof of the lemma, we demonstrated that if any threading497

{xe} has xe ≥ ∆ for some e ∈ E, then we can construct a strictly shorter threading498

{x′
e} that remains consistent with constraints (C1)–(C4). Specifically, x′

e ≤ xe for all499

e ∈ E and x′
e < xe for at least one e ∈ E. Therefore, even in the weighted case we have500 ∑

e∈E ℓ(e)x′
e <

∑
e∈E ℓ(e)xe for any weight function ℓ : E → R+. Hence, an optimal501

threading never traverses an edge more than ∆− 1 times as desired.502

To adapt our Optimal Threading algorithm for the weighted scenario, we construct a503

graph similar to Ĥ in Section 4.2, but with modified edge weights: a blue edge (vi, uv̄j) now504

has weight 1
2ℓ(uv) instead of weight 1

2 , and a green edge (uv̄i, wv̄j) has weight 1
2
(
ℓ(uv)+ℓ(wv)

)
505

rather than weight 1. The black edges continue to have zero weight. Denote this new graph506

by H̃.507

By a similar proof to that of Theorem 15, we obtain a reduction from weighted Optimal508

Threading to minimum-weight perfect matching:509

▶ Theorem 18. G has a threading of length W +
∑

e∈E(G) ℓ(e) with maxe∈E(G) xe ≤ ∆− 1510

if and only if H̃ has a perfect matching of weight W .511

As before, an edge uv traversed by a threading corresponds to an edge (uv̄i, ūvi) that is512

not part of the perfect matching of H̃. Both endpoints of this edge must be matched with513

either a green or blue edge. Each such matching contributes ℓ(uv)
2 to the matching’s total514

ITCS 2024

37:16 Graph Threading

weight. Thus, we can show that a perfect matching in H̃ with weight W corresponds to a515

threading of G of length W +
∑

e∈E ℓ(e).516

5 Special Cases517

Here we focus on two scenarios: Optimal Threading on cubic graphs and Double518

Threading, where each edge can be traversed at most twice.519

5.1 Cubic Graphs520

If graph G is cubic, then by Lemma 10, an optimal threading of G visits each edge at most521

twice. Furthermore, in a perfect threading of G, if it exists, exactly one edge incident to each522

vertex is double-threaded due to constraint (C∗4). Hence, it follows that G has a perfect523

threading if and only if G has a perfect matching. A perfect matching of G gives the set524

of edges to be double-threaded in a perfect threading. Every bridgeless cubic graph has a525

perfect matching [6]—it can be computed in O(n log4 n) time [1]. In fact, if all bridges of a526

connected cubic graph G lie on a single path of G, then G has a perfect matching [8].527

5.2 Double Threading Problem528

In Double Threading, the goal is to minimize the number of double-threaded edges or,529

equivalently, to maximize the number of edges visited only once. A solution to Double530

Threading on a cubic graph also solves Optimal Threading on the same graph. This is due531

to the observation that either zero or two single-threaded edges are incident to each vertex in532

a solution to Double Threading, which aligns with the reality of Optimal Threading on533

cubic graphs. By the same observation, a solution to Double Threading matches the upper534

bound given in Lemma 9 for general graphs. We further note that Double Threading may535

be reduced to the task of finding vertex-disjoint cycles with maximum collective length,536

which we solve below in Algorithm 2.537

Algorithm 2 Maximum Length Vertex-Disjoint Cycles

1. Construct a weighted graph G′ from G (Figure 6):
a. For each vertex v ∈ V , create a complete bipartite graph Gu = Kd(v),d(v) with

zero-weight edges. Let D−
u and D+

v denote the two disjoint vertex sets of this graph.
b. For each edge uv ∈ E, add an edge unit weight between a vertex of D+

u and a vertex
of D+

v such that each vertex of D+
u and D+

v has exactly one edge incident to it.
c. For each subgraph Gv, add a zero-weight edge between any two vertices of D−

v .
2. Compute a maximum weight perfect matching M in G′.
3. Return edge set S ⊆ E of G corresponding to the weighted edges of M .

We sketch the intuition behind why matching M corresponds one-to-one to vertex disjoint538

cycles in G. Observe two cases for each u: (i) If M contains the edge of 1(c), then d − 2539

vertices in D−
u match with the vertices in D+

u , leaving two vertices in D+
u to match with540

their neighbors in adjacent subgraphs; (ii) all vertices in D+
u are saturated via connections541

to D−
u , otherwise. That is, each vertex u is in exactly one cycle (i) or none at all (ii).542

Erik D. Demaine, Yael Kirkpatrick, and Rebecca Lin 37:17

Figure 6 Illustration of constructing G′ from G.

Running-Time Analysis: We begin our analysis of the running time of Algorithm 2 by first543

bounding the size of G′. Each subgraph Gv has 2d(v) vertices and d(v)2 + 1 edges, and544

these subgraphs are connected via m edges. Because
∑

v∈V d(v) = 2m and
∑

v∈V d(v)2 ≤545

m(2m/(n− 1) + n− 2) [7], we conclude that V (G′) = O(m) and E(G′) = O(nm).546

The problems of finding a max-weight perfect matching and a min-weight perfect match-547

ing are symmetric: we can multiply edge weights by −1 to switch between the two prob-548

lems. It follows that we can apply the min-weight perfect matching algorithm proposed549

by Galil, Micali, and Gabow [10] in Step 2 of our algorithm. This procedure runs in550

O(|V (G′)||E(G′)| log |V (G′)|) = O(nm2 logn) time, which dominates theO(nm) construction551

time of G′ in the first step. Hence, the overall running time of Algorithm 2 is O(nm2 logn).552

6 Future Work553

Potential avenues for future work include developing tighter upper and lower bounds based554

on properties of the input graph and devising a more efficient solution to the general problem.555

Practical challenges associated with the design of reconfigurable structures (Figure 1)556

inspire further intriguing problems. For instance, friction plays a central role in the deploy-557

ability of such structures — it determines the force required to draw the string through the558

system. According to the Capstan equation, friction increases exponentially with the sum of559

the absolute values of turning angles in the threading route. Therefore, a logical next step560

is to investigate a variant of Optimal Threading where the focus is on minimizing this561

frictional cost instead of the threading length.562

References563

1 Therese C. Biedl, Prosenjit Bose, Erik D. Demaine, and Anna Lubiw. Efficient algorithms for564

Petersen’s matching theorem. Journal of Algorithms, 38(1):110–134, 2001.565

2 J. A. (John Adrian) Bondy. Graph Theory with Applications. North Holland, New York,566

1980–1976.567

3 Jeffrey Bosboom, Charlotte Chen, Lily Chung, Spencer Compton, Michael Coulombe, Erik D.568

Demaine, Martin L. Demaine, Ivan Tadeu Ferreira Antunes Filho, Dylan Hendrickson, Adam569

Hesterberg, Calvin Hsu, William Hu, Oliver Korten, Zhezheng Luo, and Lillian Zhang. Edge570

matching with inequalities, triangles, unknown shape, and two players. Journal of Information571

Processing, 28:987–1007, 2020. doi:10.2197/ipsjjip.28.987.572

ITCS 2024

https://doi.org/10.2197/ipsjjip.28.987

37:18 Graph Threading

4 Carina Chela. The original Finnish Christmas ornament. this is FINLAND, Dec 2013. URL:573

https://finland.fi/christmas/the-original-finnish-christmas-ornament/.574

5 Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM575

Journal on Computing, 14(1):210–223, 1985. doi:10.1137/0214017.576

6 Maria Chudnovsky and Paul Seymour. Perfect matchings in planar cubic graphs. Combinat-577

orica, 32(4):403–424, 2012. doi:10.1007/s00493-012-2660-9.578

7 D. de Caen. An upper bound on the sum of squares of degrees in a graph. Discrete Mathematics,579

185(1):245–248, 1998.580

8 Alfred Errera. Du colorage des cartes. Mathesis, 36:56–60, 1922.581

9 Herbert Fleischner. Eulerian graphs and related topics. North-Holland, Amsterdam, 1990.582

10 Zvi Galil, Silvio Micali, and Harold Gabow. An O(EV log V) algorithm for finding a maximal583

weighted matching in general graphs. SIAM J. Comput., 15:120–130, Feb 1986. doi:10.1137/584

0215009.585

11 James Green. Beadwork in the arts of Africa and beyond. The Metropolitan Museum586

of Art, Jul 2018. URL: https://www.metmuseum.org/blogs/collection-insights/2018/587

beadwork-in-arts-of-africa-and-beyond.588

12 Yuki Igarashi, Takeo Igarashi, and Jun Mitani. Beady: Interactive beadwork design and589

construction. ACM Trans. Graph., 31(4), Jul 2012. doi:10.1145/2185520.2185545.590

13 Joelle Jackson. Heavenly harmony: The universal language of Finnish himmeli. Smithso-591

nian Center for Folklife and Cultural Heritage, Jul 2021. URL: https://folklife.si.edu/592

magazine/eija-koski-finnish-himmeli.593

14 Bih-Yaw Jin and Chiachin Tsoo. Bead sculptures and bead-chain interlocking puzzles inspired594

by molecules and nanoscale structure. 2019. URL: https://api.semanticscholar.org/595

CorpusID:219636992.596

15 Alison Martin. Optimization of threading paths. Twitter, Nov 2021. URL: https://twitter.597

com/alisonmartin57/status/1461643652946698240.598

16 Silvio Micali and Vijay V. Vazirani. An O(
√

|v| · |E|) algoithm for finding maximum matching599

in general graphs. In 21st Annual Symposium on Foundations of Computer Science (sfcs 1980),600

pages 17–27, 1980. doi:10.1109/SFCS.1980.12.601

17 Rodakis. Push puppet. URL: https://rodakis.com/Push-Puppet.602

18 Saskia Solomon. A vanishing craft reappears. The New York Times, Sep 2022. URL:603

https://www.nytimes.com/2022/09/28/style/a-vanishing-craft-reappears.html.604

19 Wikipedia. Straw mobile, Apr 2023. URL: https://en.wikipedia.org/wiki/Straw_mobile.605

https://finland.fi/christmas/the-original-finnish-christmas-ornament/
https://doi.org/10.1137/0214017
https://doi.org/10.1007/s00493-012-2660-9
https://doi.org/10.1137/0215009
https://doi.org/10.1137/0215009
https://doi.org/10.1137/0215009
https://www.metmuseum.org/blogs/collection-insights/2018/beadwork-in-arts-of-africa-and-beyond
https://www.metmuseum.org/blogs/collection-insights/2018/beadwork-in-arts-of-africa-and-beyond
https://www.metmuseum.org/blogs/collection-insights/2018/beadwork-in-arts-of-africa-and-beyond
https://doi.org/10.1145/2185520.2185545
https://folklife.si.edu/magazine/eija-koski-finnish-himmeli
https://folklife.si.edu/magazine/eija-koski-finnish-himmeli
https://folklife.si.edu/magazine/eija-koski-finnish-himmeli
https://api.semanticscholar.org/CorpusID:219636992
https://api.semanticscholar.org/CorpusID:219636992
https://api.semanticscholar.org/CorpusID:219636992
https://twitter.com/alisonmartin57/status/1461643652946698240
https://twitter.com/alisonmartin57/status/1461643652946698240
https://twitter.com/alisonmartin57/status/1461643652946698240
https://doi.org/10.1109/SFCS.1980.12
https://rodakis.com/Push-Puppet
https://www.nytimes.com/2022/09/28/style/a-vanishing-craft-reappears.html
https://en.wikipedia.org/wiki/Straw_mobile

	1 Introduction
	2 Problem Formulation
	2.1 Constructing a Connected Junction Graph
	2.2 Obtaining a Closed Walk

	3 Worst-Case Bounds
	3.1 Total Length
	3.2 Maximum Visits to One Edge

	4 Polynomial-Time Algorithm via Perfect Matching
	4.1 Determining Existence of a Perfect Threading
	4.1.1 Running-Time Analysis

	4.2 Finding an Optimal Threading
	4.2.1 Running-Time Analysis
	4.2.2 Extension to Weighted Graphs

	5 Special Cases
	5.1 Cubic Graphs
	5.2 Double Threading Problem

	6 Future Work

