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Abstract

We prove that any H-minor-free graph, for a fixed graph H, of treewidth w has an Ω(w)×
Ω(w) grid graph as a minor. Thus grid minors suffice to certify that H-minor-free graphs have
large treewidth, up to constant factors. This strong relationship was previously known for the
special cases of planar graphs and bounded-genus graphs, and is known not to hold for general
graphs. The approach of this paper can be viewed more generally as a framework for extending
combinatorial results on planar graphs to hold on H-minor-free graphs for any fixed H. Our
result has many combinatorial consequences on bidimensionality theory, parameter-treewidth
bounds, separator theorems, and bounded local treewidth; each of these combinatorial results
has several algorithmic consequences including subexponential fixed-parameter algorithms and
approximation algorithms.

1 Introduction

The r× r grid graph1 is the canonical planar graph of treewidth Θ(r). In particular, an important
result of Robertson, Seymour, and Thomas [38] is that every planar graph of treewidth w has an
Ω(w)× Ω(w) grid graph as a minor. Thus every planar graph of large treewidth has a grid minor
certifying that its treewidth is almost as large (up to constant factors).

In their Graph Minor Theory, Robertson and Seymour [36] have generalized this result in some
sense to any graph excluding a fixed minor: for every graph H and integer r > 0, there is an integer
w > 0 such that every H-minor-free graph with treewidth at least w has an r × r grid graph as a
minor. This result has been re-proved by Robertson, Seymour, and Thomas [38], Reed [34], and
Diestel, Jensen, Gorbunov, and Thomassen [22]. The best known bound on w in terms of r is as
follows:

Theorem 1 ([38, Theorem 5.8]) Every H-minor-free graph of treewidth larger than 205|V (H)|3r

has an r × r grid as a minor.

While the existence of such a relationship between treewidth and grid minors is interesting,
this bound of w = 2O(r) is much weaker than the bound of w = O(r) attainable for the special
case of planar graphs. In particular, the grid they obtain from this theorem can have treewidth
logarithmic in the treewidth of the original graph, which does not serve as much of a certificate of

∗A preliminary version of this paper appeared in the ACM-SIAM Symposium on Discrete Algorithms (SODA
2005) [16].

†MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139, U.S.A.,
{edemaine, hajiagha}@mit.edu

1The r×r grid is the planar graph with r2 vertices arranged on a square grid and with edges connecting horizontally
and vertically adjacent vertices. Refer to Section 2 for other (standard) definitions and graph terminology.
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large treewidth as we have for planar graphs. The main result of this paper is the following much
tighter bound:

Theorem 2 For any fixed graph H, every H-minor-free graph of treewidth w has an Ω(w)×Ω(w)
grid as a minor.

Thus the r×r grid is the canonical H-minor-free graph of treewidth Θ(r) for any fixed graph H.
This result is best possible up to constant factors. Section 5 discusses the dependence of the constant
factor in the Ω notation on the fixed graph H.

Our result cannot be generalized to arbitrary graphs: Robertson, Seymour, and Thomas [38]
proved that some graphs have treewidth Ω(r2 lg r) but have grid minors only of size O(r) × O(r).
The best known relation for general graphs is that having treewidth more than 202r5

implies the
existence of an r× r grid minor [38]. The best possible bound is believed to be closer to Θ(r2 lg r)
than 2Θ(r5), perhaps even equal to Θ(r2 lg r) [38].

Our approach in the proof of Theorem 2 can be viewed more generally as a framework for
extending combinatorial results on planar graphs to hold on H-minor-free graphs for any fixed H.
The framework follows three main steps: extension from planar graphs to bounded-genus graphs,
further extension to “almost-embeddable graphs”, and further extension to clique sums of almost-
embeddable graphs. Almost-embeddable graphs are bounded-genus graphs except for a bounded
number of “local areas of non-planarity”, called vortices, and for a bounded number of “apex”
vertices, which can have any number of incident edges that are not properly embedded. The
underpinnings of this framework is the structural characterization of H-minor-free graphs in the
Robertson-Seymour Graph Minor Theory [37]. Recently this framework has been used to generalize
many efficient algorithms from planar graphs to H-minor-free graphs [12, 27]. Our work shows how
the framework can be applied to combinatorial results.

In addition to giving a tight bound on this basic combinatorial problem relating treewidth and
grids, our result has many combinatorial consequences, each with several algorithmic consequences.
To describe these consequences we first need to introduce the concept of bidimensionality.

Bidimensionality. The genesis of bidimensionality is the notion of a parameter-treewidth bound.
A parameter P = P (G) is a function mapping graphs to nonnegative integers. A parameter-
treewidth bound is an upper bound f(k) on the treewidth of a graph with parameter value k. In
many cases, f(k) can even be shown to be sublinear in k, often O(

√
k). Parameter-treewidth bounds

have been established for many parameters; see e.g. [1, 30, 25, 4, 8, 32, 28, 11, 18, 20, 21, 10, 14, 12].
Essentially all of these bounds can be obtained from the general theory of bidimensional parameters,
which has been introduced in a series of papers [21, 11, 12, 10]. Thus bidimensionality is the most
powerful method so far for establishing parameter-treewidth bounds, encompassing all such previous
results for H-minor-free graphs.

For a strictly increasing function g, a parameter is bidimensional if it is at least g(r) in an
r × r “grid-like graph” and if the parameter does not increase when taking either minors (minor-
bidimensional) or contractions (contraction-bidimensional). Examples of bidimensional parame-
ters include number of vertices, diameter, and the size of various structures, e.g., feedback vertex
set, vertex cover, minimum maximal matching, face cover, a series of vertex-removal parameters,
dominating set, edge dominating set, r-dominating set, connected dominating set, connected edge
dominating set, connected r-dominating set, and unweighted TSP tour (a walk in the graph vis-
iting all vertices). Parameter-treewidth bounds have been established for all minor-bidimensional
parameters in H-minor-free graphs for any fixed graph H [12, 10]. In this case, the notion of
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“grid-like graph” is precisely the r× r grid. For contraction-bidimensional parameters, parameter-
treewidth bounds have been established for apex-minor-free graphs, and this is the largest class of
graphs for which such bounds can generally be obtained [10]. (An apex-minor-free graph family
is a minor-closed graph family excluding some apex graph, i.e., a graph in which the removal of
some vertex leaves a planar graph.) In this case, the notion of “grid-like graph” is an r × r grid
augmented with additional edges such that each vertex is incident to O(1) edges to nonboundary
vertices of the grid. (Here O(1) depends on H.)

Unfortunately, these parameter-treewidth bounds are large in general: f(k) = (g−1(k))O(g−1(k)).
For the special cases of single-crossing-minor-free graphs and bounded-genus graphs, we know
tighter bounds of f(k) = O(g−1(k)), which is the best possible bound up to constant factors. For
single-crossing-minor-free graphs [21, 18] (in particular, planar graphs [11]), the notion of “grid-
like graph” is an r × r grid partially triangulated by additional edges that preserve planarity. For
bounded-genus graphs [19], the notion of “grid-like graph” is such a partially triangulated r×r grid
with up to genus(G) additional edges (“handles”). (The same result was established for a subset
of contraction-bidimensional parameters, called α-splittable parameters, previously in [12].)

Tight parameter-treewidth bounds. One consequence of our result gives the tightest possible
parameter-treewidth bound for all bidimensional parameters in all possible H-minor-free graphs:

Theorem 3 For any minor-bidimensional parameter P which is at least g(r) in the r×r grid, every
H-minor-free graph G has treewidth tw(G) = O(g−1(P (G))). For any contraction-bidimensional
parameter P which is at least g(r) in an augmented r × r grid, every apex-minor-free graph G
has treewidth tw(G) = O(g−1(P (G))). In particular, if g(r) = Θ(r2), then these bounds become
tw(G) = O(

√
P (G)).

The proof of this theorem is identical to the proofs of [10, Theorem 2.3] (for minor-bidimensional
parameters) and [10, Theorem 4.1] (for contraction-bidimensional parameters) except that we sub-
stitute the application of Theorem 1 with Theorem 2.

Separator theorems. If we apply the parameter-treewidth bound of Theorem 3 to the parameter
of the number of vertices in the graph, which is minor-bidimensional with g(r) = r2, then we
immediately obtain the following (known) bound on the treewidth of an H-minor-free graph:

Corollary 1 ([5, Proposition 4.5], [27, Corollary 24]) For any fixed graph H, every H-minor-
free graph G has treewidth O(

√
|V (G)|).

A consequence of this result is that every vertex-weighted H-minor-free graph G has a vertex
separator of size O(

√
|V (G)|) whose removal splits the graph into two parts each with weight

at most 2/3 of the original weight [5, Theorem 1.2]. This generalization of the classic planar
separator theorem has many algorithmic applications; see e.g. [5, 3]. Also, this result shows that
the Robertson-Seymour characterization of H-minor-free graphs is powerful enough to conclude
that these graphs have small separators, which we expect from such a strong characterization.

Bounded local treewidth (diameter treewidth). Eppstein [23] introduced the diameter-
treewidth property for a class of graphs, which requires that the treewidth of a graph in the class is
upper bounded by a function of its diameter. He proved that a minor-closed graph family has the
diameter-treewidth property precisely if the graph family excludes some apex graph. In particular,
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he proved that any graph in such a family with diameter D has treewidth at most 22O(D)
. (A

simpler proof of this result was obtained in [13].)
If we apply the parameter-treewidth bound of Theorem 3 to the diameter parameter, which

is contraction-bidimensional with g(r) = Θ(lg r) [13], then we immediately obtain the following
stronger diameter-treewidth bound for apex-minor-free graphs:

Corollary 2 For any fixed apex graph H, every H-minor-free graph of diameter D has treewidth
2O(D).

The diameter-treewidth property has been used extensively in a slightly modified form called
the bounded-local-treewidth property, which requires that the treewidth of any connected subgraph
of a graph in the class is upper bounded by a function of its diameter. For minor-closed graph
families, which is the focus of most work in this context, these properties are identical. Graphs
of bounded local treewidth have many similar properties to both planar graphs and graphs of
bounded treewidth, two classes of graphs on which many problems are substantially easier. In
particular, Baker’s approach for polynomial-time approximation schemes (PTASs) on planar graphs
[7] applies to this setting. As a result, PTASs are known for hereditary maximization problems such
as maximum independent set, maximum triangle matching, maximum H-matching, and maximum
tile salvage; for minimization problems such as minimum vertex cover, minimum dominating set,
minimum edge-dominating set; and for subgraph isomorphism for a fixed pattern [18, 23, 29].
Graphs of bounded local treewidth also admit several efficient fixed-parameter algorithms. In
particular, Frick and Grohe [26] give a general framework for deciding any property expressible
in first-order logic in graphs of bounded local treewidth. Corollary 2 substantially improves the
running time of these algorithms, in particular improving the running time of the PTASs from

222O(1/ε)

nO(1) to 22O(1/ε)
nO(1), where n is the number of vertices in the graph.

Subexponential fixed-parameter algorithms. A fixed-parameter algorithm is an algorithm
for computing a parameter P (G) of a graph G whose running time is h(P (G))nO(1) for some
function h. A typical function h for many fixed-parameter algorithms is h(k) = 2O(k). In the last
three years, several researchers have obtained exponential speedups in fixed-parameter algorithms
in the sense that the h function reduces exponentially, e.g., to 2O(

√
k). For example, the first

fixed-parameter algorithm for finding a dominating set of size k in planar graphs [2] has running
time O(8kn); subsequently, a sequence of subexponential algorithms and improvements have been
obtained, starting with running time O(46

√
34kn) [1], then O(227

√
kn) [30], and finally O(215.13

√
kk+

n3 + k4) [25]. Other subexponential algorithms for other domination and covering problems on
planar graphs have also been obtained [1, 4, 8, 32, 28].

All subexponential fixed-parameter algorithms developed so far are based on showing a sublinear
parameter-treewidth bound and then using an algorithm whose running time is singly exponential in
treewidth and polynomial in problem size. As mentioned above, essentially all sublinear treewidth-
parameter bounds proved so far can be obtained through bidimensionality. From Theorem 3 we
obtain the following general result for designing subexponential fixed-parameter algorithms:

Corollary 3 Consider a parameter P that can be computed on a graph G in h(w) nO(1) time given
a tree decomposition of G of width at most w. If P is minor-bidimensional and at least g(r) in
the r× r grid, then there is an algorithm computing P on any H-minor-free graph G with running
time [h(O(g−1(k))) + 2O(g−1(k))]nO(1). If P is contraction-bidimensional and at least g(r) in an
augmented r×r grid, then there is an algorithm computing P on any apex-minor-free graph G with
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running time [h(O(g−1(k))) + 2O(g−1(k))]nO(1). In particular, if g(r) = Θ(r2) and h(w) = 2o(w2),
then these running times are subexponential in k.

The proof of this corollary is identical to the proof of [10, Theorem 5.1] except that we apply the
stronger parameter-treewidth bound of Theorem 3. In particular, this corollary gives subexponen-
tial fixed-parameter algorithms for many bidimensional parameters, including feedback vertex set,
vertex cover, minimum maximal matching, a series of vertex-removal parameters, dominating set,
edge dominating set, r-dominating set, clique-transversal set, connected dominating set, connected
edge dominating set, connected r-dominating set, and unweighted TSP tour.

Approximation schemes. The bidimensionality theory has recently been extended to obtain
PTASs for essentially all bidimensional parameters (including those mentioned above) in planar
graphs and some generalizations [15]. These PTASs are based on techniques that generalize and in
some sense unify the two main previous approaches for designing PTASs in planar graphs, namely,
the Lipton-Tarjan separator approach [33] and the Baker layerwise decomposition approach [7].
However, these PTASs require a linear parameter-treewidth bound as in Theorem 3, so previously
only applied to single-crossing-minor-free and bounded-genus graphs. Theorem 3 generalizes these
results to all H-minor-free graphs for minor-bidimensional parameters and to all apex-minor-free
graphs for contraction-bidimensional parameters. This result shows a strong connection between
subexponential fixed-parameter tractability and approximation algorithms for combinatorial opti-
mization problems on H-minor-free graphs.

Half-integral versus fractional multicommodity flow. Chekuri, Khanna, and Shephard [9]
proved that, for planar graphs, the gap between the optimal half-integral multicommodity flow and
the optimal fractional multicommodity flow is at most a polylogarithmic factor. Also, they gave a
combinatorial proof of the result that, for planar graphs, the gap between the maximum flow and the
minimum cut in product multicommodity flow (and thus uniform multicommodity flow) instances
is at most a constant factor. The latter result was proved before by Klein, Plotkin, and Rao for
H-minor-free graphs using primal-dual methods [31], and has many applications in embeddings of
H-minor-free graphs. As mentioned by Chekuri et al. [9], our Theorem 2 can be used to generalize
the half-integral/fractional gap bound and the combinatorial proof of the max-flow/min-cut gap
bound to H-minor-free graphs.

Approximating treewidth and grid minors. Most recently, our linear minimax relation be-
tween treewidth and the largest grid minor has been used to develop a combinatorial “primal-dual”
type algorithm, which approximates either quantity within a constant factor [17]. This algorithm
also computes, in polynomial time, a tree decomposition of approximately minimum width and a
grid minor of approximately maximum size.

2 Background

2.1 Preliminaries

Our graph terminology is as follows. All the graphs in this paper are undirected without loops or
multiple edges. A graph G is represented by G = (V,E), where V (or V (G)) is the set of vertices
and E (or E(G)) is the set of edges. We denote an edge e between u and v by {u, v}. The (disjoint)
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union of two disjoint graphs G1 and G2, G1∪G2, is the graph G with merged vertex and edge sets:
V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2).

One way of describing classes of graphs is by using minors, introduced as follows. Contracting
an edge e = {u, v} is the operation of replacing both u and v by a single vertex w whose neighbors
are all vertices that were neighbors of u or v, except u and v themselves. A graph H is a minor
of a graph G if H can be obtained from a subgraph of G by contracting edges. A graph class C is
a minor-closed class if any minor of any graph in C is also a member of C. A minor-closed graph
class C is H-minor-free if H 6∈ C. For example, the class of planar graphs is both K3,3-minor-free
and K5-minor-free.

2.2 Treewidth

The notion of treewidth was introduced by Robertson and Seymour [35] and plays an important role
in their fundamental work on graph minors. To define this notion, we first consider a representation
of a graph as an underlying tree, called a tree decomposition. More precisely, a tree decomposition
of a graph G = (V,E) is a pair (T, χ) in which T = (I, F ) is a tree and χ = {χi | i ∈ I} is a family
of subsets of V (G) such that

1.
⋃

i∈I χi = V ;

2. for each edge e = {u, v} ∈ E, there exists an i ∈ I such that both u and v belong to χi; and

3. for all v ∈ V , the set of nodes {i ∈ I | v ∈ χi} forms a connected subtree of T .

To distinguish between vertices of the original graph G and vertices of T in the tree decomposition,
we call vertices of T nodes and their corresponding χi’s bags. The maximum size of a bag in χ
minus one is called the width of the tree decomposition. The treewidth of a graph G (tw(G)) is the
minimum width over all possible tree decompositions of G. A tree decomposition is called a path
decomposition if T = (I, F ) is a path. The pathwidth of a graph G (pw(G)) is the minimum width
over all possible path decompositions of G.

We will need the following property about how treewidth changes during small operations to
faces of a graph:

Lemma 1 Consider any graph G embedded in some surface of genus g, with tw(G) ≥ 56(g + 1)2.
If G′ is the result of contracting a face of G to a point, then tw(G′) ≤ tw(G) and tw(G′) =
Ω(tw(G)/(g + 1)).

Proof: Let f denote the face of G contracted to form G′. Because G′ is a minor of G, tw(G′) ≤
tw(G). Consider the graph G′′ formed from graph G by adding a new vertex v in the middle of face
f and adding an edge connecting v to every vertex of f . This graph G′′ is embedded in the same
genus-g surface as G. The treewidth of G′′ is between tw(G) and tw(G) + 1, because we could add
v to all bags of a tree decomposition of G. By [19, Theorem 4.8], there is a sequence of contractions
that brings G′′ to a graph R that is a (planar) partially triangulated r × r grid augmented with
at most g additional edges, where r ≥ 1

4tw(G′′)/(g + 1) − 12 g − 1 ≥ 1
4tw(G)/(g + 1) − 12 g − 1.

Every vertex in R can be labeled by the set of vertices in G′′ that were contracted to form it. Let
vR denote the vertex in R whose label includes v. For every neighbor w of v in G, the vertex wR in
R whose label includes w has distance at most 1 from vR in R, because contractions only decrease
distances. We modify the augmented partially triangulated grid R as follows. For every neighbor
w of v in G for which wR 6= vR, we delete all edges incident to wR except {vR, wR}, and then we
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contract the edge {vR, wR}. The resulting graph R′ is a minor of R and thus of G′′. If we re-order
the sequence of contractions and deletions that bring G′′ to R′ to start with the contractions of
the edges between v and the vertices of face f (which is equivalent to contracting the face f in
the original graph G), then the succeeding sequence of contractions and deletions brings G′ to R′.
Therefore R′ is a minor of G′. By ignoring every row or column of the grid in which an edge was
deleted, we obtain an (r− g− 4)× (r− g− 4) grid minor of G′. (There may be g such rows (resp.,
columns) from the g additional edges, 2 from the neighborhood of v, and 2 from the boundary of
the grid.) Therefore tw(G′) ≥ r− g − 5 ≥ 1

4tw(G)/(g + 1)− 13 g − 6 = Ω(tw(G)/(g + 1)) provided
tw(G) ≥ 56(g + 1)2. 2

2.3 Clique Sums

Suppose G1 and G2 are graphs with disjoint vertex sets and let k ≥ 0 be an integer. For i = 1, 2,
let Wi ⊆ V (Gi) form a clique of size k and let G′

i be obtained from Gi by deleting some (possibly
no) edges from Gi[Wi] with both endpoints in Wi. Consider a bijection h : W1 → W2. We define
a k-sum G of G1 and G2, denoted by G = G1 ⊕k G2 or simply by G = G1 ⊕ G2, to be the graph
obtained from the union of G′

1 and G′
2 by identifying w with h(w) for all w ∈ W1. The images of

the vertices of W1 and W2 in G1 ⊕k G2 form the join set.
Note that each vertex v of G has a corresponding vertex in G1 or G2 or both. It is also worth

mentioning that ⊕ is not a well-defined operator: it can have a set of possible results.
The following lemma shows how the treewidth changes when we apply a clique-sum operation,

which plays an important role in our results.

Lemma 2 ([18, Lemma 3]) For any two graphs G and H, tw(G⊕H) ≤ max{tw(G), tw(H)}.

2.4 Clique-Sum Decompositions of H-Minor-Free Graphs

Our result uses the deep theorem of Robertson and Seymour on graphs excluding a fixed graph
as a minor [37]. Intuitively, their theorem says that, for every graph H, every H-minor-free graph
can be expressed as a “tree structure” of pieces, where each piece is a graph that can be drawn
in a surface in which H cannot be drawn, except for a bounded number of “apex” vertices and a
bounded number of “local areas of non-planarity” called vortices. Here the bounds depend only
on H.

Roughly speaking we say a graph G is h-almost embeddable in a surface S if there exists a set X
of size at most h of vertices, called apex vertices or apices, such that G−X can be obtained from
a graph G0 embedded in S by attaching at most h graphs of pathwidth at most h to G0 within h
faces in an orderly way. More precisely:

Definition 1 A graph G is h-almost embeddable in S if there exists a vertex set X of size at most
h called apices such that G−X can be written as G0 ∪G1 ∪ · · · ∪Gh, where

1. G0 has an embedding in S;
2. the graphs G1, . . . , Gh, called vortices, are pairwise disjoint;
3. there are faces F1, . . . , Fh of G0 in S, and there are pairwise disjoint disks D1, . . . , Dh in S,

such that for i = 1, . . . , h, Di ⊂ Fi and Ui := V (G0) ∩ V (Gi) = V (G0) ∩Di; and
4. the graph Gi has a path decomposition with bags (Bu)u∈Ui of width less than h, such that

u ∈ Bu for all u ∈ Ui. The sets Bu are ordered by the ordering of their indices u as points
along the boundary cycle of face Fi in G0.
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An h-almost-embeddable graph is called apex-free if there exists such an embedding in which the set
X of apices is empty.

Now, the deep result of Robertson and Seymour is as follows.

Theorem 4 ([37]) For every graph H, there exists an integer h ≥ 0 depending only on |V (H)|
such that every H-minor-free graph can be obtained by at most h-sums of graphs that are h-almost-
embeddable in some surfaces in which H cannot be embedded.

In particular, if H is fixed, any surface in which H cannot be embedded has bounded genus.
Thus, the summands in the theorem are h-almost-embeddable in bounded-genus surfaces.

3 Overview of Proof of Main Theorem

The proof of our main theorem (Theorem 2) is based on a series of reductions. Each reduction
converts a given graph into a “simpler” graph whose treewidth is Ω(tw(G)).

The first reduction applies Theorem 4 to the original graph G, decomposing it into a clique sum
of almost-embeddable graphs. By Lemma 2, at least one summand in this clique sum has treewidth
at least tw(G). Therefore we can focus on this single summand of large treewidth. However, we
note that this summand may not be a minor of G, and therefore it is not enough to prove that the
summand has a large grid as a minor; we must deal with this issue later in the proof.

The second, trivial reduction is to remove the apices from the almost-embeddable graph. This
reduction changes the treewidth by at most an additive constant. Now our almost-embeddable
graph is apex-free.

The third reduction effectively removes the vortices from the apex-free almost-embeddable
graph. This reduction uses that vortices have small pathwidth to conclude that the treewidth
remains roughly the same. At this point the graph has bounded genus, because we have removed
both apices and vortices.

Because the graph has bounded genus, it has a large grid as a minor. However, this grid is not
useful: the graph is not necessarily a minor of the original graph G because, during the clique-sum
decomposition, we may have introduced extra edges when the join set was completed into a clique.
We call such edges virtual edges, and all other edges actual edges. One difficulty of Theorem 4 is
that it does not guarantee that the virtual edges can be obtained by taking a minor of the original
graph G, and therefore the pieces may not be minors of G. The fourth reduction overcomes this
difficulty by obtaining some virtual edges by taking minors of the original graph G, and removes
other virtual edges which cannot be obtained, while still preserving the treewidth up to constant
factors. We call the resulting graph an approximation graph.

The approximation graph is both a minor of G and has bounded genus. Now we use the fact
that a bounded-genus graph with treewidth w has an Ω(w)×Ω(w) grid as a minor. Therefore both
the approximation graph and G have such a grid as a minor.

4 Proof of Main Theorem

In this section we prove Theorem 2.
First we apply Theorem 4 to the original graph G, decomposing it into a clique sum of almost-

embeddable graphs.

Lemma 3 At least one summand in the clique sum has treewidth at least tw(G).
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Proof: Immediate by Lemma 2. 2

Let G′ denote a summand in the clique sum with tw(G′) ≥ tw(G). For every vertex v in G′,
there is a corresponding vertex f(v) in G by following the definition of clique sum. Each edge {u, v}
in G′ may or may not have a corresponding edge {f(u), f(v)} in G. If the edge {f(u), f(v)} exists
in G, we say that {u, v} is an actual edge in G′; otherwise, it is a virtual edge in G′. Virtual edges
arise from removing edges from the join set during a clique sum.

Because G′ is h-almost-embeddable in some bounded-genus surface, it consists of a bounded-
genus graph augmented by at most h vortices and at most h apices. We remove all apices from G′ to
produce an apex-free h-almost-embeddable graph G′′. Because adding a vertex and any collection
of incident edges to a graph can increase the treewidth by at most 1, we have the following relation
between the treewidths of G′ and G′′:

Lemma 4 tw(G′′) ≥ tw(G′)− h.

Next we remove all vortices from G′′. Let G′′
0 denote the bounded-genus part of the apex-free

h-almost-embeddable graph G′′, and let Ui denote the set of vertices at which vortex i is attached
to G′′

0 (as in Definition 1). Define G′′′ = G′′
0 −U1 −U2 − · · · −Uh, i.e., G′′′ is the result of removing

all vertices from vortices in G′′.

Lemma 5 tw(G′′′) = O(tw(G′′)) for h = O(1).

Proof: Suppose G′′ decomposes into G′′
0 ∪ G′′

1 ∪ G′′
2 ∪ · · · ∪ G′′

h where each G′′
i , i ≥ 1, is a vortex

as in Definition 1. Define an intermediate graph Ĝ as follows. Let Ui = {u1
i , u

2
i , . . . , u

mi
i } be the

cyclically ordered vertices of G′′
0 at which vortex G′′

i is attached. We obtain Ĝ by starting from G′′
0

and adding edges {uj
i , u

j+1
i } where they do not already exist, and where j + 1 is treated modulo

mi, for each 1 ≤ i ≤ h and each 1 ≤ j ≤ mi. Because we only added a planar graph within the
face corresponding to Ui, Ĝ is embeddable in the same bounded-genus surface as G′′

0.
We claim that tw(G′′) ≤ (h+1)2 (tw(Ĝ)+1). Consider some minimum-width tree decomposition

of Ĝ, and consider each bag B of that tree decomposition. For each uj
i that occurs in bag B, we add

to B the corresponding bag B
uj

i
from the path decomposition of vortex G′′

i . The resulting bags form

a tree decomposition of G′′ because {u1
i , u

2
i , . . . , u

mi
i } are connected in a path in Ĝ. By charging

the ≤ h+1 added vertices to the occurrence of uj
i that triggered the addition, each bag increases in

size by a factor at most h + 1 for each of the h vortices. Thus the width of this tree decomposition
of G′′ is at most (h(h + 1)) (tw(Ĝ) + 1)− 1, which is stronger than the desired claim.

Let ˆ̂
G be the graph resulting from Ĝ by contracting the face {u1

i , u
2
i , . . . , u

mi
i } in Ĝ into a single

vertex, for each i. Applying Lemma 1, h times, we obtain tw( ˆ̂
G) = Ω(tw(Ĝ)) because h and the

genus of the surface in which Ĝ is embedded are O(1). Therefore tw(G′′) = O(tw( ˆ̂
G)).

Finally we delete each contracted vertex in ˆ̂
G, which results in G′′′. Thus tw(G′′′) ≥ tw( ˆ̂

G)−h,
so tw(G′′) = O(tw(G′′′)) as desired. 2

A similar technique to the proof of Lemma 5 has been used by others, e.g., [27, 12].
At this point the graph has bounded genus, because we have removed both apices and vortices.

In the next step we deal with virtual edges. Intuitively, for each summand G′ in the clique-
sum decomposition of the original graph G, we construct a graph G̃ which is a minor of G and
“approximately” preserves the virtual edges within G′.

For this step we need an additional property of the clique-sum decomposition obtained in the
proof of Theorem 4: each clique sum involves at most three vertices from each summand other than
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apices and vertices in vortices of that summand. As observed by Seymour [39], this stronger form
of Theorem 4 follows from exactly the same proof in [37]. Also, an explicit proof of this stronger
form is given in [17, Theorem 2.2], which also proves an algorithmic version of Theorem 4.

Definition 2 Let G′ be an h-almost-embeddable graph in a clique-sum decomposition of a graph G
arising from Theorem 4. The approximation graph of G′, denoted by G̃, is obtained by starting
from G′′′, removing the virtual edges, and replacing some of them as follows. In the clique-sum
decomposition of G, for each clique sum involving G′ with the property that the join set W has
|W ∩ V (G′′′)| > 1, we do the following:

1. If |W ∩ V (G′′′)| = 2, we add an edge between these two vertices.
2. If |W ∩ V (G′′′)| = 3 and there is more than one clique sum that contains W ∩ V (G′′′) in its

join set, we add all edges between pairs of vertices in W ∩ V (G′′′).
3. If |W ∩ V (G′′′)| = 3 and there is only one clique sum that contains W ∩ V (G′′′) in its join

set, we add a new vertex v inside the triangle of W ∩ V (G′′′) on the surface and then add an
edge connecting v to each vertex of W ∩ V (G′′′).

Lemma 6 Let G′ be an h-almost-embeddable graph in a clique-sum decomposition of a graph G
arising from Theorem 4. The approximation graph G̃ of G′ is a minor of G and can be embedded
in the same surface as the bounded-genus part of G′.

Proof: First, G′′′ with all virtual edges removed is a minor of G, because the former graph can
be constructed from G by deleting all vertices not in the summand G′ and deleting all apices
and vertices in vortices in G′. All that remains to show is that the edges added in Cases 1–3 of
Definition 2 can also be formed as a minor of G. We use the (trivial) additional property of the
clique-sum decomposition arising from the proof of Theorem 4 that each summand in the clique
sum is connected even after removal of the join set. (If a summand were not connected after
the removal of the join set, we could rewrite the initial clique-sum decomposition by splitting the
summand into a clique sum of these pieces.) Now, for each clique sum between G′ and F with
the property that the join set W has |W ∩ V (G′′′)| > 1, we contract F down to a single vertex
v adjacent to all vertices in the join set. In Case 3, this vertex v is precisely the desired vertex
v inside the triangle W ∩ V (G′′′). This triangle is guaranteed to be empty in the bounded-genus
part of G′ in the clique-sum decomposition arising from Theorem 4; if this were not the case, again
we could rewrite the clique-sum decomposition by splitting G′ into a clique sum of two pieces.
Thus the resulting graph can be embedded in the same surface as the bounded-genus part of G′.
In the other two cases, we contract v into a vertex of W ∩ V (G′′′)—in Case 2, we contract two
different v’s into two different vertices of W ∩ V (G′′′)—and obtain the additional edges added to
G̃. Finally, we delete the apices and vertices in vortices in G′, and delete any other summands that
had |W ∩V (G′′′)| ≤ 1. In the end we have contracted and deleted edges in G to obtain precisely G̃.

2

Lemma 7 tw(G̃) ≥ 1
3(tw(G′′′) + 1)− 1.

Proof: To prove that tw(G′′′) ≤ 3(tw(G̃) + 1) − 1, we start from a minimum-width tree decom-
position of G̃ and convert it into a tree decomposition of G′′′. We need only consider Case 3 in
Definition 2 because otherwise G̃ is identical to G′′′. For each occurrence of an added vertex v from
Case 3 in a bag B in the tree decomposition of G̃, we replace v in B with all three vertices from
W ∩ V (G′′′). The result is a tree decomposition of G′′′ where each bag has increased in size by at
most a factor of 3. 2

10



By Lemma 6, the approximation graph G̃ is both a minor of G and has bounded genus. By [12,
Theorem 3.5], every bounded-genus graph with treewidth Ω(r) has an r × r grid as a minor. By
Lemmas 3, 4, 5, and 7, tw(G̃) = Ω(tw(G)). Therefore G̃ and thus G have an Ω(tw(G))×Ω(tw(G))
grid as a minor. This concludes the proof of Theorem 2.

5 Conclusion and Further Remarks

We have shown that every graph excluding a fixed minor has a grid minor whose treewidth is within
a constant factor of the graph’s treewidth. Such a tight connection has many combinatorial and
algorithmic applications through the theory of bidimensionality. These applications suggest two
directions for improvement and generalization.

First, the constant factor we obtain is likely not the best possible. The dependence of the
factor on H is of particular interest because it can severely affect the running time of algorithms
based on this result. The factor must be Ω(

√
|V (H)| lg |V (H)|), because otherwise such a bound

would contradict the lower bound for general graphs. An upper bound near this lower bound (in
particular, polynomial in |V (H)|) is not out of the question: the bound on the size of separators in
[5] has a lead factor of |V (H)|3/2. In fact, Alon, Seymour, and Thomas [5] suspect that the correct
factor for separators is Θ(|V (H)|), which holds e.g. in bounded-genus graphs. We also suspect that
the same bound holds for the factor in Theorem 2, which would imply the corresponding bound
for separators.

Second, it would be interesting to determine the tightest possible relation between treewidth and
grid minors in general graphs. This problem was posed by Robertson, Seymour, and Thomas [38];
the answer is that the treewidth must be somewhere between Θ(r2 lg r) and 2Θ(r5). A bound closer
to Θ(r2 lg r) might result in efficient algorithms for computing minor-bidimensional parameters in
general graphs.

Finally, it would be interesting to obtain a constant-factor (polynomial-time) approximation
algorithm for treewidth in H-minor-free graphs for a fixed H, through the framework used in this
paper. Constant-factor approximation algorithms for treewidth are known for planar graphs [40],
single-crossing-minor-free graphs [18]. Using a different approach, a constant-factor approximation
was recently obtained for H-minor-free graphs for a fixed H [24]. For general graphs, the best known
approximation ratio was O(lg tw(G)) [6], until the recent O(

√
lg tw(G))-approximation of [24].

These approximation algorithms have recently been used in fixed-parameter and approximation
algorithms; see e.g. [18, 10, 15].
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