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Abstract:
We analyze the mathematical existence of one of David Huffman’s most promi-
nent curved-crease designs: the Hexagonal Column with Cusps, featuring circu-
lar, parabolic, and straight creases. Observations of the physical folded shape
suggest that the concave regions between two parabolas form a cylinder, and the
regions between the circle and the nearest intersection of the parabolas form a
cone. In our analysis, we deduce the remaining rulings that result in a numeri-
cally closed hexagonal shape. Finally, we explore other variations of the shape,
including those that incorporate only circular creases.

1 Introduction
Folding paper along curved creases produces a variety of intricate shapes that
find application in artistic exploration dating back to the Bauhaus in 1927, along
with foundational contributions by Huffman and Resch in the late 1900s [Demaine
et al. 15a]. Contemporary origami artists who use curved creases include Erik and
Martin Demaine, Robert Lang, Ekaterina Lukasheva, Jun Mitani, Jeanine Mosely,
Saadya Sternberg, and Polly Verity.

Curved creases are also practical for cost-efficient fabrication as they offer a
rich family of complex 3D shapes from relatively few creases. Folding paper by
hand along curved creases is an accessible way to explore the variety of possible
shapes. But practical applications require a precise digital model for analyzing
features such as structural stiffness. Unfortunately, the task of digitally designing
accurate and smooth folded shapes presents significant challenges. An important
step toward developing suitable design tools is gaining a better understanding of
the geometry of existing folded designs and their folding behavior.

In the quest for a precise mathematical description, a first abstraction step is
to replace flat sheets of material with mathematical surfaces that can be flattened
(developed) into the plane without stretching or tearing, known as developable sur-
faces. Such surfaces are well-studied in classical differential geometry and are
characterized by a family of straight lines, known as rulings, each met by a single
tangent plane to the surface. When mathematically reconstructing a curved-crease
folded design, we segment the shape into individual smooth developable surfaces,
which we call developable patches. When the design comes from a flat sheet of
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Figure 1: Hexagonal Column with Cusps (David Huffman, 1978) and corre-
sponding crease patterns. Left: Original folding (Figure 4.4.48 in [Koschitz 14]).
Used with permission of the Huffman family. Center: Discretization by [Demaine
et al. 18]. Right: Smooth reconstruction presented in this paper.

paper, the curved boundaries of two adjacent developable patches are identical in
their development.

A crucial part of the analysis of a folded shape is to identify and parameter-
ize the rulings of the developable patches. In the few instances where an ac-
curate prediction of these rulings is possible, analyzing the corresponding shape
tends to be straightforward. Notable examples include Mosely’s analysis of her
design, the “Orb” [Mosely 02], and the parameterization of the folded Vesica Pis-
cis by [Mundilova and Wills 18]. Demaine et al. demonstrate the existence of lens
tessellations with convex curves [Demaine et al. 15b], and analyze many of David
Huffman’s designs that use conics as creases [Demaine et al. 18].

However, in the vast majority of artistic curved crease designs, guessing or an-
alyzing the rulings is not straightforward. This becomes particularly problematic
when more than one crease is involved, as not all ruling assignments are feasi-
ble. The rulings must satisfy certain geometric constraints, and this can lead to an
overconstrained system. Generally, an optimization-based approach is necessary to
determine the rulings of a shape [Kergosien et al. 94].

In the analysis that follows, we examine David Huffman’s Hexagonal Column
with Cusps; see Figure 1. [Demaine et al. 18] demonstrate that the choice of “nat-
ural” rulings does not lead to a folded state, though parts of the rulings can be de-
duced from assumptions about the shape. The authors introduce a discrete approx-
imation that suggests an alternative ruling, and we show here a smooth analogue
that bears similarity.

The main difficulty in the analysis of the Hexagonal Column is the assignment
of rulings to three consecutive patches. Observing the physical folded shape, we
can make educated guesses about the rulings of the first and last patch: the concave
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regions between two parabolas appear to form a cylinder (parallel rulings), and the
regions between the circle and the nearest intersection of the parabolas appear form
a cone (converging rulings). In this paper, we provide a computational framework
to find the rulings of the central patch when given the rulings of its two neighboring
patches. By contrast, previous work by [Alese 22] explores the propagation of
rulings across creases, a method which is suitable if you can establish the rulings
for two adjacent patches, which does not apply here.

Our paper is structured as follows: First, we review some known theory on
developable surfaces and the parametrizations of a single curved crease. In Sec-
tion 3, we consider a combination of three patches joined along two creases and
demonstrate how to determine the rulings of a central patch when the rulings of
its adjacent patches are specified. We apply these findings to the Hexagonal Col-
umn in Section 4. Finally, in Section 4.5, we explore some variations of the crease
pattern.

2 Curved Folding Primer
In this section, we establish the foundation of our analysis of shapes from devel-
opable surfaces. We follow the notation used by [Mundilova 23], which builds
upon works of [Demaine et al. 15b, Demaine et al. 18].

2.1 Parametrization of Developable Surfaces
In the following, we parametrize developable surfaces as ruled surfaces while im-
posing an additional constraint to ensure developability.

2.1.1 Ruled Surfaces
We parametrize a ruled surface as

S(t,u) = X(t)+uR(t), (1)

where X(t) : T → R3 is a curve, the directrix, and R(t) : T → S2 are unit-length
vectors, the so-called ruling directions. Without loss of generality, we assume
T = [0, tmax], for some tmax > 0, and u ∈ R.

We assume that the curve is equipped with an orthonormal frame and we de-
scribe the location of the ruling vectors with respect to this frame. To ensure that
the curve’s frame is continuous, we define the curve X(t) through three functions:
K(t) : T → R, τ(t) : T → R, and s(t) : T → R which define X(t) up to Euclidean
motion through the Frenet-Serret formulas, that is, X′(t) = s′(t)T(t), whereT′(t)

N′(t)
B′(t)

= s′(t)

 0 K(t) 0
−K(t) 0 τ(t)

0 −τ(t) 0

T(t)
N(t)
B(t)

 . (2)

Here we require that the K(t), τ(t), and s′(t) are continuous, and s′(t)> 0.
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Figure 2: Illustration of the notation of a developable patch and its development.

Note that as we allow K(t) to take negative values, the described frame is not
a Frenet-frame. Moreover, functions with isolated parameters or intervals where
K(t) = 0 or τ(t) = 0 still yield a continuous frame (T(t),N(t),B(t)). Nevertheless,
at parameter values where the Frenet-frame is defined, the computed frame coin-
cides with the Frenet-frame, differing only by sign. Moreover, K(t) corresponds
to the curvature of the directrix up to sign, while τ(t) is the torsion of the directrix
when defined.

To determine the ruling directions with respect to the frame (T(t),N(t),B(t)),
we introduce two additional angular functions: the inclination angle ϕ(t) : T → R
and the ruling angle θ(t) : T → [0,π); see Figure 2.

The inclination angle ϕ(t) encodes the angle between a one-parameter family
of planes Π(t), which contain the curve’s tangent vectors T(t). Those planes will
correspond to the tangent planes if the ruled surface is developable. We express the
normal vector P(t) of Π(t) as

P(t) = cosϕ(t) B(t)+ sinϕ(t) N(t), (3)

resulting in ϕ(t) being the signed angle between P(t) and B(t).
Within the plane Π(t), we locate the ruling direction using the ruling angle as

R(t) = cosθ(t) T(t)+ sinθ(t)(P(t)×T(t))
= cosθ(t) T(t)+ sinθ(t)(cosϕ(t) N(t)− sinϕ(t) B(t)) . (4)

In the following computations, we require both θ(t) and ϕ(t) to be C1. Addition-
ally, we will assume that θ(t) : T → (0,π), excluding cases where R(t) is aligned
with the tangent T(t) of X(t).

2.1.2 Developability Condition and Development
It is known that the ruled surface in Equation (1) is developable if for all rulings,
the tangent planes along points on a ruling are the same [Pottmann and Wallner 10,
Mundilova 23]. This condition can be expressed as the det(X′(t),R(t),R′(t)) = 0.
Using the Frenet-Serret equations in Equation (2) and Equation (4), this condition
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simplifies to
ϕ ′(t)
s′(t)

= τ(t)+K(t)sinϕ(t)cotθ(t); (5)

see [Mundilova 23] for more details.
Given a developable surface S(t,u), that is, a ruled surfaces satisfying the

above equation, we will parametrize its flattened configuration, the development,
by s(t,u) = x(t)+ur(t), where x(t) : T → R2 represents the 2D counterpart of the
directrix X(t), and r(t) : T → S1 the unit-length 2D ruling direction; see Figure 2.

To obtain the developed directrix x(t), we consider the geodesic curvature of
X(t) as a curve on S(t,u), that is, the curvature of the projection of X(t) on Π(t) at
parameter t,

k(t) = K(t)cosϕ(t). (6)

We obtain x(t) by determining the 2D curve with signed curvature k(t) and parametriza-
tion speed s′(t). This amounts in solving the system of differential equations
x′(t) = s′(t)t(t), where(

t′(t)
n′(t)

)
= s′(t)

(
0 k(t)
−k(t) 0

)(
t(t)
n(t)

)
. (7)

Note that a solution n(t) points to the “left” side of t(t), and thus k(t) corresponds
to the signed curvature in the developed state in [Demaine et al. 18]. As isometry
preserves angles on surfaces, particularly the oriented angle between T(t) and R(t)
or P(t)×T(t), the developed (left-side) ruling directions read

r(t) = cosθ(t) t(t)+ sinθ(t) n(t).

2.1.3 Ruling Curvature
In subsequent sections, we will consider bend configurations S(t,u) of a planar de-
velopable patch s(t,u) with specified rulings. To show that two such configurations
are identical, we calculate the curvature that indicates the surface’s bend perpen-
dicular to the rulings, following the methodology of [Demaine et al. 15b, Demaine
et al. 18]. This ruling curvature is the normal curvature at a given point on an arc-
length parametrized curve perpendicular to the rulings at parameter t, expressed
as:

V (t) = s′(t)k(t) tanϕ(t)
1

sinθ(t)
. (8)

Up to Euclidean motion, a 3D configuration of a planar developable patch with
specified rulings is determined by its ruling curvature.

2.2 Folding a Single Curved Crease
Folding a flat piece of material along a single curved crease, denoted by x(t), offers
considerable flexibility. However, specifying the rulings for the two surface patches
incident to the crease narrows the folding motion down to a one-parameter family
of 3D configurations corresponding to this development. We will now revise the
computation of these configurations.
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Figure 3: Illustration of the notation introduced in Section 2.

2.2.1 Notation
A curved crease, denoted as x(t), locally divides the sheet into two sides, a “left”
and “right” side with respect to the orthonormal frame of the common curve,

sL(t,u) = x(t)+urL(t) and sR(t,u) = x(t)−urR(t),

where r j(t) = cosθ j(t) t(t)+ sinθ j(t) n(t) for j ∈ {L,R} is the (left-side) ruling
direction and (t(t),n(t)) is the local orthonormal frame; see Figure 3. Let k(t) and
s(t) denote the curvature and arc-length of the crease curve x(t).

2.2.2 Computation
To compute the 3D configuration, that is,

SL(t,u) = X(t)+uRL(t) and SR(t,u) = X(t)−uRR(t),

we need to determine the curvature K(t) and torsion τ(t) of the 3D crease and the
inclination angles ϕL(t) and ϕR(t) of the adjacent surfaces.

Since Equation (6) needs to be satisfied by both inclination angles, it follows
that cosϕL(t) = cosϕR(t). The interesting “folded” case occurs when ϕ(t) =
ϕL(t) = −ϕR(t) [Fuchs and Tabachnikov 99]. In this case, we consider the de-
velopability condition (Equation (5)) for both incident surfaces and Equation (6).
Solving for ϕ ′(t), τ(t), and K(t) results in

ϕ
′(t) =

1
2

s′(t)k(t)(cotθR(t)+ cotθL(t)) tanϕ(t), (9)

τ(t) =
1
2

s′(t)k(t)(cotθR(t)− cotθL(t)) tanϕ(t), (10)

K(t) =
k(t)

cosϕ(t)
. (11)

The function 2ϕ(t) quantifies the deviation from a configuration in which the
tangent planes are aligned, indicating a state where the paper is locally uncreased.
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Figure 4: Illustration of the notation introduced in Section 3.

Consequently, ϕ(t) represents half of the fold angle. Additionally, it is important
to note that ϕ(t) is determined by the differential equation in Equation (9) up to
the initial value1. Upon successful computation of the inclination angle ϕ(t), the
curvature and torsion of X(t) follow from Equation (10) and Equation (11).

The 3D configuration is then obtained by solving the Frenet-Serret equations
in Equation (2) and constructing the corresponding 3D ruling directions RL(t) and
RR(t) (Equation (4)) for appropriate inclination and ruling angles2.

3 Computation of Rulings Between Two Known Patches
We are now interested in computing the shape that results from folding along two
crease curves. Similar to the case with a single crease, the shape would exhibit
significant flexibility if no rulings were prescribed. However, prescribing the rul-
ings for all three patches could result in an overconstrained system. This issue
arises because each pair of adjacent patches functions as a one-degree-of-freedom
mechanism, which may not lead to a congruent configuration of the shared surface.

To address this, it becomes necessary to introduce some flexibility into the 2D
pattern. Below, we present one approach; for other approaches see [Mundilova 23].
Specifically, we prescribe the rulings of the outer surfaces while allowing the rul-
ings of the central patch to remain flexible.

1In fact, the inclination can be obtained as

ϕ(t) = arcsin
(

c0e
∫ t

0 f (t̄)dt̄
)

where f (t) =
1
2

s′(t)k(t)(cotθL(t)+ cotθR(t))

and c0 = sinϕ(0) is an appropriate initial value. For ϕ(t) to be real-valued for all t ∈ T , we require

|c0| ≤ cmax = min
t∈T

e−
∫ t

0 f (t̄)dt̄ .

2Since typically cmax > 0, there generally exists a one-parameter family of suitable fold angles in
the vicinity of the flat state.
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3.1 Notation
In the following, let x1(s) and x2(s) be two arc-length parametrized creases, such
that x2(s) is to the “left” of x1(s). Furthermore, let the rulings of the right surface
s1R(s,u) of x1(s) and left surface s2L(s,u) of x2(s) be specified, meaning that r1L(s)
and r2R(s) are given; see Figure 4. Let ki(s) be the curvatures of the arc-length
parametrized curves xi(s).

To encode flexible rulings in the central patch, we follow the approach by [De-
maine et al. 18]. We introduce a parameter t and two functions s1(t) and s2(t) such
that the rulings of the central patch, which is parametrized by both s1L(t,u) and
s2R(t,u), are spanned by x1(s1(t)) and x2(s2(t)), that is,

r1L(t) = r2R(t) =
x2(s2(t))−x1(s1(t))
|x2(s2(t))−x1(s1(t))|

. (12)

It follows that the ruling angles of the central surface relative to either curve
can be determined as

θ1L(t) = arctan(t1L(s1(t)) · r1L(t),n1L(s1(t)) · r1L(t)) , (13)
θ2R(t) = arctan(t2R(s2(t)) · r2R(t),n2R(s2(t)) · r2R(t)) . (14)

Here, ti(s) represents the unit tangent, while ni(s) stands for the (left-side) normal
of x1(s) and x2(s), respectively. Moreover, let θ1R(t) and θ2L(t) be the ruling angles
corresponding to r1R(s1(t)) and r2L(s2(t)), respectively.

In conclusion, the development is locally parametrized by the four surfaces

si j(t,u) = xi(t)+uσ jri(t),

where i ∈ {1,2}, j ∈ {L,R}, σL =+1, and σR =−1.

3.2 Computation
In the following, we aim to describe the geometry of the two fold curves X1(t) and
X2(t) and the incident patches. Consequently, it is necessary to establish a relation-
ship between s1(t) and s2(t), typically by assuming s1(t) = t and then determining
s2(t). We must also calculate the curvatures K1(t) and K2(t), the torsions τ1(t) and
τ2(t), and the inclination angles ϕ1L(t), ϕ1R(t), ϕ2L(t), and ϕ2R(t).

We begin our computation by considering Equation (6). This equation must be
satisfied for the patches incident to both curves X1(t) and X2(t). As in the previous
analysis, the interesting case occurs when ϕi(t) = ϕiL(t) =−ϕiR(t), linking the 2D
and 3D curvatures through

ki(si(t)) = Ki(t)cosϕi(t). (15)

Additionally, similarly to before, we require that the 3D configurations of the
four surfaces, s1L(t,u), s1R(t,u), s2L(t,u), and s2R(t,u), are developable. Conse-
quently, for i ∈ {1,2} and j ∈ {L,R}, Equation (5) simplifies to

ϕ ′i (t)
s′i(t)

= σi jτi(t)+Ki(t)sinϕi(t)cotθi j(t), (16)
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where σiL =+1 and σiR =−1.
Finally, we want to ensure that the two surfaces S1L(t) and S2R(t) belong to

the same surface. Consequently, we consider the ruling curvature of the common
patch with respect to the directrices X1(t) and X2(t), with the goal to ensure that
their principal curvatures are the same, that is,

s′1(t)K1(t)sinϕ1(t)
1

sinθ1L(t)
=−s′2(t)K2(t)sinϕ2(t)

1
sinθ2R(t)

. (17)

Solving the system of seven equations in Equation (15), Equation (16), and
Equation (17) for the seven unknowns, s′2(t), ϕ ′1(t), ϕ ′2(t), K1(t), K2(t), τ1(t), and
τ2(t), yields

s′2(t) =−s′1(t)
k1(s1(t))
k2(s2(t))

sinθ2R(t)
sinθ1L(t)

tanϕ1(t)
tanϕ2(t)

, (18)

ϕ
′
1(t) =

1
2

s′1(t)k1(s1(t))(cotθ1L(t)+ cotθ1R(t)) tanϕ1(t), (19)

ϕ
′
2(t) =−

1
2

s′1(t)k1(s1(t))
sin(θ2L(t)+θ2R(t))
sinθ1L(t)sinθ2L(t)

tanϕ1(t), (20)

Ki(t) =
ki(si(t))
cosϕi(t)

, (21)

τi(t) =−
1
2
(cotθiL(t)− cotθiR(t))ki(si(t)) tanϕi(t). (22)

Note that the first three equations form a system of differential equations for the
three unknown functions s2(t), ϕ1(t), and ϕ2(t). With appropriate initial values,
the successful computation of these functions specifies the remaining quantities,
the curvatures and torsions, through the algebraic equations in Equation (21) and
Equation (22). It is important to note that the unknown function s2(t) serves as a
parameter in the curvature of the second developed crease curve. When solving the
above differential equations using modern mathematical software, having explicit
knowledge of the second curve’s developed curvature in terms of its arc-length is
beneficial or even necessary.

Finally, the Frenet-Serret equations, as described in Equation (2), can be used to
construct the 3D configurations. Here, it is crucial to ensure that the initial values of
the differential equations, the initial orthonormal frames, are correctly positioned.
Detailed explanations are provided in [Mundilova 23].

4 Analysis of Huffman’s Hexagonal Column
David Huffman’s Hexagonal Column, depicted in Figure 1 (right), exhibits six-fold
rotational symmetry and its crease pattern contains circular, parabolic, and straight
creases, as shown in Figure 1 (left). The rotational symmetry suggests that the
region between two adjacent parabolic arches is cylindrically ruled. Additionally,
the section that connects the intersection of two neighboring parabolas with the
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circular arc must be, at the very least, locally conically ruled; see Figure 1 (right).
However, the rulings of the central strip are not obvious. In this section, we apply
the theory from Section 3 to identify rulings that are (locally) compatible and result
in a (numerically) closed shape.

Due to the symmetry of the pattern, we initially restrict our folding analysis
only to a part the the crease pattern, which we refer to as module, consisting of a
parabolic and a circular arc that share the same center and focal point, respectively;
see Figure 5a. Specifically, we set the common center to coincide with the origin,
choose the circle to have a radius of one, and let the parabola to be symmetric with
respect to the x-axis and to pass through the point (2,0).

This section starts by identifying three essential constraints on the folded mod-
ules necessary for arranging them into a closed hexagonal shape. Following this,
we detail the parametrization of a module’s development, setting the groundwork
for employing the computational methods discussed in Section 3. We then con-
sider two strategies to determine a single module’s folded state. The first strategy,
which offers only two degrees of freedom, was experimentally found insufficient
to meet the specified three constraints. The second strategy introduces an addi-
tional parameter, enabling the computation of a folded state that satisfies all three
constraints. This section concludes with a discussion of the numerical results and
explores possible variations of the shape.

4.1 Composition of Modules
Upon successfully computing a folded configuration of a module, our goal is to
arrange multiple modules to form the complete hexagonal shape. However, this is
not feasible for all folded modules, as they must satisfy certain constraints related
to their boundary.

To describe the constraints necessary for a folded module’s configuration to
achieve a closed shape, we identify the following key points in the development3,

o = (0,0), a = (2,0), a′ = (0,4), b = (1,0), b′ = (0,1), c = (2,4),

and denote their location on a folded configuration by upper-case letters, O, A, A′,
B, B′, and C; see Figure 5a.

The possibility of arranging the modules into a hexagonal shape can be sim-
plified to finding a configuration where two modules positioned “vertically” align
between two planes at a suitable opening angle; see Figure 5b. Specifically, let T be
the transformation that aligns the ordered triples of points (A,B,O) with (O,B,A).
When applying T to a copy of a folded module, we obtain two “vertically” aligned
modules. Let furthermore Π represent the base plane of the cylinder, that is, a plane
perpendicular to R := A′−C passing through C.

The requirement that two vertically aligned modules can be wedged between
two planes, Π and T (Π), can be ensured by the following two constraints:

3These points reflect the dimensions in David Huffman’s original sketches shown in Figure 4.4.46
and Figure 4.4.47 in [Koschitz 14].
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(a) One module and a illus-
tration of a folded state.
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C
ΠA′
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T (A′)
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T (B′)
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(b) Composition of four modules: development,
not aligned and aligned configuration.

Figure 5: Illustration of a module and two compositions of four copies.

• Constraint 1: T (A′) ∈Π. We measure the corresponding error e1 by computing
the absolute distance between T (A′) and Π.

• Constraint 2: T (B′) ∈ Π. Again, we measure the corresponding error e2 by
computing the absolute distance between T (B′) and Π.

In case of a hexagonal base, we additionally require that the planes have appropriate
opening angle, consequently:

• Constraint 3: The angle between R and T (R) should be 5π

6 . We define the
corresponding error as e3 =

∣∣R ·T (R)− cos 5π

6

∣∣.
It follows that a folded module satisfying the three constraints allows a composition
into a closed hexagonal shape.

4.2 Parametrization of the Development of a Module
To apply the method discussed in Section 3, we denote the arc-length parametriza-
tion of the parabolic arc by x1(s), starting with smin = 0 at a and ending4 with
smax ≈ 4.59117 at a′, and numerically compute its curvature k1(s). Let x2(s) de-
note the arc-length parametrization of the circle,

x2(s) = (coss,sins) ,

resulting in the constant curvature k2(t) = 1. To ensure that the curvature cor-
responding to the unknown arc-length parameter can be explicitly stated, we set

4For t ∈
[
0, π

2

]
, the parabolic arc can be parametrized by

p(t) =
4

1+ cos t
(cos t,sin t) .

Its arc-length can be computed as

s1(t) =
∫ t

0

∣∣p′(u)∣∣du = 2
∫ t

0

(
cos

u
2

)−3
du = 2

(
arctanh

(
sin

t
2

)
+

tan t
2

cos t
2

)
.

Consequently, smax = s1
(

π

2

)
≈ 4.59117.
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x1(t)

x2(t) X2(t)

X1(t)

(a) No singularities.

x1(t)

x2(t)

xS(s)

xE (s)
X2(t)

XS(s)

XE (s)

X1(t)

(b) With singularities.

Figure 6: Development and folded configurations of the considered modules, illus-
trating central surfaces with either no or two singularities.

s1(t) = t with the goal of determining s2(t). Consequently, we let the parameter t
have the same range as the arc-length parameter of x1(s), hence t ∈ [0, tmax] where
tmax ≈ 4.59117.

Following our assumptions about the rulings of the folded shape, we set the
ruling directions of the left and right patches to be conical and cylindrical, respec-
tively. Consequently,

r1R(t) = (−1,0) and r2L(t) =−
x2(s2(t))
|x2(s2(t))|

.

The corresponding ruling angles read

θ1R(t) = arctan(r1R(t) · t1(t),r1R(t) ·n1(t))

θ2L(t) = arctan(r2L(t) · t2(s2(t)),r2L(t) ·n2(s2(t)))

where ti(s) and ni(s) denote the tangent and normal vectors of xi(s). Finally, we
use Equation (12) to define the ruling direction r1L(t) = r2R(t) of the central patch,
and use Equation (13) and Equation (14) to define their corresponding ruling angles
θ1L(t) and θ2R(t).

This concludes our preparations regarding the parametrization of the devel-
opment in Section 3.1, and sets the stage for the computations described in Sec-
tion 3.2.

4.3 Computation of a Folded Module
We now use the equations in Section 3.2 to compute the folded states of a single
module. Through experimental observation, we find that folded states without sin-
gular points do not possess sufficient flexibility to meet the necessary constraints.
Consequently, we consider variations with singularities to (numerically) satisfy the
three required constraints.
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4.3.1 Folded Modules without Singularities
In our first approach, we attempt to populate the central surface with rulings with-
out introducing additional singularities, as illustrated in Figure 6a. Consequently,
when solving the system of differential equations presented in Equations (18)-(20)
to compute the inclination angles and the unknown parametrization speed, we ini-
tialize s2(0) = 0. Additionally, we select appropriate initial values for ϕ1(t) and
ϕ2(t).

The choice of initial values for the inclination angles impacts the value of
s2(tmax). To ensure complete coverage of the central patch, the solution s2(t) must
satisfy s2(tmax) =

π

2 . In addition to the three constraints described in Section 4.1,
this introduces a fourth constraint. However, we have only two parameters to ad-
just, namely the two initial values of the inclination angles. Experimentally, we
were unable to find a combination of the two initial values that would result in a
folded module that satisfies all four constraints.

4.3.2 Folded Modules with Singularities
To eliminate the fourth constraint and introduce a new parameter, we adjusted our
approach by allowing variations in the initial value of s2(0), within reasonable
bounds (0 < s2(0) < π

2 ). This adjustment, however, results in the central surface
not being fully covered. To compensate for this, we fill the gaps at the beginning
and end with conical surfaces connected along circular creases.

Next, we will briefly demonstrate how to attach these two conical patches at the
beginning and end, and discuss the corresponding computation.

Modified parametrization of the development. We divide the circular arc into
three parts. In the following, we use subscripts “S” and “E” to indicate whether
the newly introduced circular creases belong to the “start”, that is, the circular
segment xS(s) = x2(s) where s ∈ [0,s2(0)], or “end”, that is, the circular segment
xE(s) = x2(s) where s ∈ [s2(tmax),

π

2 ].
We define the ruling directions of the left patches to be

rS,L(s) = rE,L(s) =−
x2(s)
|x2(s)|

.

In addition, we define the ruling directions of the right patches as

rS,R(s) =
x2(s)−x1(0)
|x2(s)−x1(0)|

and rE,R(s) =
x2(s)−x1(tmax)

|x2(s)−x1(tmax)|
.

The corresponding ruling angles θS,R(t), θS,L(t), θE,R(t) and θE,L(t) follow similar
to Equation (13) and Equation (14).

Modified computation of the 3D configuration. The modified computation pro-
ceeds as follows: First, we calculate the parametrization speed and inclination an-
gles of the central patch using the method outlined in Section 3.2. This method
provides information on the lengths of the circular segments, xS(t) and xE(t).
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Figure 7: Hexagonal Column variations for angles αn where n ∈ (2,3,4,5).

For both sides, we then compute ϕS(t) and ϕE(t) as described in Section 2.2.2.
To achieve tangent-continuous transitions, we require continuous inclination an-
gles. Consequently, we set the initial values of the inclination angles with the
corresponding start and end values of ϕ2(t), that is, we set ϕS(s2(0)) = ϕ2(0) and
ϕE(s2(tmax)) = ϕ2(tmax).

Finally, to ensure tangent-continuous transitions when computing the 3D con-
figuration of the crease curve , we begin the integration of the Frenet-Serret equa-
tions at the frames located at the endpoints of X2(t). After successfully computing
the crease, we then proceed to construct the left and right ruling directions.

In conclusion, the modified approach provides us with three parameters to ad-
just that fully specify a folded configuration of the module: the initial values of the
functions s2(t), ϕ1(t), and ϕ2(t). These adjustments allow us to address the three
constraints outlined in Section 4.1.

4.4 Numerical Results and Discussion
Using numerical minimization in Mathematica (with manual help to find a good
initial guess), we obtain the following initial values and corresponding error mea-
surements,s2(0)

ϕ1(0)
ϕ2(0)

=

 0.6015913936768009
−0.7753374025984491
0.6754673354175101

 and

e1
e2
e3

=

 1.4 ·10−9

1.02 ·10−10

6.22 ·10−15

 ,

respectively.
Consequently, the folded module, corresponding to these initial values, allows

for an arrangement into a numerically closed shape, as shown in Figure 1. To better
align with David Huffman’s design, we added planar faces at the top and bottom of
the shape.

Note, however, that although our results are derived from computations using
smooth functions, the underlying mathematical program employs three operations
that may involve discretization sequentially – specifically, the computation of k1(s)
and two numerical integration steps – thereby inherently introducing numerical er-
rors into the computations. Consequently, while our analysis does not permit a
rigorous statement regarding the existence of the Hexagonal Column, it neverthe-
less provides some indications of its potential existence.
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c

x1(t)

a′

r

Figure 8: Hexagonal Column with parabolic arcs substituted by circular arcs of
radii r ∈ (3,4,5,6).

4.5 Variations
Finally, we explore two possible ways to generate variations of the Hexagonal Col-
umn.

Other regular polygonal bases. David Huffman’s work also features columns
with quadrangular bases, as opposed to hexagonal ones, as outlined by [Koschitz 14].
By generalizing the third constraint in Section 4.1 to an angle αn = (2n−1)π

2n with
n ≥ 2, upon successful computation of s2(0), ϕ1(0), and ϕ2(0), we can arrange
folded modules into columns with a 2n-gonal base; see Figure 7. Experimental ob-
servations indicate that the value of s2(0) changes across different target opening
angles, suggesting the absence of a rigid-ruling folding motion.

Circular curves. Another variation of the pattern includes replacing the parabolic
crease with a circular arc of radius r; see Figure 8 (left). In this case we have
a′ =

(
0,
√

3r/2
)

and c =
(
2,
√

3r/2
)
. We observed very similar behavior in the

rulings of the central patch, and examples of closed columns with this modification
are displayed in Figure 8 (right).

5 Open Problems and Future Work
This analysis was conducted under the assumption that the rulings between a cir-
cular arc and the intersection of parabolas are conical. However, this raises the
question of whether such an assumption is necessary and whether alternative rul-
ings could result in a closed column. Another avenue for future research involves
enhancing the numerical framework to more rigorously establish the (mathemati-
cal) existence of the Hexagonal Column.
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