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ABSTRACT 1. INTRODUCTION

We study the power of fractional allocations of resources to max- ~ The ideas we are exposed to and the choices we make are sig-
imize our influence in a network. This work extends in a natu- nificantly influenced by our social context. It has long been stud-
ral way the well-studied model by Kleinberg, Kempe, and Tardos ied how our social network (i.e., who we interact with) impacts
(2003), where a designer selects a (small) seed set of nodes in ghe choices we make, and how ideas and behaviors can spread
social network to influence directly, this influence cascades when through social networks [3, 10, 21, 22]. With websites such as
other nodes reach certain thresholds of neighbor influence, and theFacebook and Google+ devoted to the forming and maintaining of
goal is to maximize the final number of influenced nodes. Despite social networks, this effect becomes ever more evident. Individuals
extensive study from both practical and theoretical viewpoints, this are linked together more explicitly and measurable, making it both
model limits the designer to a binary choice for each node, with €asier and more important to understand how social networks affect
no chance to apply intermediate levels of influence. This model the behaviors and actions that spread through a society.
captures some settings precisely, such as exposure to an idea or Akey problemin this area is to understand how such a behavioral
pathogen, but it fails to capture very relevant concerns in others, cascade can start. For example, if a company wants to introduce
for example, a manufacturer promoting a new product by distribut- & new product but has a limited promotional budget, it becomes
ing five “20% off” coupons instead of giving away a single free critical to understand how to target their promotional efforts in or-
product. der to generate awareness among as many people as possible. A
While fractional versions of problems tend to be easier to solve Well-studied model for this is the Influence Maximization problem,
than integral versions, for influence maximization, we show that introduced by Kleinberg, Kempe, and Tardos [15]. The problem
the two versions have essentially the same computational complex-asks to find a small set of individuals to influence, such that this
ity. On the other hand, the two versions can have vastly different influence will cascade and grow through the social network to the
solutions: the added flexibility of fractional allocation can lead to maximum extent possible. For example, if a company wants to in-
vastly improved influence. Our main theoretical contribution is to troduce a new piece of software, and believes that friends of users
show how to adapt the major positive results from the integral case are likely to become users themselves, how should they allocate
to the fractional case. Specifically, Mossel and Roch (2006) used free copies of their software in order to maximize the size of their
the submodularity of influence to obtain their integral results; we eventual user base?
introduce a new notion afontinuous submodularitand use this to Since the introduction of the Influence Maximization problem
obtain matching fractional results. We conclude that similar algo- [15], there has been a great deal of interest and follow-up work in
rithms and heuristics from the integral case apply to the fractional the model. While Kempe et al. [15] give a greedy algorithm for ap-
case. In practice, we find that the fractional model performs sub- proximating the Influence Maximization problem, it requires costly
stantially better than the integral model, according to simulations Simulation at every step; thus, while their solution provides a good

on real-world social network data. benchmark, a key area of research has been on finding practical,
fast algorithms that themselves provide good approximations to the

*A full version of this paper is available &it t p: / / www. cs. greedy algorithm [4, 5, 6, 7, 16]. The practical, applied nature of

und. edu/ ~hnmahi ni / fraci nf . pdf the motivating settings means that even small gains in performance

(either runtime or approximation factor) are critical, especially on
large, real-world instances.
We believe that the standard formulation of the Influence Max-
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ample, a company promoting a new product may find that giving ness of the integral case persists as well. In the case of fixed thresh-
away ten free copies is far less effective than offering a discount of olds, we show that all of the hardness results of Kempe et al. [15]

ten percent to a hundred people. We proposadaional version of extend readily to the fractional case. Specifically, we show that,
the problem where the optimizer has the freedom to split influence for the fractional version of linear influence model, even finding
across individuals as they see fit. ann'~-approximation is NP-hard. First we prove NP-hardness

To make this concrete, consider the following problem an opti- of the problem by a reduction from the independent set problem
mizer might face. Say that an optimizer feels there is some small, (Theorem 6), and then we strengthen the result to prove inapprox-
well-connected group whose adoption of their product is critical to imability (Corollary 7). In addition, when thresholds are assumed
success, but only has enough promotion budget remaining to influ- to be independent and uniformly distributed 1], we show that
ence one third of the group directly. In the original version of Influ- it is NP-hard to achieve better thana— 1/e)-approximation in
ence Maximization, the optimizer is forced to decide which third the Triggering model introduced by Kempe et al. [15]. This holds
of the group to focus on. We believe it is more natural to assume even for the simple case where triggering sets are deterministic and
they have the flexibility to try applying uniform influence to the have constant sizes, and shows that even for this simple case the
group, say offering everyone a discount of one third on the price of greedy approximation is tight, just as in the integral case. An im-
their product, or in fact any combination of these two approaches. portant aspect of all of these reductions is that they use very simple
While our results are preliminary, we feel that our proposed model directed acyclic graphs (DAGSs), with only two layers of vertices.
addresses some very real concerns with practical applications of In-  Our last set of results focus on the special case where the net-
fluence Maximization, and offers many opportunities for important work is a DAG. Here, we focus on the linear influence model with

future research. uniform thresholds. In this case, we see that we can easily compute
. the expected influence from any single node via dynamic program-
1.1 Our Results and Techniques ming; this closely resembles a previous result for the integral case

This work aims to understand how our proposed fractional ver- [7]. In the fractional case, this gives us a sort of linearity result.
sion of the Influence Maximization problem differs from the in- Namely, if we are careful to avoid interference between the influ-
tegral version proposed by Kleinberg, Kempe, and Tardos [15]. ences we place on nodes, we can conclude that the objective is
We consider this question from both a theoretical and an empiri- essentially linear in the seed set. While the conditions on this theo-
cal perspective. On the theoretical side, we show that, unlike many rem seem strong at first glance, it has a very powerful implication:
problems, the fractional version appears to retain essentially theall of the hardness results we presented involved choosing optimal
same computational hardness as the integral version. The problemseed sets from among the sources in a DAG, and this theorem says
are very different, however: we give examples where the objective that with uniform thresholds the greedy algorithm findsapémal
values for the fractional and integral versions differ significantly. such seed set.

Nonetheless, we are able to carry over the main positive results to

the fractional setting. On the empirical side, we simulate the main 1.2 Related Work

algorithms and heuristics on real-world social network data, and
find that the computed solutions are substantially more efficient in
the fractional setting.

Economics, sociology, and political science have all studied and
modeled behaviors arising from information and influence cascades
in social networks. Some of the earliest models were proposed by

Our main theoretical result shows that the positi\{e results of Granovetter [10] and Schelling [21]. Since then, many such models
Mossel and Roch [18] extend to our proposed fractional model. have been studied and proposed in the literature [3, 20, 22].

Theirre;ult states that, intheintegral cgse,.when inﬂuepce between The advent of social networking platforms such as Facebook,
ager_lts_ IS s_ubmodular, S0 too is the ob_jectlve function in Influence Twitter, and Flickr has provided researchers with unprecedented
Ma}mleatlon. We show that, for a continuous analog Of submodu- 445 apout social interactions, albeit in a virtual setting. The ques-
larity,” the same results holds for our fractional case. First we con- tion of monetizing this data is critically important for the entities

Is;debrla dlsc[]etlzed virsmn of the fgactlonal In(;luencg rl\]/la;:lm!zatlon Ithat provide these platforms and the entities that want to leverage
roblem, where each vertex can be assigned aweight that Is a Mulyic ga¢4 1o engineer effective marketing campaigns. These two

. > each vel r \
tiple of some discretization parameter= . Then we consider ;o5 have generated huge interest in algorithmic aspects of these
systems.

N
A question of central importance is to recognize “important in-

the final influenced set by choosing a weighted seed sethere

the weight of each element is a multiple of We show that the
dividuals” in a social network. Domingos and Richardson [8, 19]
were the first to propose heuristics for selection of customers on

fractional Influence Maximization objective is a submodular func-

tion of S forany N > 1 (Theorem 2). We further extend this result

to the continuous case (Theorem 3). Note that this result does not, network for marketing. This work focuses on evaluating cus-
tomers based on their intrinsic and network value. The network
value is assumed to be generated by a customer influencing other

follow simply by relating the fractional objective function to the
integral objective and interpolating, or other similar methods; in-

customers in her social network to buy the product. In a seminal
paper, Kempe et al. [15] give an approximation algorithm for se-

stead, we need to use a nontrivial reduction to the generalization

of the influence maximization problem given by Mossel and Roch

[18]. Not or_lly do_es this result S.hOW. that our probl_em admits a lection of influential nodes under the linear threshold (LT) model.
greedy salution with good apprquaﬂon guarantee, it furthermore Mossel and Roch [17] generalized the results of Kempe et al. [15]
gIves us hOp‘? that We carn readily adapt the large body of worl_< 9N {5 cases where the activation functions are monotone and submod-
efficient heuristics for the integral case to our problem and achieve ular. Gunnec and Raghavan [12] were the first to discuss fractional

golod r(;e;lt.!lts.t howina th bmodularity of the obiecti ist incentives (they refer to these as partial incentives/inducements) in
n addition to snowing the submodutarity of the ObJeClVe PersIStS o context of a product design problem. They consider a frac-

from the integral case to the fractional case, we show that the hard'tional version of the target set selection problem (i.e., fixed thresh-

Note that our notion of continuous submodularity is neither of the ©0!dS, fractional incentives, a linear influence model, with the goal
two most common continuous extensions of submodularity, namely of minimizing the fractional incentives paid out so that all nodes in
the multilinear and Lovasz extensions. the graph are influenced). They provide an integer programming




model, and show that when the neighbors of a node have equal in-Fractional Influence Model. A major shortcoming of the model
fluence on it, the problem is polynomially solvable via a greedy described above is that it isolates the effects of influence directly
algorithm [11, 12, 13]. applied by the optimizer from those of influence cascading from
Some recent work has directly tackled the question of revenue other individuals in the network. In particular, note that every in-
maximization in social networks by leveraging differential pricing dividual in the social network is either explicitly activated by the
to monetize positive externalities arising due to adoption of prod- optimizer (and influence from their neighbors has no effect), or is
uct by neighbors of a customer [1, 2, 9, 14]. Other work has fo- activated by influence from other agents with no (direct) involve-
cused on finding faster algorithms for the target set selection prob- ment from the optimizer. This separation is artificial, however, and
lem [5, 6, 7, 16]. A very recent theoretical result in this direction is in practical settings a clever optimizer could try to take advantage
anO(“"*Z%) algorithm giving an approximation guarantee of ~ of known influences between the individuals they try to affect. For
1— 1 —<[4]. While Leskovec et al. [16] do not compare their algo- example, if an optimizer is already planning to activate somé'set
rithm directly with the greedy algorithm of Kempe et al. [15], the ~©Of individuals, it should require notably less effort to ensure activa-
heuristics in other papers [5, 6, 7] approach the performance of the ion of any individual who is heavily influenced by the set
greedy algorithm quite closely. For example, in [6], the proposed ~ We propose the following modification of the previously de-
heuristic achieves an influence spread of approximately 95% of the Scribed influence model in order to capture this phenomenon.
influence spread achieved by the greedy algorithm. An interesting Rather than selecting a sétof nodes to activate, the optimizer
fact on the flip side is that none of the heuristics beat the greedy SPecifies a vecta € [0, 1]" indexed by V, where:,, indicates the

algorithm (which itself is a heuristic) for even a single dataset. ~ amount of direct influence we apply to We assume that this di-
rect influence is additive with influence from other vertices in the
2 MODEL network, in the sense that if the current activated sétiis a stage

of our processy becomes activated in the next stage if and only if
fv(S) + z, > 6,. Here, we assume that no vertices are initially
Integral Influence Model. We begin by describing the model  activated, that i, = (. Note, however, that even without contri-
used for propagation of influence in social networks used by Mos- putions from other nodes, our directly-applied influence can cause
sel and Roch [18]; it captures the model of Kempe et al. [15] as activations. Notably, it is easy to see that
a special case. While the latter described the spread of influence o
in terms of an explicit network, the former leaves the underlying St ={veV iz, >0}

social network implicit. In th?s_model,_ th_e social netwo_rk is _given We point out, however, that our process is not simply a matter of se-
by a vertex set” and an explicit description of how vertices influ-  |acting an initial activated set at random with marginal probabilities
ence each other. For each veriex: V, we are given a function  y The influencer, we apply to not only has a chance to activate
fo =27 — [0, 1] specifying the amount of influence each subset j; 4t the outself, but also makes it easier for influence from other
S C V exerts orw. We denote the set of all influence functions by ertices to activate it in all future stages of the process. Lastly, we
F= {fv}vev-_ " observe that this model captures the originally discussed model as
Given a social network specified iy, 7), we want to under- 4 gpecial case, since selecting sets to initially activate corresponds
stand ho_w influence propagates in this netwc_)rk. _The spread of in- exactly with choosinge € {0, 1}", just with a single-round delay
fluence is modeled by a process that runs in discrete stages. Iy the process. This motivates us to term the original model as the
addition to the influence functiofi,, each vertex has athreshold  jntegral influence model, and this new model as the fractional in-
0. € [0,1] representing how resistant it is to being influenced. If, fyence model. As before, we want to understand the structure of
at a given stage, the currently activated set of vertices is V, the expected value of the final influenced set as a function of how

then any unactivated € 1\ S'becomes activated in the next stage \ye apply influence to nodes in a graph. We extend our function to
if and only if f,(S) > 6,. Our goal is to understand how much . 0,1" — Ry by

influence different sets of vertices exert on the social network as

a whole under this process; we can measure this by running this o(x) = E[w(SY) | we apply direct influences ].
process to completion starting with from a particidaed setand ©

seeing how large the final activated set is. In some settings, we As before, we want to both understand the structure ahd be
may value activating certain (sets of) vertices more highly, and to able to find (approximately) optimal inpugs

capture this we define a weight functian: 2 — R, on subsets

of V. We now define the value of a seed $ets follows. For Gap Between Integral and Fractional A natural question when
an initially activated seby, let SP, 59, ..., 59 be the activated  presented with a new model is whether it provides any additional
sets aften, 2,...,n = |V| stages of our spreading process, when power over the previous one. Here, we answer that question in the

O = (6.)vev is our vector of thresholds. Our goal is understand- affirmative for the fractional extension of the Influence Maximiza-
ing the value ofw(SS) when we setS, = S. Note this depends  tion model. In particular, we present two examples here that show
strongly on®; the exact values of thresholds can have a significant that fractional influence can allow a designer to achieve strictly bet-
impact on the final activated set. If the vectrcan be arbitrary, ter results than integral influence for a particular budget. The first
finding the best seed set — or even any nontrivial approximation of example shows that with fixed thresholds, this gap is linear (per-
it — becomes NP-Hard (see Section 5 for discussion and proofs of haps unsurprisingly, given the hardness of the problem under hard
this). Thus, we follow the lead of Kempe et al. [15] and assume thresholds). The second example, however, shows that even with

that each threshold is independently distributed.as- 1[0, 1]. independent uniform thresholds an optimizer with the power to ap-
Then, our goal in this problem is understanding the structure of the ply fractional influence can see an improvement of up to a factor of
functiono : 2V — R given by (1—1/e).

a(5) = El w(Sy) | So =51, ExaMPLE 1. The following example shows that when thresh-

) o o olds are fixed, the optimal objective values in the fractional and
with the goal of finding seed setsmaximizingo (.5). integral cases can differ by as much as a factomofvheren is



the number of vertices in the graph. The instance we consider is ain expectation is bounded by

DAG consisting of a single, directed pathiofertices. Each edge K

in the path has weight/(n + 1), and every vertex on the path has Kl — (1= K/n)

threshold2/(n + 1). Note that since thresholds are strictly greater K/n

than edge weights, and every vertex, being on a simple path, has Note, however, that if we choo$é ~ In n, we get that

in degree at most one, it is impossible for a vertex to be activated

without some direct influence being applied to it. 1—(1- K/n)"/¥ ~1-1/e

Consider our problem on the above graph with budgeln the 1-(1-K/n)» '

integral case, we cannot activate more than a single vertex — as

previously observed, no vertex can be activated without direct ap- 3. REDUCTION

plication of influence, and with a budget bfwe can only affect In this section, we extend the submodularity results of Mossel

one vertex directly. On the other hand, in the fractional case the and Roch [18] for the integral version of Influence Maximization

following strategy guarantees that all vertices are activated. Apply to the fractional version. At a high level, our approach revolves

2/(n + 1) influence to the earliest vertex, and(n + 1) influ- around reducing a fractional instance to an integral one, such that

ence to the remainingn — 1) vertices. Now, this is sufficient to  evolution of the process and objective values are preserved. Thus,

activate the earliest vertex directly; furthermore, every other ver- hefore presenting our extension, we begin by stating the main re-

tex has sufficient direct influence that it will activate as long as the sylt of [18]. Before stating the theorems, however, we give defi-

vertex before it on the path does. Thus, a simple induction proves nitions for the function functions properties each requires. Finally,

the claim, and we can see that the optimal integral and fractional we note that our main result of the section (Theorem 2) considers

solutions differ in objective value by a factorof a discretizationof the input space; at the end of this section we
show that such discretization cannot affect our objective value by

ExXAMPLE 2. Consider solving our problem on a directed  tg0 much.
graph consisting of a single (one-directional) cycle withertices. We begin by giving definitions for the following properties of set

Assume that every edge has weight K/n, and that thresholds  functions. Given a se¥ and a functionf : 2 — R, we say that:
on nodes are drawn fro# [0, 1]. We consider the optimal integral

and fractional influence to apply. e fisnormalizedf f(0) = 0;

In the fractional case, consider applying influence of exactly : tondf < £(T) f CTC N-:and
K /n to every node. Note that for any node, the amount of influence * fismonotonsf f(S) < f(T)forany$ € T'C Nian
we apply directly plus the weight on its sole incoming edge sumto e fissubmodulaif f(SU{z})—f(S) > f(TU{z})— f(T)
1. Thus, any time a node’s predecessor on the cycle becomes acti- foranyS CT C Nandx € N\T.

vated, the node will become activated as well. Inductively, we can . . e .
We say that a collection of functions satisfies the above properties

then see that any time at least one node is activated in the cycle,. o . ' T
every node will eventually become activated. This means that thelf €very function in the collection does. With the above definitions

expected number of activated nodes under this strategy is precisel;fgnzagg&‘]’ve are now ready to state the following result of Mossel

=n(l-(1-K/n)"*.

n - PriAtleast one node activaes THEOREM 1. (Restatement of [18, Theorem 1.6]) LEt =

= n(1 — Pr[Every node’s threshold is abové/n]) (V, F,w) be an instance of integral Influence Maximization. If
=n(l-(1-K/n)"). bothw and F are normalized, monotone, and submodular, then
is as well.

In the integral case, however, we cannot spread our influence
as evenly. Note that each node we activate has some chance to We want to extend Theorem 1 to the fractional influence model.
activate the nodes following it in the cycle; however, any cascade We proceed by showing that for arbitrarily fine discretizations of
must stop once we reach the next node we directly activated. If [0, 1], any instance of our problem considered on the discretized
we have an interval of length between directly activated nodes space can be reduced to an instance of the original problem. Fix
(including the initial node we activate directly in the length), we N € Z4, and leté = 1/N > 0 be our discretization parameter.

can see that the expected number of nodes activated in the intervalLet A = {0,6,24,...,1}. We consider the fractional objective
is function o restricted to the domai™. Lastly, letd, be the vec-
P tor with § in the component corresponding#pand0 in all other
Z Pr[Nodei in the interval is activated components. We extend the relevant set function properties to this

discretized space as follows:

i=1

e we sayo is normalizedf ¢(0) = 0;

I
.MN

<
Il
—

Pr[Nodes2, 3, ..., ¢ have thresholds belowv— K /n] ) ) o
e we sayo is monotonef x <y implieso(x) < o(y); and

1—(1—K/n)" e we sayo is submodulaiif for any x <y, and anyv € V,

(1= K/n)"" = K/n eithery, = 1 oro(x + 8,) — o(x) > o (y + 6,) — o(y),

Il
AMN

Il
—

T
where all comparisons and additions between vectors above are

While this tells us the expected value for a single interval, we want . ) .
b g componentwise. We get the following extension of Theorem 1.

to know the expected value summed over all intervals. Observing
from the sum form that the benefit of adding another node to an  Tueorem 2. Let T = (V, F,w) be an instance of fractional
interval is strictly decreasing in the length of the interval, we can |hfiuence Maximization. For any discretizatiak” of [0,1]" (as

see that we should always make the lengths of the intervals as closgjefined above), if bot and F are normalized, monotone, and

to equal as possible. Noting that the lengths of the intervals always g,nmodular, thew is normalized, monotone, and submodular on
sum ton, then, we can see that the total number of nodes activated pn_



PROOF We prove this by reducing and instance of the (dis-
cretized) fractional problem fof to an instance of the integral
influence problem and then applying Theorem 1. We begin by
modifying Z to produce a new instance = (V, F,w). Then,
we show thatF and@ will retain the properties of normalization,
monotonicity, and submodularity. Lastly, we show a mapping from
(discretized) fractional activations f@rto integral activations faf
such that objective values are preserved, and our desired frdctiona
set function properties fos correspond exactly to their integral
counterparts for the objective functiohfor Z. The result then
follows immediately from Theorem 1.

We begin by constructing the instarifeThe key idea is that we
can simulate fractional activation with integral activation by adding
a set of dummy activator nodes for each original node; each acti-

vator node applies an incremental amount of pressure on its associ-

ated original node. Then, for each original node we just need to add
the influence from activator node to that from other original nodes,
and truncate the sum to one. Fortunately, both of the aforemen-
tioned operations preserve the desired properties. Lastly, in order
to avoid the activator nodes interfering with objective values, we
simply need to give them weight zero. With this intuition in mind,
we now defineZ = (V, F,w) formally.

First, we construct’. For each node € V, create a setl, =
{v',02,...,v'/%} of activator nodes fop. Our node set in the
new instance is

).

We now proceed to define the functioﬁs for eacho € V. If
¥ is an activator node for some € V, we simply setf; = 0;
otherwisep € V and we set

f5(S) = min (fo(SNV) +6|SN A, 1)

A

V: VU (UUEV v

for eachS C V. Lastly, we set
@(S) = w(SNV)

forall S C V. Together, these make up our modified instafice
We now show that sincey and 7 are normalized, monotone,

and submodularp andF will be as well. We begin withp, since

it is the simpler of the two. Nowb is clearly normalized since

@(P) = w(?). Similarly, for anyS € T C V, we have that

SNV CTnNnV,andso
W(S)=w(SNV)<w(TnNV)=w(T),
by the submodularity ofo. Lastly, leta. € V \ T. If & € V,
w(SU{a}) —w(S) w((SNV)yu{a}) —w(SNV)
w((TNV)u{a}) —w(T'NV)
w(T'U{a}) —w(T),
On the other handgif¢ V, we immedi-

\%

sincew is submodular.
ately get that
w(SU{a}) —w(S) =0=w(Tu{a}) —o(T).

Thus, we can see thdtis normalized, monotone, and submodular.

Next, we show thaf is normalized, monotone, and submodular.
Foro € V \ V, it follows trivially since F is identically0. In the
case thal’ € V, itis less immediate, and we consider each of the
properties below.

e f; normalized. This follows by computing that

Fo(0) min (f5(V N 0) + 6|A; N0, 1)
min (f3(0) + 6|0],1) = 0,

sincef; is normalized.

f» monotone. LeS C T' C V. Then we have bot§ NV C
TNVandSNA; CT N As. Thus, we can see that
|A{)ﬂS| < ‘A{,QTL
where the former follows by the monotonicity ¢f. Com-
bining these, we get that
s (VNS)+68lAsnNS| < fo(VNT)+6]As NT.

Thus, we may conclude th#t (S) < f5(T), since it follows
from the above inequality that
f{,(VﬂS)-ﬁ-(ﬂA{, n S‘ > min (f»[)(V N T) + 5‘1473 N Tl7 1)
implies

min  (fo(VNS)+64;Nn8],1) =1
(fo(VNT)+0|A:NT|,1).

= min

fs submodular. Les C T C V, anda € V' \ T. Now, we
have three cases, depending on the choicg.of & € V,
we have thati ¢ A;, and so
(fa(SU{a}) —68[(Su{a}) NAs|) — (fs(S) — 6[S N As|)
= fo(SU{a}) — fo(9);
and
(fo(Tu{a}) —o[(Tu{a}) NAs|) = (fs(T) = 0|T N As)
= fo(Tu{a}) — fo(T).
Thus, the submodularity of; implies the former is greater
than or equal to the latter. On the other hand, & A;, then
4 ¢ V, and we can see that
(fo(Sufa}) —dl(Suf{a}p)NAs|) =6 =
= (fo(Tu{a}) - s|(Tufa}) N As]).
Lastly, if & ¢ V U A;, we can immediately see that
(fo(SU{a}) —d|(Su{a}) NAs]) =0=
= (fo(Tu{a}) —o|(T u{a}) N As|).
Thus, in every case, we may conclude that
(fo(Su{a}) —o|(Su{a}) N As]) >
= (fo(TU{a}) = 6|[(T u{a}) N Asl),
and hence (by the same reasoning as for monotonicity) we
may conclude that

fa(Sufa}) = fo(8) > fo(T U {a}) - fo(T).

ThL{S, we can see tha is normalized, monotone, and submodular
onV, exactly as desired.

As such, we can apply Theorem 1 to our function and get that for
our modified instanc& = (V, F, ), the corresponding function
6 must normalized, monotone, and submodular. All that remains is
to demonstrate our claimed mapping from (discretized) fractional
activations forZ to integral activations fof.

We do so as follows. For each € V and eachd € A, let
A? = {v* 2% ..., v%}. Then, given the vector € A™, we set

Sx = UUEVA$U7
wherez, is the component at corresponding to the node



We first show that under this definition we have thdk) = wheree, is the vector with a value of in the coordinate corre-
&(S*). In fact, as we will see the sets influenced will be the same sponding tov and a value of) in all other coordinates. As before,

not just in expectation, but for every set of threshdttifor the ver- all comparisons and additions between vectors above are compo-
ticesV. Note that in the modified settingwe also have thresholds  nentwise. The same techniques immediately give us the following
for each vertex i/ \ V; however, since we chogé = 0 for all theorem; in the interests of space, we defer the proof to the full
© € V'\ V, and thresholds are independent draws feejt, 1], we version of the paper.

can see that with probability we havefﬁ(S) < 0y for all S and .
THEOREM 3. LetZ = (V, F,w) be an instance of our prob-

allo € V'\ V. Thus, in the following discussion we do not bother | If both dr lized i d submodul
to fix these thresholds, as their precise values have no effect on theSm- othw and /- are normalized, monotone, and submoduiar,

spread of influence. theno is normalized, monotone, and submodularf@y]™.
Fix some vector© of thresholds for the vertices . Let

SP,...,Sy andSP, ..., S5 be the influenced sets in each round H o hat effect the di D ton I o it
in the settingZ with influence vectox and in the setting with Theorem 2 is what effect the discretization has on the objective

influence sets™, respectively. We show by induction that for all values that can be achieved. As the following theorem shows, how-
i=0.1 n, 8 NV = S°. By the definition ofd, this imme- ever, that we can only lose a@m factor from our objective when
N e the ‘o ' we discretize the space to multiplesdof

One concern with discretizing the space we optimize over as in

diately implies thatw(SS) = @(S59), as desired.

While we give full details of the induction in the full version, .
we sketch the key ideas here. The key observation is that for each HEOREM 4. LetT :_(V,_]-',;u) be an instance of our prob-
vertexv € V, the only difference betweehandZ is thatin every  1€m. Then for any discretizatioh™ of [0, 1) (as defined above), if

stagev hasz, influence directly applied to it in the former but not @ IS normalized, monotone, and submodularh, we have that

the latter, and experiences influence from elements of,, in the max o(x) > (1 —6n) max o(x),
latter but not the former. Since these have equivalent effects, the XEA"™: - x€[0,1]™:
vertices inZ andZ activate similarly. Observing that our definitions el <K llelly <K
ensureSo NV = S*NV = = S, completes the induction. for any K.
We have now shown that for all vectors of threshaflfor ver-
tices in V, with probability 1 we have thatS® NV = S® for PROOF. Letx™ be an optimal solution to our problem {m 1]™,
i =0,1,...,n. In particular, note tha® NV = 52, and so i.e. we have
(S9) = w(SY). Thus, we may conclude that %) = o(x). argmax  o(x)
Lastly, we need to show that for our given mapping from (dis- x€[0,1]%:HxH1§K ’

cretized) fractional activation vectoxsto setS™, we have that the ) )

desired properties far are satisfied if the corresponding properties LetX" be the result of rounding™ up componentwise to the near-
are satisfied fof. So we assume thatis normalized, monotone, ~ €st element oA™. Formally, we definex” by x; = min{d €
and submodular (as, in fact, it must be by the above argument and® : ¢ > x"}. Note that by monotonicity, we must have that

Theorem 1), and show that is as well. First, note that = 0 o(x) = o(x"); we also have thafix™||, < [|x*[|; + dn.
implies S* = 0, and sor(x) = 6(0) = 0. Second, lek,y € A" Now, consider constructing™ greedily by adding to a single
such thatx < y componentwise. Then we can see th4tC S¥ goordinate in _each step. Formally, st = 0, and for each
and so 7,:172,...,HX \|1/5set
o(x) =6(5*) <6(5%) = a(y). x' = x""' 44, for somev € argmax (o(x'" ' +8,) = o(x 1)),
L Lt—1
Finally, pick somev € V such thaty, < 1. Recall our definition vixy <1
of f3; by inspection, we can see that we hgv¢S) = f:(T") any where (as before), is a vector withd in the component corre-
time bothS NV = TNV and|SN A,| = |T N A, for any sponding tov and0 in all other components. Note that the sub-
S, T € V. Thus, we can see th&**% = §* U {v***!} and modularity ofo implies thato (x') — o(x"~') is decreasing i.
SY =S¥ U {v¥T'}. So we have An immediate consequence of this is that, for ayye have that
o(x + 6) — o(x) = #(5% U {v™ 1)) - 5(5%) o(x) 2 (%),
=6(S U {0 1)) — 5(5%) lI=*1ly
) —&(5Y) Invoking the above fof = K/§ we get that

> 6.(5)’ U {/Uy'u“'l}
o(y +6;) —o(y).

¥ +8) = o(y) ooy > B pgy s K 5> (1 sn)o(x?).

Thus,o has exactly the claimed properties A, and the theorem %=1, K +dn

follows. T We observe thatix/?||, = K, andx*/° € A", and so the
In fact, we can use the same technique as achieve the following desired theorem follows. [

extension to fully continuous versions of our properties. We define

the following properties fos on the continuous domain, 1]™: 4. DAGS

e we sayo is normalizedf o(0) = 0; In this section, we focus on a special case of fractional influ-
ence model called the linear influence model, and argue that some
aspects of the problem become simpler on DAGs. In the linear
e we sayo is submodulaif for any x < y, anyv € V, and variant of the problem, our influence functions are computed as
for anye > 0 such thaty, + ¢ < 1, we have that/(x + follows. We are given a digrapfi = (V, F) and a weight function
gv) —o(x) > oy + &) —o(y), w on edges. We usé (v) ands” (v) to denote the sets of nodes

e we sayo is monotoneaf x <y implieso(x) < o(y); and



with edges to and edges from respectively. Then, we denote the The observation that gives the above is that, comparedittte only
influence functionf, for v by vertices with increased influence applied to them are the elements
£u(S) = Z W of 5" (s), and the amounts of these increases are precisely balanced

by the removal of (and its outgoing edges) from. In particular,

uesns (v note that for any € V \ {s}, by our definition ofys we have that

In this model, we assume that Wy < 1 always. Similar

) . ues  (v) - ) . . R
to the fractional influence model, our goal is to pick an influence Ty + Z Wuy = Ty + Yo + Z Wuv-
vectorx € [0, 1]V indexed byV to maximize u€s” (v) ues (v)

u#s
= E[|S9| | we apply direct influences . .
(%) e[ |Swl | PRl b As previously noted= contains no paths from an element of
+ . . . -
wheres?, ..., S is the sequence of sets of nodes activated under 9 (s) to any element ofi(x); this combined with (1) allows us
thresholds® and direct influenc&. We sometimes abuse notation  to conclude that we may apply our induction hypothesi& taith
and user(S) to denoter applied to the characteristic vector of the  any ofx, y, orx +y. We proceed by showing that for any vector
setS € 2. Given a DAGG = (V, E) and a fractional influence © of thresholds forG (and its restriction ta~), we have that the

vectorx € [0,1]'V! indexed byV/, we define the sets set activated undet in GG always corresponds closely to one of the
sets activated by or (x + y) in G. To that end, fix any vectad.
I(x) ={veV:z, >0} and We consider the cases where > 6, andzs < 0, separately.
Sx)={veV iz +3 5= Wuw > 1}, We begin with the case wherg < 0, since it is the simpler of
the two. LetS®, ..., S2 andSY, ..., SO denote the sets activated
as the sets of nod@¥fluencedy x and(over-)saturatedy x. Note in G underx and inG underx, respectively, in stages, . . ., n.

thatS(x) C I(x). Following, we show that under specific circum-  Note that since is a source, and. < 6., we know thats ¢ S9
stancesg becomes a linear function and therefore the influence for all ;. However, this means that every nodelin, {s} has both
maximization problem tractable. the same direct influence applied to it uneeaindx, and the same
amount of influence applied by any activated set in k@gtandG.
So we can immediately see that sif§® = ¢ = S, by induction
we will have thats? = S2 for all 4, and in particular foi = n.

The case where, > 0. requires more care. Lef?, ..., Sy
o(x) =Y, ey Too(Ly) andS®, ..., 59 denote the sets activated @ underx and inG
underx + y, respectively, in stages,...,n. Note that our as-
sumption implies that will be activated by our direct influence in
the first round, and so we hasec S‘i@ for all 7« > 1. Fix some

PROOF. We prove this by induction on the number of vertices. v € V, v # s, and letf,(5) and f.(S) denote the total influence
In the case thal’ contains only a single vertex, the claim is trivial.  — both direct and cascading — applied taGrand G, respectively,
Otherwise, letG = (V, E) andx satisfy our assumptions, with  when the current active set /8. Then, we can see that for any
[V| = n > 1, and assume out claim holds for any DAG with S C V' \ {s} we have that
(n — 1) or fewer nodes. Let € V be a source vertex (i.e. have
in-degree0) in G. Now, if s ¢ I(x), we know thats is never fo(S) = Zotyut Z Wyy = To+ Z Wuy = fu(SU{s}).
activated. Let andx beo on G restricted td/ \ s andx restricted

THEOREM 5. Given a DAGG and influence vectax, if G con-
tains no path from an element 6fx) to any element of (x), then
we have that

, and therefore the influence maximization problem can be solved
efficiently for these instances.

ues (v) ues (v)
to V'\ s, respectively, and observe that we may apply our induction u€S ueSU{s}
hypothesis t@r(x) since removings from G cannot cause any of R (2)
the requirements for our theorem to become violated. Thus, we canFurthermore, note that botf, and f, are always monotone non-
see that decreasing. While we cannot show ttgt = SP for all 4 in this
case, we will instead show théf \ {s} € S° C S2.,\{s} forall
o(x)=6(%) = > z6(L) = z0(ly), i=0,...,n—1. Recall that the propagation of influence converges
veV\s veV by n steps. That is, if we continued the process for an additional
sincez, = 0. step to produce activated s&t§, , andS?, ,, we would have that
Now, assume that € I(x). Recall that by our conditions of, Sy = Sy andSy; = 5. However, our claim would extend to

therefore, we know tha® contains no path fromto any elements ~ this extra stage as well, and so we conclude that we must have that
of S(x). One critical implication of this is that none of the nodes S, = S5i U {s}. We prove our claim inductively. First, observe

in 5" (s) have paths to elements 8fx) either, and so we made  that it holds trivially fori = 0, since we havesg’ =S¢ = 0, and

; : ) . e : ,
apply influence to them without violating the assumptions of our Previously observed thate 57°. Now, the claim holds for some
inductive hypothesis, as long as we are careful not to add so muchNote, however, that by (2) and monotonicity we must have that for

weight that they become saturated. allveV,v#s

In order to prove our claim, we focus af restricted to}" \ Fo(S2) = fu(SP\{s}) < £u(57)
{s}, call it G. Lets beo overG, and consider the following two s 6 °
influence vectors fofy. Definex to simply be the restriction af < folSin \ {sh) = fu(Sita)-

A . ~ . + . . N
t? G, dF:‘fIney by Yy = Wsop if v € (S) and0 qtherWlse. Lett|ng But from the above‘ we can see tlﬁtl»l \ {S} g Sg{»l g Sg2 \
I'andSat bel andS, respectively, restricted @', we can see that  {s} since such a in included in each of the above sets if and only

[(3),1(9),I(x +9) C I(x)US " (s), and } " if fo(SP), fu(SP), or £,(SF1), respectively, exceeds .

S(%),8(¥),8(x+¥) C S(x).

Thus, by observing tha@, is an independent draw froé[0, 1],
we can see that taking expectations ogerand conditioning on



which of 8, andz; is larger, gives us that
o(x) = (1 — 2.)5(%) + z.(1 + 6(x +))
=" wo(Ly) + (14 5(3)).

veV

v#£S
We complete our proof by observing that, in fac]l ) is precisely
equal tol + &(y). We can see this by once again coupling the
activated sets under any veci®rof thresholds. In particular, let
SS,...,82 andSS, ..., S2 denote the sets activated@under
1, and inG undery, respectively, in stage . .., n. Arguments
identical to those made above allow us to conclude that far aié
have thatS2., = SP U {s}. Thus, by again noting that influence
cascades converge aftersteps we see th&t® = S U {s}, and
taking expectations with respect & gives precisely the desired
equality.

Since we have the linearity of, to maximizes (x), we just need
to sort vertices based an(1,), and put the influences on vertices
with highero(1,) until the budget is exhausted. Estimatingl . )
can be done by letting the process run with influence vecidor

Network | # nodes| # edges| Avg. deg.| Directed

NetHEPT 15,233 58,891 7.73 No
NetPHY 37,154 231,584 12.46 No
Facebook 4,039 88,234 21.84 No
Amazon 262,111| 1,234,877 4.71 Yes

Table 1: Information about the real-world networks we use.

Before stating Theorem 8, we should define the triggering model
introduced in [15]. In this model, each nodeindependently
chooses a random triggering sEt according to some distribu-
tion over subsets of its neighbors. To start the process, we target
a set A for initial activation. After this initial iteration, an inactive
node v becomes active in stepf it has a neighor in its chosen
triggering sefT’, that is active at time — 1. For our purposes, the
distributions of triggering sets have support size one (deterministic
triggering sets). We also show that our hardness result even holds
when the size of these sets is two.

THEOREM 8. It is NP-hard to approximate linear influence

several times, and taking the average number of activated nodes inproblem to within any factor better thain— 1/e, even in the Trig-

these trials. [J

5. HARDNESS

gering model where triggering sets have size at r@ost

6. EXPERIMENTAL RESULTS

In this section, we present NP-hardness and inapproximability =~ Datasets. We use the following real-world networks for evalu-
results in the linear influence model. We assume that thresholds areating our claims. Table 1 gives some statistical information about
not chosen from a distribution, and they are fixed and given as part these networks.

of the input. We note that this is the main assumption that makes
our problem intractable, and to achieve reasonable algorithms, one
has to make some stochastic (distributional) assumptions on the
thresholds. In Section 4, we introduced the linear influence model
as a special case of fractional influence model, but it makes sense
to define it as a special case of integral influence model as well.
In the fractional linear influence model, we are allowed to apply
any influence vectox € [0,1]™ on nodes. By restricting the in-
fluence vectox to be in{0,1}" (a binary vector), we achieve the
integral version of linear influence model. Our hardness results in
Theorem 6, and Corollary 7 work for both fractional and integral
versions of linear influence model. We start by proving that the lin-
ear influence model is NP-hard with a reduction from independent
set problem in Theorem 6. We strengthen this hardness result in
Corollary 7 by showing that an'~¢ approximation algorithm for

the linear influence problem yields an exact algorithm for it as well
for any constant > 0, and therefore even an' —¢ approximation
algorithm is NP-hard to achieve. At the end, we show the that it is
NP-hard to achieve any better than- 1/e approximation in the
Triggering model which is introduced in [15]. We will elaborate
on the Triggering Model and this hardness result at the end of this
section. We note that the proofs are omitted due to lack of space.

THEOREM 6. If we allow arbitrary, fixed thresholds, it is NP-
hard to compute for a given instance of the integral linear influ-
ence problen{G, k, T') (graph G, budgetk, and a target goall’)
whether or not there exists a sgtof k vertices inG such that
o(S) > T. Furthermore, the same holds in the factional version
of the problem (instead of a sétof sizek, we should look for a
influence vector witli; norm equal tak in the fractional case).

COROLLARY 7. If we allow arbitrary, fixed thresholds, it is
NP-hard to approximate the linear influence problem to within a

Algorithms.
study. The first three algorithms are for the integral influence
model, and the last three algorithms work for the fractional influ-
ence model.

e NetHEPT: An academic collaboration network based
on “High Energy Physics — Theory” section of the
e-print arXiv* with papers from 1991 to 2003. In this
network, nodes represent authors and edges represent
co-authorship relationships.  This network is available
at http://research. mcrosoft.com en-us/
peopl e/ wei ¢/ gr aphdat a. zi p.

e NetPHY: Another academic collaboration network, taken
from the full “Physics” section of the e-print arXiv.
Again, nodes represent authors and edges represent
co-authorship relationships.  The network is available
at http://research. nicrosoft.confen-us/
peopl e/ wei c/ gr aphdat a. zi p.

e Facebook: A surveyed portion of the Facebook friend
network. The nodes are anonymized Facebook users
and edges represents friendship relationships. The data
is available athtt p: // snap. st anf or d. edu/ dat a/
egonet s- Facebook. ht m .

e Amazon: Produced by crawling the Amazon website based
on the following observation: customers who bought prod-
ucts also bought product. In this network, nodes represent
products and there is a directed edge from nottenode;
if product: is frequently co-purchased with product This
network is based on Amazon data in March 2003. The data
is available athtt p: / / snap. st anf or d. edu/ dat a/
amazon0302. ht i .

We compare the following algorithms in this

factor ofn'~¢ for anye > 0. Furthermore, the same holds for the
fractional version of our problem.

2http://vww. ar Xi v. org



Degreelnt: A simple greedy algorithm which selects nodes
with the largest degrees. This method was used by Kempe
et al. [15] and Chen et al. [5] as well.

Discountint: A variant of Degreelnt which selects node

with the highest degree in each step. Moreover, after adding
nodeu to the seed set, the algorithm decreases the degrees o
neighbors ofu by 1. This method was proposed and evalu-
ated by Chen et al. [5].

Randomint: This algorithm randomly add® nodes to the
seed set, i.e., by spendirigon each of them. We use this
algorithm as a baseline in our comparisons. Other works [5,
6, 15] also use this algorithm as a baseline.

DegreeFrac: This algorithm selects each node fractionally

proportional to its degree. In particular, this algorithm spends
Bd

i

min{—,1} on nodei where B is the budget, is the
out-degree of node andm: is the total number of edgés

DiscountFrac: A heuristic for the fractional case given by
Algorithm 1. LetI'; (A) be the total sum of the weight of
edges from node to setA, andT'} (A) be the total sum of
the weight of edges from set to nodewv. This algorithm
starts with an empty seed sgtand in each step it adds node
v ¢ S with the maximumI'; (V — S) to seed sefS by
spendingnax{0, 1 — T’ (S)} on nodev. Note that in each
step the total influence from the current seed$#i nodev

is T (S), and it is enough to spend— I';" (S) for adding
nodew to the current seed sét Note that no node would
pay a positive amount, and the algorithm spemds {0, 1 —
¥ (S)} on nodev.

UniformFrac: This algorithm distributes the budget equally

f

It also has been shown that the performancBistountint almost
matches the performance of the greedy algorithm which maximizes
a submodular function [5]. Hence, it seems tBatcountint is an
appropriate candidate for evaluating the power of the integral influ-
ence model.
Results. We have implemented all algorithms in C++, and have
run all experiences on a server with two 6-core/12-thread 3.46GHz
Intel Xeon X5690 CPUs, with 48GB 1.3GHz RAM. We run all of
the aforementioned algorithms for finding the activation vector/set,
and compute the performance of each algorithm by running 10,000
simulations and taking the average of the number of adopters.

We first examine the performance of a fractional activation vec-
tor in theweighted cascade modethere the weight of the edge
from u to v is d% whered,, is the in-degree of node. In this

model, the total sum of weight of incoming edges of each node is
= f = 1. This model was proposed by Kempe
et al. [15], and it has been used in the literature [5, 6, 7]. Results
are shown in Figure 1.

We then compare the performance of various algorithms when
the weight of edges are determined by THIVALENCYmodel, in
which the weight of each edge is chosen uniformly at random from
the set{0.001,0.01,0.1}. Here0.001, 0.01, and0.1 represent
low, medium, and high influences. In this model, the total sum of
the weights of incoming edges of each node may be greaterdthan
This model and its variants have been used in [5, 6, 15]. We run
all proposed algorithms on real-world networks when their weights
are defined by TRIVALENCY model. Results are shown in Figure
2.

Discussion. In most of the plots, algorithms for the fractional
influence model do substantially better than algorithms for the in-
tegral influence model. Overall, for most datas@tiscountFrac
is the best algorithm, with the only exception being the Facebook

wy Wuv

among all nodes. We use this algorithm as another baseline dataset. As a simple metric of the power of the fractional model

in our comparisons.

Algorithm 1 DiscountFrac
Input: GraphG = (V, E) and budgeB
Output: Influencing vectox

1. S+ 0

2:.b+ B

3:x+0

4: while b > 0 do

5: u < argmax, oy _g{I', (V = 5)}
6: Ty + min{b, max{0,1 — T} (9)}}
7. b b—x,

8: S+ SuU{u}

9: end while
10: return x

All these heuristic algorithms are fast and are designed for run-
ning on large real-world networks. In particular, algorithbe-
greelnt andDegreeFrac only need the degree of nodes. We can
use a Fibonacci heap to implemdiscountint, resulting in a run-
ning time ofO(B logn + m). Similarly, the running time oDis-
countFrac is O(nlogn + m) using a Fibonacci hedp. Algo-
rithms Randomint and UniformFrac are linear-time algorithms.

3If the graph is undirected, the costds: instead ofm

“In DiscountFrac, the while loop (lines 4-9 of Algorithm 1) may
run for n steps even when budgét is less tham. Hence, the
running time isO(max{n, B}logn + m) = O(nlogn + m)
instead ofO(Blogn + m).

versus the integral model, we consider the pointwise performance
gain of fractional model algorithms versus the integral model algo-
rithms. i.e., for a given budget, we compute the ratio of expected
number of adopters for the fractional model with the most adopters
and the expected number of adopters for the integral model algo-
rithm with the most adopters. Depending on the dataset, we get a
mean pointwise performace gain betwe&etpbo (Facebook dataset,
TRIVALENCY model) and142.7% (Amazon dataset, weighted
cascade model) with the mean beidy5% and the median be-
ing 15.7% over all the datasets and both models (weighted cas-
cade and TRIVALENCY). Among the heuristics presented for the
integral modelDiscountint is probably the best. If we compare
just it to its fractional adaptatiorDiscountFrac, we get a simi-
lar picture: the range of average performace gain is betWweén
(Facebook, TRIVALENT model) an897.6% (Amazon, weighted
cascade model) with the mean beisyy1% and the median being
15.6%.

In summary, the experimental results clearly demonstrate that the
fractional model leads to a significantly higher number of adopters
across a wide range of budgets on diverse datasets.
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Figure 1: Performance of different algorithms Bacebook, NetHEPT, NetPHY, andAmazon. The weights of edges are defined based
on the weighted cascade model. Thaxis is the budget and theaxis is the expected number of adopters.
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