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Abstract. We present an algorithm to find a flat folding of a piece
of paper, so that one complete straight cut on the folding creates any
desired plane graph of cuts. The folds are based on the straight skeleton,
which lines up the desired edges by folding along various bisectors; and
a collection of perpendiculars that make the crease pattern foldable. We
prove that the crease pattern is flat foldable by demonstrating a family
of folded states with the desired properties.

1 Introduction

Take a sheet of paper, fold it into some flat origami, and make one complete
straight cut. What shapes can the unfolded pieces make? For example, Figure 1
shows how to cut out a five-pointed star in this way. You could imagine cutting
out the silhouette of your favorite animal, object, or geometric shape.

The first published reference to this fold-and-cut idea that we are aware of is
a Japanese book [22] by Kan Chu Sen from 1721. This book contains a variety
of problems for testing mathematical intelligence [21]. One of the problems asks
to fold a rectangular piece of paper flat and make one complete straight cut, so
as to make a typical Japanese crest called sangaibisi, which translates to “three
folded rhombics.” The author gives a solution that consists of a sequence of
simple folds, each of which folds along a line. See Figure 2.

Folding and cutting has also been used for a magic trick by Houdini, before he
became a famous escape artist. In his 1922 book Paper Magic [11], he describes
a method for making a five-pointed star, similar to the one in Figure 1. Another
magician, Gerald Loe, studied this idea in some detail; his Paper Capers [19]
describes how to cut out arrangements of various geometric objects, such as a

Fig. 1. How to fold a square of paper so that one cut makes a five-pointed star.
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Fig. 2. A few pages from [22].

circular chain of stars. Martin Gardner wrote about this problem in his famous
series in Scientific American [9]. He was particularly impressed with Loe’s ability
to cut out any desired letter of the alphabet.

Gardner [9] was the first to state cutting out complex polygons as an open
problem. What are the limits of this fold-and-cut process? What polygonal
shapes can be cut out?

In this paper, we prove that any collection of straight edges can be cut along,
by a single straight cut after folding flat. This includes multiple disjoint, nested,
and/or adjoining polygons, as well as floating line segments and points: a general
plane graph. To solve this problem, we present an algorithm that computes the
creases and the actual flat origami that lines up precisely the given plane graph.
Cutting along this line hence achieves the desired result.

The rest of this paper is outlined as follows. Section 2 provides formal defini-
tions of folds and cuts. Section 3 states our main theorem, and presents several
interesting consequences. In Section 4, we specify the basic crease pattern for our
solution. Section 5 concentrates on specifying the possible foldings, and proving
the correctness of the algorithm. We conclude in Section 6.

2 Background

Origami mathematics is the study of the geometry and other properties of
origami (paper folding). The area of origami mathematics is still in its infancy,
having only been seriously studied for the past twenty years. Geretschlager [10]
and Huzita and Scimemi [13] examined the geometric constructions possible
with origami, and compared them to a ruler and compass. Bern and Hayes [4]
showed that it is NP-hard to determine whether a crease pattern is flat foldable,
as is computing a flat folding (overlap order) given a suitable direction of folds
(mountain-valley assignment). Hull [12] and Kawasaki [15] focus on necessary
and sufficient conditions for flat foldability of crease patterns with a single ver-
tex, which are also necessary conditions for general crease patterns. Justin [14]
examines necessary and sufficient conditions on overlap orders, resulting in a
characterization of flat foldability for general crease patterns.



Fig. 3. Minimal crease patterns for an angelfish and a swan. The cut graph is drawn
thick, and valleys [mountains] are drawn dashed [dot-dashed]. For the angelfish, fold in
half first.

Lang has taken the most algorithmic approach. In [17], he describes an al-
gorithm to construct “uniaxial” bases, which can then be folded into arbitrarily
complex models. This solves a major problem in origami sekkei (technical fold-
ing). Lang’s work is related to ours: essentially, a portion of his solution deals
with the fold-and-cut problem when the shapes to cut are all convex polygons.

Two other papers study the fold-and-cut problem formally. Demaine and
Demaine [5] solve the problem of folding a polygonal sheet of paper to map the
paper’s boundary to a line. This result is in one sense much weaker and in one
sense stronger than the present result. It is weaker in that it solves the fold-and-
cut problem only for convex polygons, where the folds exterior to the polygon
do not interfere. It is stronger in that it describes the exact folding process, that
is, the function that folds the piece of paper through time to the final folded
state. This shows that the folding can be achieved while keeping the paper rigid
(except at the creases), and allows animation of the folding process.

Inspired by preliminary versions of this work, Bern, Demaine, Eppstein, and
Hayes [3] have proposed an alternative solution to the fold-and-cut problem using
the idea of disk packing. That solution is more “local” than the one presented
here, which exploits and demonstrates the global structure of the problem. The
advantage of the disk-packing solution is that the number of folds is bounded
in terms of the number of vertices and minimum feature size. The origamis
presented here, on the other hand, have the advantages of being more natural
and easier to fold in practice. Our techniques have also helped extend work in
algorithmic origami design [17, 18].

The rest of this section defines the terminology used in this paper.

A plane graph is a planar graph with a fixed embedding such that every edge
is straight and has positive length, and every pair of (closed) edges intersects
only at a shared vertex. We allow edges to have zero, one, or two actual vertices,
corresponding to infinite lines, half-infinite lines, and line segments, respectively.

A crease pattern is simply a plane graph. We will find it easier to consider
folding an infinite plane, although the actual piece of paper will be a bounded
subset of that. An origami or folding of a crease pattern [4,5,12,17] is a contin-



Fig. 4. Full crease patterns for a fancy star and a turtle. The cut graph is drawn thick,
the straight skeleton is drawn solid, and the perpendiculars are dashed.

uous function from R? to R3 with the following properties. First, the function
must map every face of the crease pattern to a congruent copy in three dimen-
sions. Second, the folding must not induce any crossings; one way to define this
is to allow faces to be an infinitesimal distance apart (thereby defining their
order), and enforce that the folding be a one-to-one function.

Note that a folding gives the folded state, not the process of how to get to
the folded state.

A flat origami is an origami whose image lies on a plane. We can define the
mountain-valley assignment of a flat origami by assigning either “mountain” or
“valley” to each edge in the crease pattern, according to whether it was folded
by angle 7 or angle —, relative to the top side of the piece of paper.

2.1 Models of Cuts

This section specifies exactly what we mean by “making a cut.” A (complete) cut
is a line. The natural mathematical model for applying a cut C' to some object
O is to remove all the points along C' from O, that is, take O — C'. In particular,
if the piece of paper is an open set (e.g., the entire plane, or a polygon without
its boundary), then the resulting pieces will also be open sets. This model is due
to Frederickson [8], and we call it a mathematical cut.

Mathematical cuts are best modeled in real life by a laser. In particular, they
do not correspond precisely to cutting with scissors, the problematic case being
a fold and a cut that coincide. As an alternative to the mathematical cut model
described above, we define a scissor cut so that when a fold and a cut coincide,
the points on the fold are not removed. See Figure 5.
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Fig.5. Cut (a) can be made by a scissor cut, whereas Cut (b) cannot.




3 Results

We are now in the position to formally state the fold-and-cut problem. We are
given a plane graph called the cut graph. We refer to vertices, edges, and faces
of the cut graph as simply “cut vertices,” “cut edges,” and “cut faces.” Each
cut face is also given a side of “above” or “below,” in what we call the side
assignment. The problem is to find a flat folding of the paper and a line I,
called the cut line, such that the intersection of the folding with / is exactly the
(folded) cut graph. The folding must place cut faces above or below the cut line
[ according to the given side assignment.
The most general result we could hope for is the following conjecture.

Conjecture 1. Given a cut graph and any side assignment, there exist a flat
folding of the plane that maps the cut graph and nothing else to a common line,
and appropriately maps cut faces above or below this line.

We will just fall short of proving this with the following theorem. The idea
of linear and circular corridors will be described in Section 4.4.

Theorem 1. Given a cut graph and a side assignment, such that either (1) the
cut graph induces no circular corridors, or (2) the side assignment is constant
(that is, it assigns all cut faces to the same side), then there exists a flat folding
of the plane that maps the cut edges and nothing else to a common line, and
appropriately maps faces above or below this line.

Precisely what this theorem says in terms of the original fold-and-cut appli-
cation depends on the kind of cuts allowed. For mathematical cuts, we have the
desired result that any cut graph can be achieved, by choosing the side assign-
ment that puts every face above the cut line. If only scissor cuts are allowed,
then we need a side assignment with the property that every cut edge is inci-
dent to two faces assigned to opposite sides (see Figure 5). In other words, we
want a face 2-coloring of the cut graph, where the colors correspond to “above”
and “below.” This is equivalent to the cut graph being even, that is, having all
vertices of even degree [16].

The following summarizes our results for both kinds of cuts.

Corollary 1. Given any cut graph, there exists a flat folding of the plane and
a line on this folding such that mathematically cutting along the line removes
precisely the (folded) cut graph. If only scissor cuts are allowed, this result holds
for even cut graphs that induce no circular corridors.

If Conjecture 1 holds, we can remove the no-circular-corridor constraint,
which would prove the following slightly weaker conjecture:

Conjecture 2. Given any even cut graph, there exists a flat folding of the plane
and a line on this folding such that scissor cutting along the line removes precisely
the (folded) cut graph.



3.1 Consequences

This section describes two consequences of Conjecture 2.

What if the cut graph has some odd-degree vertices, but we are still only
allowed to make scissor cuts? In [6], we prove that every planar bridgeless graph
is the (nondisjoint) union of two even subgraphs. (A graph is bridgeless if it has
no edges whose removal increases the number of connected components in the
graph.) Assuming Conjecture 2, we can fold-and-scissor-cut the first subgraph;
unfold, keeping the pieces together as before; and then fold-and-scissor-cut the
second subgraph. In total, we make the entire graph with two scissor cuts. Hence,
we have proved that Conjecture 2 implies the following:

Conjecture 3. Given any bridgeless cut graph, there exist two flat foldings of the
plane and a line on each folding, such that scissor cutting along both lines in
both foldings removes precisely the (folded) cut graph.

In his article on paper cutting, Martin Gardner [9] mentions an “unusual
single-cut trick that is familiar to American magicians...known as the bicolor
cut.” The magician takes a thin piece of paper, colored red and black like an
eight-by-eight checkerboard. After folding the paper flat, a single straight cut
separates the red squares from the black squares, and simultaneously cuts out
each square. Conjecture 2 implies a beautiful generalization of this magic trick.

Conjecture 4. Given any subdivision of a sheet of paper into red and black re-
gions, there exists a flat folding of the paper and a line on the folding, such that
all red regions are above the line, all black regions are below the line, and scissor
cutting along the line separates all of the regions and no more.

Theorem 1 proves this conjecture for all red-black subdivisions that induce
no circular corridors. Unfortunately, a checkerboard is not such a subdivision,
so this result is not a generalization of the magic trick.

4 Crease Pattern

This section describes the basic crease pattern for our solution to the fold-and-
cut problem, as well as the default mountain-valley assignment for some of these
creases. The details of the folded state will be given in Section 5, where we will
need, in the circular-corridor case, to add some more folds and reverse some
creases.

The first collection of potential folds are the edges of the cut graph. More
specifically, to satisfy the side assignment of faces above and below the cut line,
we must fold along precisely those cut edges that are incident to faces assigned
to the same side. By default, the fold is a valley between two faces above the cut
line, and a mountain for two faces below the cut line.

The next section describes the straight skeleton, which is the main component
for lining up the edges of the cut graph. To make the straight skeleton foldable, we
add folds that are perpendicular to the cut edges in Section 4.2. Section 4.3 shows
an interesting phenomenon in perpendiculars called spiraling. Finally, Section 4.4
studies the structures formed between perpendiculars, called corridors.



Fig. 6. Ezamples of the straight skeleton: (a) Shrinking a single cut face. (b) A line
segment. (¢) Two points, with the squares chosen to be axis-parallel.

4.1 Straight Skeleton

A natural way to line up two edges is to fold along the bisector of their ex-
tensions. A generalization of this idea to arbitrary cut graphs is the straight
skeleton. This structure is defined to be the trajectories of the vertices as we
shrink the faces of the cut graph. Note that “shrinking” the external face may
seem more like “expanding.” Formally, shrinking consists of continuously inset-
ting each vertex towards the interior of the face, so that at any particular time,
every shrunken edge is parallel to the original, and the perpendicular distance
between the shrunken and original boundary edges is the same for all boundary
edges. A face may split into multiple pieces, in which case we recursively shrink
each piece. See Figure 6. A face may also become degenerate in the sense that
two of its edges coincide to enclose a zero-area region; in this case, we include
the edge as part of the straight skeleton.

Cut vertices of degrees zero and one must be treated specially; see Figure 6(b—
c). A cut vertex of degree one is treated like an end of a rectangle with zero width.
That is, we consider there to be an effective cut edge of length zero at the cut
vertex, perpendicular to the incident cut edge. Similarly, a cut vertex of degree
zero is treated like a square of zero area, with an arbitrarily chosen orientation.
That is, we consider there to be four effective cut edges of length zero at the cut
vertex, perpendicular in pairs to form a square.

The straight skeleton has only recently received thorough study. The basic
idea goes back to at least 1984 [20, pp. 98-101]. The term “straight skeleton” was
coined by Aichholzer et al. [2] in 1995, where it was only defined for the interior
of a polygon. They are also the first to publish an algorithm for computing the
straight skeleton, running in O(n? logn) time. The definition and this algorithm
were extended to general plane graphs by Aichholzer and Aurenhammer [1]
in 1996. Recently, Eppstein and Erickson have developed an O(n!7/'+¢)-time
algorithm for general plane graphs [7].

The rest of this section describes some structure of the straight skeleton.
Note that the straight skeleton is a plane graph. We will use “skeleton vertex,”
“skeleton edge,” and “skeleton face” to refer to a vertex, edge, or face of the
straight skeleton.

Define n to be the number of vertices in the cut graph.



Fig.7. (a) The definition of an edge e bisecting two nonparallel edges er and e.
(b) Convez [reflex] portions of skeleton edges for the turtle are drawn solid [dashed].

Lemma 1. [1] The straight skeleton has O(n) vertices, edges, and faces.

Lemma 2. FEvery cut edge is contained in exactly one skeleton face, and every
skeleton face contains exactly one cut edge, if we include the zero-length cut edges
formed by cut vertices of degrees zero and one.

Proof. Straightforward. See [6]. O

Let € denote the line extending an edge e. Let e; and ey be two edges that
do not intersect except possibly at a common endpoint. We say that an edge e
bisects e; and e if one of three cases holds. The first case is when €, €;, and €
are distinct and parallel, and e sits midway between the other two; that is, the
perpendicular distance between € and €; is positive and equals the perpendicular
distance between € and €;. The second case is when €; and €, are the same line,
€ is perpendicular to them, and € passes through the midpoint of the end of
e1 and the end of ey that are closest to each other. Finally, the third case (see
Figure 7(a)) is when €, €, and €, are distinct and intersect at a common point
z, and € bisects the angle of a certain wedge W (e, e1,ez2). This wedge is one of
the four wedges between €; and e»; furthermore, it is one of the two such wedges
that contain a portion of €. Specifically, W (e, e1,e2) is defined to be the wedge
between €; and €, that contains a portion of €, and has all of e; or all of e; on
its boundary. This definition of W (e, e1,es) is well-defined by our assumption
that e; and ey do not cross.

Lemma 3. Let e be a skeleton edge, let f; and fo be the two incident skeleton
faces, and let ¢; and co be the cut edges contained in f1 and fo, respectively.
Then e bisects ¢; and ca.

Proof. Straightforward. See [6]. O

As a step toward the mountain-valley assignment, we will now distinguish
conver and reflex portions of skeleton edges; refer to Figure 7(b) for examples.
Let e be a skeleton edge bisecting cut edges ¢; and co. We follow the cases in the
definition of “bisect.” If ¢; and ¢ are distinct and parallel, and € lies between
them, then all of e is considered to be convex. If ¢; and ¢ are the same line, and
€ is perpendicular to them, then all of e is considered to be reflex. Finally, when



e bisects Wi(e,c1,¢2), the portion of e inside the closed wedge W(e,¢1,co) is
considered to be convex, and the portion in the closed complement is considered
to be reflex. Note that if the apex of W (e, c1,¢2) is in e, it is considered to be
both convex and reflex.

The default mountain-valley assignment for a skeleton edge depends on the
side assignment of its cut face. For “above” faces, convex portions are folded
as mountains, and reflex portions are folded as valleys. For “below” faces, this
assignment, is reversed.

4.2 Perpendiculars

The straight skeleton by itself is clearly not foldable; in particular, its vertices
typically have degree three, whereas a flat-foldable crease pattern only has ver-
tices of even degree [4]. Intuitively, we can add a fold perpendicular to a cut
edge, and maintain the property that the cut edges line up. What remains is to
explicitly specify these folds, and how they interact with the straight skeleton.

The perpendicular associated with any point p € R? consists of a collection of
line segments, rays, and lines called perpendicular edges, each associated with a
skeleton face f. They are recursively defined as follows. For each closed skeleton
face f that p is in, let I be the line going through p and perpendicular to (the
line extending) the cut edge contained in face f. Let m be the connected piece of
[N f that touches p; this may be just p itself, a line segment of positive length, a
ray, or a line. Then the perpendicular associated with p contains both m and the
perpendiculars associated with the endpoints of m. We call m a perpendicular
edge associated with f.

This completes the definition of perpendiculars. A real perpendicular is one
that is incident to a skeleton vertex, and all other perpendiculars are called
imaginary. We will only fold along real perpendiculars; imaginary perpendiculars
will be useful for analyzing the structure of corridors in Section 5.1.

Examples of perpendiculars can be found throughout Figures 3 and 4.

In the definition of a perpendicular, we were careful to associate each per-
pendicular edge with a particular skeleton face. This is especially important for
perpendicular edges that degenerate to points; we call these zero-length perpen-
dicular edges. For example, incident to the middle skeleton vertex in Figure 6(a)
are three perpendicular edges: an upward vertical ray, and two zero-length edges.
Note that a zero-length perpendicular edge still has an orientation.

A natural question at this point is whether a perpendicular always consists of
a finite number of line segments. The answer is no, and we discuss this situation
in the next section. However, the number of real perpendiculars is finite:

Lemma 4. There are O(n) real perpendiculars.

Proof. This follows by Lemma 1 because the number of real perpendiculars is
at most the number of skeleton vertices. m|

We now describe several properties of perpendiculars and perpendicular edges.
A first observation is that the perpendicular edge associated with skeleton face



Fig. 8. A simple example of spiraling.

f is perpendicular to the cut edge contained in f; in particular, all such perpen-
dicular edges are parallel.

Next let us demonstrate the ability to “walk around” with a pair of perpen-
dicular edges in either of two directions.

Lemma 5. Let e; and ey be two perpendicular edges associated with the same
skeleton face. If e; and ey have ends vy and vs, respectively, on a common
skeleton edge s, then there are perpendicular edges e} and e, incident to vy and
vo respectively, and associated with the other face incident to s, such that the
perpendicular distance between e} and e, is the same as for ey and es.

Proof. The existence of €] and e} follows from the definition of perpendiculars.
The preservation of perpendicular distance follows because the skeleton edge s
is a bisector of e; and e}, as well as e2 and €. O

Lemma 6. Let p be a perpendicular edge in skeleton face f whose ends lie on
the interior of skeleton edges e1 and ey. If p intersects the cut edge contained in
f, then p hits e1 and ey in their convex portions; otherwise, p hits one of e1 and
ey in its conver portion and the other in its reflex portion.

Proof. See [6]. O

4.3 Spirals

One interesting phenomenon that can happen with perpendiculars is spiraling.
A simple example is shown in Figure 8. The cut graph (drawn in thick lines) is
an infinite “pinwheel.” Each real perpendicular (drawn dashed) consists of an
infinite number of edges in the whole plane, however:

Lemma 7. Any bounded region of the plane is intersected by only finitely many
real perpendicular edges.

Proof (Sketch). Suppose not. We first argue that the perpendicular graph must
contain an infinite path of degree-two vertices. In the plane, this path is a simple
Jordan curve. Such an infinite Jordan curve can spiral or zig-zag, or do any



2-wall linear 1-wall linear 2-wall circular 1-wall circular

Fig. 9. The four possible shapes of corridors.

combination of these things. However, because perpendiculars can only bend
due to the presence of skeleton vertices, and since there are only finitely many
skeleton vertices, we are able to prove that our path must eventually spiral
inward. By Lemma 5, consecutive rings of the spiral stay a constant width apart
unless a skeleton vertex lies between the two rings, and again, this can happen
only finitely often. Thus the inward spiral must eventually settle to some constant
width, a contradiction. O

By Lemma 1, the straight skeleton consists of a finite number of creases, so
the basic crease pattern is finite in any bounded convex region of the plane.
Unfortunately, the number of creases is unbounded in terms of the number of
vertices, minimum distance between two non-incident cut edges, or similar met-
ric.

4.4 Corridors

Together, all of the real perpendicular edges form the perpendicular graph. This
section describes the structure of corridors, which are simply the faces of the
perpendicular graph. Unlike in usual plane graphs, a corridor never consists of
a bounded simply connected region. See Figure 9 for the shapes that corridors
may have. We characterize a corridor first by its topology: we call it linear if its
interior is homeomorphic to an infinite band, and circular if its interior is home-
omorphic to an annulus. Second, we characterize a corridor by the number of its
walls, which can be one or two: a wall is one of the perpendiculars that bound
the corridor. The wall count is equal to the number of connected components in
R? minus the interior of the corridor.

Let C be a corridor, f be a skeleton face, and Cy be the intersection of f
with the interior of C'. C'y may be disconnected, but each connected component
of Cy has a width defined to be the minimum distance between two parallel
lines that contain the region between them, and are perpendicular to the cut
edge contained in f. By Lemma 5, corridors have constant width in the sense
that the width as defined above is the same for all connected components of C',
and for all choices of f. This is the motivation for the term “corridor.” For one-
wall corridors, the width is infinite; and for two-wall corridors, the width is the
perpendicular distance between two parallel, minimally distant perpendicular
edges bounding C'.

The above claims are formalized in the following lemma.



Lemma 8. FEvery corridor C is either linear or circular but not both, and has
either one or two walls. Furthermore, C has constant width.

Proof. Straightforward. See [6)]. O

An example of a circular corridor is in the middle of the fancy star (Figure 4).
Note that the inner wall consists just of zero-length perpendicular edges.

5 Folding

So far we have defined the basic crease pattern, consisting of skeleton edges, per-
pendicular edges, and some cut edges. We also have defined the default mountain-
valley assignment for cut edges and skeleton edges. The goal of this section is
to describe a flat folding of this crease pattern. Here we concentrate on the case
where there are no circular corridors. In this case, the basic crease pattern is
complete, and the default mountain-valley assignment is correct.

The problem splits naturally into two parts. In Section 5.1, we show how to
fold a single corridor into an “accordion” using alternating mountain and valley
folds at the skeleton edges crossing the corridor (see Figure 10). We show that
this accordion folding lines up all the cut edges in the corridor. This is done
locally, but we show that the foldings of two adjoining corridors are consistent.

In Section 5.2, we consider the global structure of how the corridors are
joined. In case there are no circular corridors, this structure is a tree (see Fig-
ure 10). Each vertex of the tree corresponds to a perpendicular, and each edge
of the tree corresponds to a corridor. If the paper lies originally in the zy plane,
then the accordion folding maps each perpendicular to a line orthogonal to the
zy plane, and maps each corridor to a strip of a plane orthogonal to the zy
plane—the tree is precisely what we would see if we look at this folded structure
from above, i.e. from the z direction. Because perpendiculars are orthogonal to
cut edges, all the cut edges lie in the xy plane in this folded structure. The whole
problem then reduces to the problem of folding a tree flat in the plane.

In the case of circular corridors, both of these steps need enhancing. First,
a circular corridor cannot fold up into something as simple as an accordion;
indeed, it may not be foldable at all if the side assignment is not constant.
Second, the corridors are no longer joined in a tree-like fashion: it can be quite
complex just to join two corridors together without crossings. The proof for the
circular-corridor case is much more difficult, and deferred to [6].

5.1 Accordions

Consider a corridor, the creases intersecting it, and the mountain-valley assign-
ment for those creases. We need to prove the existence of a folded state, which
we call an accordion (see Figure 10), and we need to prove some properties of
accordions. These results become obvious in the case where no crease terminates
in the interior of a corridor. Skeleton edges pose no problem, but it is possible
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Fig. 10. (Left) Full crease pattern for a spiral polygon. (Middle) The shaded corridor
folded into an accordion. (Right) The tree model.

for a cut edge to terminate in the interior of a corridor. For example, four cut
edges terminate in the interior of the lower-left corridor in the turtle (Figure 4).

We can avoid this problem by adding the (imaginary) perpendiculars inci-
dent to cut vertices to our set of real perpendiculars, thus forming subdivided
corridors with the property we want: folds cannot terminate interior to a subdi-
vided corridor. Note that we do not fold along these added perpendiculars: they
are being used only for our current purpose of describing the folded state of a
corridor.

By Lemma, 6, the creases in a subdivided corridor alternate between mountain
and valley. Thus the accordion does not self-intersect.

A fold at a skeleton edge lines up the two cut edges bisected by the skeleton
edge. (Note that the cut edges need not be in the corridor.) Because each wall
of the (subdivided) corridor is perpendicular to the cut edges, folding at the
skeleton edge causes the two incident perpendicular edges in the wall to fold to
a common line. Of course this is also the case when we fold at a cut edge.

Hence, we have proved that when a corridor C is folded into an accordion,
the cut edges intersecting C' line up, and each wall of C' lines up. The line(s) to
which the wall(s) of C fold are called the side(s) of C; they are the places at
which accordions join to each other.

We will orient accordions to be perpendicular to the zy plane.

Lemma 9. Two adjacent corridors fold into accordions that match up at their
common side.

Proof. See [6]. O

5.2 Tree Model

We have shown that each accordion can be folded locally, and that they join
compatibly, lining up all the cut edges. The problem thus reduces to folding
at these joins so that the accordions lie on a common plane, resulting in the



desired flat origami. This can be modeled by folding a tree in two dimensions;
see Figure 10. Specifically, this tree corresponds to the zy projection of the folded
model: each edge corresponds to an accordion, and each vertex corresponds to
a side of an accordion. This model is certainly a tree, because a corridor either
has one wall, in which case it corresponds to a leaf, or else removing the interior
of a corridor from the plane leaves two disconnected pieces, in which case it
corresponds to a bridge in the graph.

Finally, we need that every tree has a flat-folded state in the plane, that is,
it can be folded to a line in the plane. This is straightforward; a proof can be
found in [6]. Note that the mountain-valley assignment for perpendicular edges
can be read from the tree folding. Our construction thus establishes

Theorem 2. Given a cut graph that induces no circular corridors, and given
any side assignment, there exists a flat folding of the plane that maps the cut
edges and nothing else to a common line, and appropriately maps faces above or
below this line.

6 Conclusion

We have presented an algorithm that computes the crease pattern and the re-
sulting flat origami that lines up a given plane graph. This allows one to fold
a sheet of paper flat and make one complete straight cut to create any desired
pattern of cuts. Concisely, folding and one straight cut suffice to make any plane
graph. When only scissor cuts are allowed (that is, cuts cannot be made along
folds) and the graph induces no circular corridors, we have shown that one scis-
sor cut suffices for graphs whose vertices all have even degree, and two scissor
cuts suffice for general graphs.
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