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Abstract

In this paper we extend the theory of bidimensionality to two families of graphs that do not exclude
fixed minors: map graphs and power graphs. In both cases we prove a polynomial relation between
the treewidth of a graph in the family and the size of the largest grid minor. These bounds improve the
running times of a broad class of fixed-parameter algorithms. Our novel technique of using approximate
max-min relations between treewidth and size of grid minors is powerful, and we show how it can also
be used, e.g., to prove a linear relation between the treewidth of a bounded-genus graph and the treewidth
of its dual.

1 Introduction

The newly developing theory of bidimensionality, developed in a series of papers [DHT05;"M{N
DFHTOS,[DHO4bh) DFHTO04b, DHO4a, DFHT04a, DHT04, DHO5b, DHO5a], provides general techniques
for designing efficient fixed-parameter algorithms and approximation algorithms for NP-hard graph prob-
lems in broad classes of graphs. This theory applies to graph problems thédiarensionain the sense

that (1) the solution value for x r “grid-like” graphs grows withr, typically asQ2(r?), and (2) the solution

value goes down when contracting edges and optionally when deleting edges (i.e., taking minors). Exam-
ples of such problems include feedback vertex set, vertex cover, minimum maximal matching, face cover,
a series of vertex-removal parameters, dominating set, edge dominatim¢réeminating set, connected
dominating set, connected edge dominating set, conndti@aminating set, and unweighted TSP tour (a
walk in the graph visiting all vertices).

The bidimensionality theory provides strong combinatorial properties and algorithmic results about bidi-
mensional problems in minor-closed graph families, unifying and improving several previous results. The
theory is based on algorithmic and combinatorial extensions to parts of the Robertson-Seymour Graph Mi-
nor Theory, in particular initiating a parallel theory of graph contractions. A key combinatorial property
from the theory is that any graph in an appropriate minor-closed class has treewidth bounded above in terms
of the problem’s solution value, typically by the square root of that value. This property leads to efficient—
often subexponential—fixed-parameter algorithms, as well as polynomial-time approximation schemes, for
many minor-closed graph classes.

The fundamental structure in the theory of bidimensionality is-tker grid graph. In particular, many
of the combinatorial and algorithmic results are built upon a relation (typically linear) between the treewidth
of a graph and the size of the largest grid minor. One such relation is known for general graphs but the bound
is superexponential: every graph of treewidth more fe#H has anr x r grid minor [RST94]. This bound
is usually not strong enough to derive efficient algorithms. A substantially better, linear bound was recently
established for graphs excluding any fixed mibr every H-minor-free graph of treewidth at least;
has anr x r grid minor, for some constamf; [DHO5B]. This bound generalizes similar results for smaller

*MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139, Yeslédmaine,
hajiaghg @mit.edu



classes of graphs: planar graphs [DFHT05], bounded-genus graphs [DEHTO04b], and single-crossing-minor-
free graphs [DFHT0%, DHNOA4]. The bound leads to many powerful algorithmic results, but has effectively
limited those results té/-minor-free graphs.

In this paper we extend the bidimensionality theory to graphs that do not exclude small minors, map
graphs and power graphs, both of which can have arbitrarily large cliques. Given an embedded planar graph
and a partition of its faces intaationsor lakes the associatethap graphhas a vertex for each nation and
an edge between two vertices corresponding to nations (faces) that share a vertex. This modified definition
of the dual graph was introduced by Chen, Grigni, and Papadimitriou [CGP02] as a generalization of planar
graphs that can have arbitrarily large cliques. Later Thorup [Tho98] gave a polynomial-time algorithm
for recognizing map graphs and reconstructing the planar graph and the partition. Recently map graphs
have been studied extensively, exploiting techniques from planar graphs, in particular in the context of
subexponential fixed-parameter algorithms and PTASs for specific domination problems [DEHTO05, Che01].

We can view the class of map graphs as a special case of taking powers of a family of graphth The
powerG* of a graphG is the graph on the same vertex $&() with edges connecting two vertices@
precisely if the distance between these vertice§' iis at mostk. For a bipartite grapldz with bipartition
V(GQ) = UUW, thehalf-squareGG2[U] is the graph on one sidé of the partition, with two vertices adjacent
in G2[U] precisely if the distance between these verticeS is 2. A graph is a map graph if and only if it
is the half-square of some planar bipartite graph [CGP02]. In fact, this translation between map graphs and
half-squares is constructive and takes polynomial time.

1.1 Our Results and Techniques

In this paper we establish strong (polynomial) relations between treewidth and grid minors for map graphs
and for powers of graphs. We prove that any map graph of treewidttas an)(r) x Q(r) grid minor.

We prove that, for any graph class with a polynomial relation between treewidth and grid minors (such as
H-minor-free graphs and map graphs), the familythf powers of these graphs also have such a polynomial
relation, where the polynomial degree is larger by just a constant, interestingly indepenient of

These results extend bidimensionality to map graphs and power graphs, improving the running times of
a broad class of fixed-parameter algorithms for these graphs. Our results also build support for Robertson,
Seymour, and Thomas's conjecture that all graphs have a polynomial relation between treewidth and grid
minors [RST94]. Indeed, from our work, we refine the conjecture to state that all graphs of tre@idith
have arf)(r) x £(r) grid minor, and that this bound is tight. The previous best treewidth-grid relations for
map graphs and power graphs was the superexponential bound from [RST94].

The main technique in this paper is to use approximate max-min relations between the size of a grid mi-
nor and treewidth. In contrast, most previous work uses the seminal approximate max-min relation between
tangles and treewidth, or the max-min relation between tangles and branchwidth, proved by Robertson and
Seymour[[RS91]. We show that grids are powerful structures that are easy to work with. By bootstrapping,
we use grids and their connections to treewidth even to prove relations between grids and treewidth.

Another example of the power of our technigue is a result we obtain as a byproduct of our study of
map graphs: every bounded-genus graph has treewidth within a constant factor of the treewidth of its dual.
This result generalizes a conjecture of Seymour and Thomas [ST94] that the treewidth of a planar graph
is within an additivel of the treewidth of its dual, which has apparently been proved in|[Lap, BMTO1]
using a complicated approach. Such a primal-dual treewidth relation is useful e.g. for bounding the change
in treewidth when performing operations in the dual. In the case of our result, we can bound the change
in treewidth of a bounded-genus graph when manipulating faces, e.g., when contracting a face down to a
point as in[DHO5b]. Our proof crucially uses the connections between treewidth and grid minors, and this
approach leads to a relatively clean argument. The tools we use come from bidimensionality theory and
graph contractions, even though the result is not explicitly about either.



1.2 Algorithmic and Combinatorial Applications

Our treewidth-grid relations have several useful consequences with respect to fixed-parameter algorithms,
minor-bidimensionality, and parameter-treewidth bounds.

A fixed-parameter algorithnis an algorithm for computing a parametB(G) of a graphG whose
running time ish(P(G)) n®") for some functiom. A typical functionk for many fixed-parameter algo-
rithmsish(k) = 20(k) | A celebrated example of a fixed-parameter-tractable problem is vertex cover, asking
whether an input graph has at masvertices that are incident to all its edges, which admits a solution as
fast asO(kn 4+ 1.285%) [CKJO1]. For more results about fixed-parameter tractability and intractability, see
the book of Downey and Fellows [DF99].

A major recent approach for obtaining efficient fixed-parameter algorithms is through “parameter-treewidth
bounds”, a notion at the heart of bidimensionalityp&rameter-treewidth bounid an upper bound (%) on
the treewidth of a graph with parameter vakueTypically, f(k) is polynomial ink. Parameter-treewidth
bounds have been established for many parameters; see! e.q.r02BKP02, FT0B, AFN04, CKLO01,
KLLOZ, (GKLO1, DEHTO5,/ DHN"04,[DHT02, DHTO5[ DFHT044, DHO44a, DFHTO4b]. Essentially all of
these bounds can be obtained from the general theory of bidimensional parameters (sée, e.d., [DHO04c])).
Thus bidimensionality is the most powerful method so far for establishing parameter-treewidth bounds, en-
compassing all such previous results #orminor-free graphs. However, all of these results are limited to
graphs that exclude a fixed minor.

A parameter igminor-bidimensionalf it is at leastg(r) in ther x r grid graph and if the parameter
does not increase when taking minors. Examples of minor-bidimensional parameters include the number of
vertices and the size of various structures, e.g., feedback vertex set, vertex cover, minimum maximal match-
ing, face cover, and a series of vertex-removal parameters. Tight parameter-treewidth bounds have been
established for all minor-bidimensional parameteré/iiminor-free graphs for any fixed gragh [DHO5D,
DFHTO4a/ DFHTO4b].

Our results provide polynomial parameter-treewidth bounds for all minor-bidimensional parameters in
map graphs and power graphs:

Theorem 1 For any minor-bidimensional parametét which is at leasy(r) in ther x r grid, every map
graph G has treewidthtw (G) = O(g~(P(G)))2. More generally suppose that, if gragh has treewidth
at leaster® for constants:, o > 0, thenG has anr x r grid minor. Then, for any even (respectively, odd)
integerk > 1, G* has treewidthtw(G) = O(g~1(P(G)))**+* (respectivelytw(G) = O(g ' (P(G)))*5).

In particular, for H-minor-free graphs, and for any even (respectively, odd) integer> 1, G* has
treewidthtw (G) = O(g~1(P(G)))? (respectivelytw(G) = O(g~H(P(G)))7).

This result naturally leads to a collection of fixed-parameter algorithms, using commonly available al-
gorithms for graphs of bounded treewidth:

Corollary 2 Consider a parameteP that can be computed on a gragh in h(w)n°M time given a
tree decomposition aff of width at mostw. If P is minor-bidimensional and at leag{(r) in ther x r
grid, then there is an algorithm computing on any map graph or power grapff with running time
[M(O(g71(k))P) + 2006~ ()71 O whereg is the degree 0D (g~!(P(G)) in the polynomial treewidth
bound from Theorelﬂ 1. In particular, (w) = 2°®) and g(k) = Q(k?), then the running time is
90(k%/2),,0(1)

The proofs of these consequences follow directly from combining [DFHT04a] with Thegiems T and 9
below.
In contrast, the best previous results for this general family of problems in these graph families have

running times/ (2009 (k)°) 4 22007 %°1,00) [DFHTO4a/ DHO4H].
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2 Definitions and Preliminaries

Treewidth. The notion of treewidth was introduced by Robertson and Seymour |[RS86]. To define this
notion, first we consider a representation of a graph as a tree, called a tree decomposition. Préesely, a
decompositiorf a graphG = (V, E) is a pair(T, x) inwhichT = (I, F) isatreeand, = {x; | i € [} is

a family of subsets oV (G) such that

1 Uierxi =V;
2. for each edge = {u,v} € E, there exists an € I such that both. andv belong toy;; and
3. forallv € V, the set of nodeéi € I | v € x;} forms a connected subtreeBf

To distinguish between vertices of the original grapland vertices of” in the tree decomposition, we call
vertices ofl" nodesand their corresponding;’s bags Thewidth of the tree decomposition is the maximum
size of a bag iny minus1. Thetreewidthof a graphG, denotediw(G), is the minimum width over all
possible tree decompositions Gf

Minors and contractions. Given an edge = {v,w} in a graphG, thecontractionof e in G is the result
of identifying verticesy andw in G and removing all loops and duplicate edges. A graphbtained by a
sequence of such edge contractions starting ffbis said to be @ontractionof G. A graphH is aminor
of G if H is a subgraph of some contraction®f A graph clasg is minor-closedf any minor of any graph
in C is also a member af. A minor-closed graph clagsis H-minor-freeif H ¢ C. More generally, we use
the term “H-minor-free” to refer to any minor-closed graph class that excludes some fixed raph

Grid minors. We use the following important connections between treewidth and the size of the largest
grid minor. Ther x r grid is the planar graph with? vertices arranged on a square grid and with edges
connecting horizontally and vertically adjacent vertices. First we state the connection for planar graphs:

Theorem 3 ((RST94]) Every planar graph of treewidtiv has anQ(w + 1) x Q(w + 1) grid graph as a
mino

The more general connection fa-minor-free graphs has been obtained recently:

Theorem 4 ((DHOS5K]) For any fixed graphH, every H-minor-free graph of treewidtlw has anQ(w +
1) x Q(w + 1) grid graph as a minor.

Embeddings. A 2-cell embeddingf a graphG in a surface> (two-dimensional manifold) is a drawing
of the vertices as points ik and the edges as curvesihsuch that no two points coincide, two curves
intersect only at shared endpoints, and every face (region) bounded by edges is an open disk. We define
the Euler genusor simply genusof a surfaceX to be the “non-orientable genus” or “crosscap number” for
non-orientable surfaces, and twice the “orientable genus” or “handle number” for orientable surfaces
The (Euler) genusof a graphG is the minimum genus of a surface in whi€hcan be 2-cell embedded. A
graph hasounded genui its genus isO(1).

A planar embeddings a 2-cell embedding into the plane (topological sphere).efibedded planar
graphis a graph together with a planar embedding.

we require bounds involving asymptotic notation (2, and© to hold for all values of the parameters, in particular,Thus,
Q(w + 1) has a different meaning frofd(w) whenw = 0. In this theorem, when the treewidthdsi.e., the graph has no edges,
there is still al x 1 grid.



Map graphs. We define a map graph and related notions in terms of an embedded planatgaapha
partition of faces into a collectiofV (G) of nationsand a collection(G) of lakes Thus,N(G) U L(G) is
the set of faces ofy.

We define thg€modified) dualD = D(G) of G in terms of only the nations af. D has a vertex for
every nation of7, and two vertices are adjacentinif the corresponding nations 6f share an edge.

Themap graphM = M (G) of G has a vertex for every nation 6f, and two vertices are adjacent in
M (G) if the corresponding nations @f share a vertex. The map grapfi(G) is a subgraph of the dual
graphD(G).

Canonical map graphs. We canonicaliz&7 in the following ways that preserve the map graphG).
First, we remove any vertex @f incident only to lakes, because it and its incident edges do not contribute
to the map grapld/ (G). Second, for any edge ¢f whose two incident faces are both lakes (possibly the
same lake), we delete the edge and merge the corresponding lakes, because again this will not change the
map graphV/(G).

Third, we modify G to ensure that every vertex is incident to at most one lake, and incident to such
a lake at most once. Consider a veriethat violates this property, and suppose there is an incident lake
between edgeév, w;} and{v,w;} fori = 1,2,...,1. We splitv into ! + 1 verticesv, vy, va, . .., v;, with
v; placed neav in the wedgew;, v, w;}. We connect thesk+ 1 vertices in a star, with an edge between
andv; fori =1,2,...,1. Edges{v, w;} and{v, w}} reroute to bgv;, w;} and{v;, w;}, and all other edges
incident tov remain as they were. as in the second canonicalization. This modification preserves the map
graphM (G) and results in no lakes touchingat

Finally, we assume that the map grapf{G) is connected, i.e., a lake never separates two natio@s in
because we can always consider each connected component separately.

Radial graphs. Theradial graph R = R(G) has a vertex for every vertex 6f and for every nation ofs,
and we label them the sam¥(R) = V(G) U N(G). R(G) is bipartite with this bipartition. Two vertices
v e V(G)andf € N(G) are adjacent itR(G) if their corresponding vertex and nationf are incident.
We also consider the union graphu D. R U D has the same vertex set as the radial gri&ptvhich is
a superset of the vertex set of the dual grdphThe edges iR U D consist of all edges if® and all edges
in D.
We also define theadial graph R = R(G) for a graphG 2-cell embedded in an arbitrary surfate
In this case, we do not allow lakes, and consider every face to be a nation. Otherwise, the definition is the
same.

3 Treewidth-Grid Relation for Map Graphs

In this section we prove a polynomial relation between the treewidth of a map graph and the size of the
largest grid minor. The main idea is to relate the treewidth of the map gva@H), the treewidth of the
radial graphR(G), the treewidth of the dual graph(G), and the treewidth of the union grapi{G)UD(G).

Lemma 5 The treewidth of the unioR U D of the radial graphR and the dual graptD, plus1, is within
a constant factor of the treewidth of the dual graphplus1.

Proof: First,tw(D) + 1 < tw(RU D) + 1 becausé is a subgraph o U D.

The rest of the proof establishes that D) + 1 = Q(tw(R U D) + 1). Because both graphs are planar,
we know by Theorerf|3 thdtplus the treewidth of either graph is within a constant factor of the dimension
of the largest grid minor. Thus it suffices to show that we can convert a giveh grid minor K of RU D
into anQ(k) x Q(k) grid minor of D.



Consider the sequence of edge contractions and removals that/dting to the grid K. Discard
all edge deletions from this sequence, but remove any loops and duplicate copies of edges that arise from
contractions. The resulting gragty remains planar and has the same vertice& aand thereford<’ is a
partially triangulated: x & grid, in the sense that each face of the k grid can have a noncrossing set of
additional edges. (All bounded faces of the grid hawertices and so at most one additional edge.)

We label each vertex in K’ with the set of vertices fronkk U D that contracted to form. We callv
facial if at least one of these vertices is a vertex of the dual gr@ptOtherwisep is nonfacial No two
nonfacial vertices can be adjacentf, because no two vertices (i are adjacent iR U D.

Assign coordinateér, y), 0 < x,y < k, to each vertex in K’. We assume without loss of generality
thatk is divisible by6 (decreasing by at mosb if necessary). For eachj with 1 <i,5 < k/6 — 1, either
vertex(6i + 1,65 + 1) or vertex(6i + 2,65 + 1) is facial, because these two vertices are adjaceht ir_et
v;,; denote a facial vertex among this pair. ligl; denote a vertex of the dual graghin the label ofv; ;
(which exists by the definition of facial).

For anyi,jwith1 <i < k/6 —1andl < j < k/6 — 2, we claim that there is a simple path between
0;,; and?; ;41 in D using only vertices inD that appear in the labels of verticesAith with coordinates in
the rectangl€6i. . 6i + 3, 65. . 6(j + 1) + 3). We start with a shortest paff betweeny; ; andv; 1 in K,
which is simple and remains in the subrectan@le+ 1..6i + 2,65 + 1..6(5 + 1) + 2). We convertPg-
into a simple pathPrp betweens; ; andv; ;41 in R U D using only the vertices ik U D that appear in
the labels of the vertices iR’ along Px+. Here we use that the subgraphmf) D induced by the label set
of a vertex inK’ is connected, because that vertexsiihwas formed by contracting edges in this subgraph.
For each edge in the paffy, we pick an edge itk U D that forms it as a result of the contractions; then
we connect together the endpoints of these edges, and connect the first and last éggest; ;1
respectively, by finding shortest paths within the subgraphB of D induced by label sets. Finally we
convert this pathPr_p into a simple pathPp in D with the desired properties. The vertices along the path
Pryp divide into two classes: those it (corresponding to nations @f) and those irGG (corresponding
to vertices ofG). Among the subsequence of vertices along the pahp, restricted to vertices i, we
claim that every two consecutive verticeav can be connected using only verticedlirthat appear in the
labels of vertices in the desired rectanglew ldndw are consecutive along the paktt_p, then they are
adjacent inD and we are done. Otherwiseandw are separated in the paftk_p by one vertex: of G
(because no two vertices 6f are adjacent irR U D). In G, this situation corresponds to two natianand
w that share the vertex. Because of our canonicalizatiomjs incident to at most one lake, at most once,
and therefore there is a sequence of natiors f1, fo, ..., f; = w in clockwise or counterclockwise order
aroundu. Thus inD we obtain a path = f1, fo, ..., f; = w. Eachf; is incident tou and therefore has
distancel from« in R U D. Because the contractions that form€tfrom R U D only decrease distances,
the vertices ofK”’ with labels includingf; and« have distance at mostin K’. Therefore eaclf; is in a
label of a vertex within the thickened rectangg. . 6i + 3,6;..6(5 + 1) + 3). If the path is not simple,
we can take the shortest path between its endpoints in the subgraph induced by the vertices of the path, and
obtain a simple path.

Symmetrically, for any, j with1 <i < k/6 —2andl < j < k/6 — 1, we obtain that there is a simple
path betweer; ; and;1 ; in D using only vertices irD that appear in the labels of vertices & with
coordinates in the rectang(éi..6(: + 1) + 3,65. .65 + 3).

We construct a grid minaK” of D as follows. We start with the union, over allj, of the simple path
betweery; ; and?; ;11 in D and the simple path betweéy; and;,; ; in D. (In other words, we delete all
vertices not belonging to one of these paths.) Then we contract every vertex in this union that is not one of
thed; ;'s toward its “nearest?; ;. More precisely, for each path betwegry andd; ;1, we cut the path at
the first edge that crosses from r6ww-4 to row6:+5; then we contract all vertices in the path before the cut
into v; j, and we contract all vertices in the path after the cutinta;. Similarly we cut each path between
0;,; andv; 41 ; at the first edge that crosses from coluéint- 4 to columné6: + 5, and contract accordingly.
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Because of the rectangular bounds on each path, the recténgléi + 3,65 + 4..65 + 5) is intersected by

a unique path, the one frofm ; to v; ;+1, and the rectangle: + 4. . 6i + 5,65..6; + 3) is intersected by a
unique path, the one fromy ; to 9;11 ;. Hence our contraction process does not merge paths that were not
originally incident (at one of the; ;'s). Also, because each path is simple and strays by distance at most
from the original shortest path in the grid’, the vertices before the cut are disjoint from the vertices after
the cutin the path. Therefore, each vertex on a path contracts to a uniqueiyertand each path contracts

to a single edge betweén; and either; ;1 or v;11 j. Thus we obtain & /6 — 1) x (k/6 — 1) grid minor

K" of D. O

Lemma 6 The treewidth of the map graphll is at most the product of the maximum degree of a vertex in
G andtw(R) + 1, one more than the treewidth of the radial grafgh

Proof: Suppose we have a tree decompositidny) of the radial grapiR of width w. We modify this tree
decomposition into another tree decompositidhy’) by replacing each occurrence of a vertex V (G)
in a bagB of x with all nations incident t@. Thus, bags iny’ consist only of nations.

We claim (T, x’) is a tree decomposition af/. First, observe that every vertex of the map gragh
appears in some bdgof x’, because nations are vertices in the radial graph as well, so every nation appears
in a bag ofy.

Second, we claim that every vertex of the map grdphappears in a connected subtree of bags in
(T, x'). A nation f appears in a ba§’ of \’ if either it appears in the corresponding ba®f x or one
of its vertices appears in corresponding agf y. The set of bags iry containing the natiorf forms a
connected subtree @f, and the set of bags ipcontaining any vertex of f forms a connected subtree’f
These two subtrees, for any choicewpfoverlap in at least one node dfbecause) and f are adjacent in
the radial graptR, and thus this edg@, f) appeared in some bag @f Therefore the union of the subtree
of T"induced byf and all vertices of f is connected. This union is precisely the set of nodeg whose
bags iny’ containf.

Third, we claim that every edge of the map graphappears in some bag af. An edge arises in
M when two nationsf;, fo share a vertex in G. This vertexv appears in some bafj of x, and in
constructingy’ we replaced with nationsf;, f2, and possibly other nations. Therefgiieand f> appear in
the corresponding baf’ of .

Finally we claim that the size of any bdj in x’ is at most the maximum degre® of a vertex inG
times the size of the corresponding & x. This claim follows from the construction because each vertex
is replaced by at mogk nations in the transformation frofito B’. The size of each original bagin y is
at most one more than the treewidth/®f Therefore the maximum bag sizejhis at mostA (tw(R) + 1),
and the treewidth ol is at most one less than this maximum bag size. O

Theorem 7 If the treewidth of the map graph is r3, then it has arf)(r) x Q(r) grid as a minor.

Proof: By Lemmd 6,tw(M) = O(A-tw(R)). BecauseR is a subgraph oaRU D, tw(M) = O(A-tw(RU
D)). By Lemmg btw (M) = O(A - (tw(D) +1)). Thus, iftw (M) = Q(r3), then eithetw(D) = Q(r) or
A = Q(r?). Inthe former casel) is a planar subgraph dff and thereforeD andM have arQ(r) x Q(r)
grid as a minor by Theorem 3. Inthe latter cakehas ak'a = Kq(,2) clique as a subgraph, and therefore
has ar)(r) x Q(r) grid as minor. O

Next we show that this theorem cannot be improved ffam®) to anythingo(r2):

Proposition 8 There are map graphs whose treewidtiris- 1 and whose largest grid minor isx 7.



Proof: Let G be an embedded wheel graph withspokes. We set ali’> bounded faces to be nations and
the exterior face to be a lake. Then the dual grapfs a cycle, and the map grapll is the cliquek,..
ThereforeM has treewidth-? — 1, yet its smallest grid minor i8 x r. O

Robertson, Seymour, and Thomas [RST94] prove a stronger lower bo@ddfg ) but only for the
case of general graphs.

4 Treewidth-Grid Relation for Power Graphs

In this section we prove a polynomial relation between the treewidth of a power graph and the size of the
largest grid minor. The technique here is quite different, analyzing how a radiegthborhood in the graph
can be covered by radiys/2) neighborhoods—a kind of “sphere packing” argument.

Theorem 9 Suppose that, if grap&’ has treewidth at leastr for constants:, « > 0, thenG has anr x r
grid minor. For any even (respectively, odd) integer 1, if G* has treewidth at leastr®+* (respectively,
cr®t6), then it has an x r grid minor.

Proof: Let A(G¥) denote the maximum degree of any vertexGif, that is, the maximum size of the
neighborhood of a vertex ii. First we claim thatw(G*) < A(G*) tw(G). Consider a tree decomposition
(T, x) of G. Replace each occurrence of vertei y, with the entire radiug: neighborhood ob in G.
Thus we expand the maximum bag size by a factor of at m¢é&t*), and the width of the resulting’, ')

is at mostA(G*)(tw(G) 4 1). We claim that(T', x') is a tree decomposition @i*. First, if two vertices

v andw are adjacent irG*, i.e., within distance: in G, then by construction they are in a common bag
in (T, x’), indeed any bag that originally contained eitheor w. Second, we claim that the set of bags
containing a vertex is a connected subtree df In other words, we claim that any two verticeandw
that are within distancé of v, which give rise to occurrences ofin x/, can be connected via a pathZh
along which the bags always contain Concatenate the shortest path= vo, v1,...,v; = v fromu tov

in G and the shortest path= v;,v;41,...,v = w fromv tow in G, both of which use vertices; always
within distancek of v. Now construct the desired path Thby visiting, for eachi in turn, the subtree of
bags inx containing occurrences of, whose corresponding bags-hcontain occurrences of Here we
use that the bags i containing occurrences of form a connected subtree @f and that this subtree for
v; and this subtree far; 11 share a node becausgis adjacent ta; ;.

If tw(G*) > crot?, then eitherA(G*) > 4 or tw(G) > cr®. In the latter case, we obtain by
supposition tha& has an- x r grid minor and thus so does the supergr&gh Therefore we concentrate
on the former case whefA(G*) > r4. Letwv be the vertex irG whosek-neighborhoodV; has maximum
size,A(G*). There are two cases depending on whethisreven or odd.

The simpler case is whéhis even. If the(k/2)-neighborhoodV,, /, of v in G has size at least, then
in G* we obtain a cliquek,2 on those vertices, so we obtain arx r grid minor. Otherwise, label each
vertex in thek-neighborhoodV,, with the nearest vertex in thé/2)-neighborhoodVy, ,. If any vertex in
the (k/2)-neighborhoodV,, /, is assigned as the label to at lea$tvertices inV,, then again we obtain a
K, clique subgraph i’* and thus am x r grid minor. Otherwise, th&-neighborhoodV;, has size strictly
less thanr? - r2 = 74, contradicting thatN;| = A(G*) > r4.

The case whet is odd is similar. As before, if thek/2]-neighborhoodV) »| of v in G has size at
leastr?, then inG* we obtain a cliquel,. and thus amr x r grid minor. Otherwise, label each vertex
in the (k — 1)-neighborhoodV; of v with the nearest vertex in thig:/2|-neighborhoodV); 5. If any
vertex in the| k/2|-neighborhoodV), » is assigned as the label to at leadtvertices inN;,_1, then again
we obtain ak,. clique and an- x r grid. Otherwise|N;_| < r4. Finally label each vertex itV;, with
the nearest vertex itV,_;. If any vertex inN,_; is assigned as the label to at leaStvertices inNVy,



then again we obtain &, clique and an- x r grid. Otherwise|N,| < r* .72 = 7%, contradicting that
INL| = A(GF) > rS. 0O

We have the following immediate consequence of Theoféinis 4, Tand 9:

Corollary 10 For any H-minor-free graph, and for any even (respectively, odd) integer 1, if G* has
treewidth at least® (respectivelyr”), then it has arf)(r) x Q(r) grid minor. For any map grapld, and
for any even (respectively, odd) integer> 1, if G* has treewidth at least” (respectivelyr®), then it has
anQ(r) x Q(r) grid minor.

5 Primal-Dual Treewidth Relation for Bounded-Genus Graphs

Robertson and Seymolr [RS94, ST94] proved that the branchwidth of a planar graph is equal to the branch-
width of its dual, and conjectured that the treewidth of a planar graph is within an adddaftbe treewidth
of its dual. The latter conjecture was apparently proved in|[Lap, BMTO01], though the proof is complicated.
Here we prove that the treewidth (and hence the branchwidth) of any graph 2-cell embedded in a bounded-
genus surface is within a constant factor of the treewidth of its dual. Thus the result applies more generally,
though the connection is slightly weaker (constant factor instead of additive constant).

We crucially use the connection between treewidth and grids to obtain a relatively simple proof of this
result. Our proof uses Sectiph 3, generalized to the bounded-genus case, and forbidding lakes.

We need the following theorem from the contraction bidimensionality theory, and a simple corollary.

Theorem 11 ([DHTO04]) There is a sequence of contractions that brings any gi@psf genusy to a par-
tially triangulatedQ(tw(G)/(g+ 1)) x Q(tw(G)/(g+ 1)) grid augmented with at mogtadditional edges.

Corollary 12 There is a sequence of contractions that brings any gi@pdf genusy to a partially trian-
gulatedQ(tw(G)/(g+1)?) x Q(tw(G) /(g +1)?) grid, augmented with at mogtadditional edges incident
only to boundary vertices of the grid.

Proof: We take the augmentéd(tw(G)/(g+1)) x Q(tw(G)/(g+1)) grid guaranteed by Theordm|11, and
find the largest square subgrid that does not contain in its interior any endpoints of the gtaddgtonal
edges. This subgrid has sigdétw(G)/(g + 1)?) x Q(tw(G)/(g + 1)?) because there afy vertices to
avoid. Then we contract all vertices outside this subgrid into the boundary vertices of this subgrida

The main idea for proving a relation between the treewidth of a graph and the treewidth of its dual is
to relate both to the treewidth of the radial graph, and use that the radial graph of the primal is equal to the
radial graph of the dual.

Theorem 13 For a 2-connected graptr 2-cell embedded in a surface of geryéts treewidth is within an
O((g + 1)?) factor of the treewidth of its radial grapR(G).

Proof: We follow the part of the proof of Lemnjg 6 establishing tha{G) + 1 = Q(tw(RU G) + 1), in

order to prove thatw(G) + 1 = Q(tw(R) + 1). The differences are as follows. Every occurenc&aof G

is replaced byR. Instead of applying Theoren) 3 to obtain a grid midorand then discarding the edge
deletions from the sequence to obtain a partially triangulated grid contraitiowe use Corollary 12 to
obtain a partially triangulate@(tw(R)/(g+ 1)) x Q(tw(R)/(g+ 1)) grid contractionk”’ of R augmented

with at mostg additional edges incident only to boundary vertices of the grid. Otherwise, the proof is
identical, and we obtain a8 (tw(R) /(g +1)?) x Q(tw(R)/(g + 1)?) grid contractionk” of G. Therefore,
tw(G)+1 = Q(tw(R)/(g+1)?). Because is 2-connectedyw(G) > 0, sotw(G) = Q(tw(R)/(g+1)?).



Now we apply what we just provedsw(G) = Q(tw(R(G))/(g+1)?)—substitutingR(G) for G. (The
theorem appliesR(G) is 2-cell embeddable in the same surfacé&aandR(G) is 2-connected becausé
(and thusG*) is 2-connected.) Thusv(R(G)) = Q(tw(R(R(G)))/(g + 1)?). We claim thaiG is a minor
of R(R(G)), which implies thatw(G) < tw(R(R(G))) and thereforew(R(G)) = Q(tw(G)/(g + 1)?)
as desired.

Now we prove the claim. Becaugeis 2-connected, each face of the radial grdtid-) is a diamond
(4-cycle)wv, f1,ve, fo alternating between vertices;(andwv;) and faces f; and f5) of G. Also, v; # vg
and fi # fo. If we take the radial graph of the radial grapR(R(G)), we obtain a new vertex for
each such diamond, connected via edges {¢, v2, and fo. For each such vertex, we delete the edges
{w, f1} and{w, f»}, and we contract the eddev, v2}. The local result is just the edde, v2}. Overall,
we obtainG as a minor ofR(R(G)). O

With this connection to the radial graph in hand, we can prove the main theorem of this section:

Theorem 14 The treewidth of a grapli’ 2-cell embedded in a surface of genuis at mostO(g*) times
the treewidth of the duak™.

Proof: If G is 2-connected, then by Theorém 18,G) is within anO(g?) factor oftw(R(G)). Because
R(G*) = R(G), we also have thatw(G*) is within anO(g?) factor oftw(R(G)). Thereforetw(G) is
within anO(g*) factor oftw(G*).

Now supposé&~ has a vertex 1-cutv}. ThenG has two strictly smaller induced subgraghs andGo
that overlap only at vertex and whose unioidir; U G4 is G. The treewidth ofG is the maximum of the
treewidth ofG; and the treewidth of#s. (Given tree decompositions 6f; andGs, pick a node in each tree
whose bag containg and connect these nodes together via an edge.) Furthermore, the duakjizgdha
cut vertexf corresponding t@, andG* similarly decomposes into induced subgraptjsandG# such that
Gi UGy = G* andG3 andG3 overlap only atf. By induction,tw(G;) is within acg* factor of tw(G?),
fori € {1,2} and for a fixed constant Thereforetw(G) = max{tw(G1), tw(G2)} is within acg* factor
of max{tw(G7), tw(G%)}) = O(tw(G*)). O

The bound is Theorein 14 is not necessarily the best possible. In particular, we can improve the bound
from O(g*) to O(¢?). Instead of using CoroIIa2, we can apply Theo@n 11 directly and instead modify
the grid argument of Lemnja 6 to avoid the endpoints ofgtlaelditional edges. Specifically, we stretch the
“waffle” of horizontal and vertical strips in the grid connecting thg’s, so that all grid points we use for
paths avoid all rows and columns containing the endpoints of thdditional edges. Then we can use the
same argument, deleting the vertices and edges not on the paths, and in particular delgteugitienal
edges, to form the desired grid minor.

Theorem 15 The treewidth of a grapli’ 2-cell embedded in a surface of genuis at mostO(g?) times
the treewidth of the duak™.

6 Conclusion

We have proved polynomial bounds on the treewidth necessary to guarantee the existence of gnd
minor for both map graphs and power graphs, which can have arbitrarily large cliques and thus do not
exclude any fixed minor. The techniques of our paper use approximate max-min relations between the size
of grid minors and treewidth, and our results provide additional such relations for future use.

One of the main open problems is to close the gap between the best current upper and lower bounds
relating treewidth and grid minors. For map graphs, it would be interesting to determine whether our analysis
is tight, in particular, whether we can construct an example for whichOi€) bound is tight. Such a
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construction would be very interesting because it would improve the best previous lower béuind kpfr)
for general graphs [RST94]. We make the following stronger claim about general graphs:

Conjecture 16 For some constant > 0, every graph with treewidth at least® has anr x = grid minor.
Furthermore, this bound is tight: some graphs have treewitith*) and nor x r grid minor.

This conjecture is consistent with the belief of Robertson, Seymour, and Thomas [RST94] that the
treewidth of general graphs is polynomial in the size of the largest grid minor.
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