
Morpion Solitaire

Erik D. Demaine

MIT Computer Science and Artificial Intelligence Laboratory

edemaine@mit.edu

Martin L. Demaine

MIT Computer Science and Artificial Intelligence Laboratory

mdemaine@mit.edu

Arthur Langerman

Langerman Diamonds

arthur@langerman.net

Stefan Langerman∗

Université Libre de Bruxelles, Département d’informatique

stefan.langerman@ulb.ac.be

Abstract

We study a popular pencil-and-paper game called morpion solitaire.

We present upper and lower bounds for the maximum score attainable for

many versions of the game. We also show that, in its most general form,

the game is NP-hard and the high score is inapproximable within n
1−ε

for any ε > 0 unless P = NP .

1 Introduction

The classic game of morpion solitaire starts with some configuration of points
drawn on the intersections of a square grid, typically the cross shown on the left
of Figure 1. In this game, the player makes a sequence of moves. Each move
consists of placing a new point at a grid intersection and drawing a new line
segment connecting 5 consecutive points that include the new one. The line can
be drawn in any of the four directions: horizontal, vertical, or either diagonal.
Moves are further constrained by one of two constraints. In the disjoint model,
line segments with the same direction cannot share a point. However, line
segments with different directions are always permitted to share points. In the
touching model, line segments with the same direction are permitted to overlap

∗Chercheur qualifié du FNRS.

1

1 1

2

1

2
3

1

2
3
4

Figure 1: The cross starting configuration A4 for k = 4, and four sample
moves. The last move is permitted only in the touching model.

just slightly, at a common endpoint, but cannot share more than one point.
In other words, the touching model allows point overlap but disallows positive-
length overlap of the line segments. The game is over when no further moves
can be made. The goal of the game is to maximize the number of moves before
the game ends.

The morpion solitaire game is famous in several European countries (mainly
in Belgium and France), where every elementary-school student is required to
have graph paper in her/his schoolbag. The game is also commonly called
“connector”, “petites croix” (“little crosses”), or “Malta cross”. The touching
model is probably the most popular of the two models. The first published
reference we could find about the game is in the magazine Jeux & Stratégie
from September 1982 [4]. The article shows a solution of 164 moves and claims
a record of 170 moves by Charles-Henri Bruneau without actually displaying
it. The following two issues of the magazine mention that they have received a
large number of proposed solutions, but those solutions have not been published
either. Since then, several webpages have been dedicated to finding better
solutions to the touching version of the game [1, 8, 9], and games of 170 moves
due to Denis Excoffier, Charles-Henri Bruneau, and JB Bonté (bearing the date
of January 15, 1982) have been published and verified. The game has also been
used as a test case for an evolutionary algorithm by Hugues Juillé [7]. His
program found a game of 122 moves.

The disjoint model is the one that appears under the name Connector in

2

the excellent book by Walter Joris [6]. The book describes a two-player variant
as well. A webpage maintaining the high scores for the disjoint-model solitaire
game has been maintained by the fourth author since 1996 [8]. High scores
have alternated between Stefan Schmieta, who used an implementation of a
random-sampling algorithm with local search, and the third author, who used
exclusively pencil and paper. The current record of 68 moves is held by the
third author.

In this article, we consider combinatorial and computational issues for several
variations on both the touching and disjoint variants of morpion solitaire. We
first generalize the game so that, at every move, the drawn line segment joins
k+1 points, rather than 5, for some specified value k, and scaling the initial cross
configuration accordingly. We also consider the more general case (mentioned in
[2]) where the starting configuration can be any given set of points. We present
lower and upper bounds for the largest number of moves in all versions of the
game, in particular partially characterizing when the number of moves can be
infinite.

After the magazine Jeux & Stratégie received a large number of solutions,
they were faced with the computational problem of verifying them. In [2] they
write “It is horribly difficult, or even impossible, to figure the order in which the
line segments have been drawn, and thus to verify if the proposed game is valid.
Indeed, after the 30th move, or even before, the addition of a new point allows
2, 3, or 4 alignment possibilities: which to choose? The number of possibilities
grows as the game continues.” (translated from French). In Section 4, we show
that reconstructing a valid ordering from a drawing is not as difficult as it seems:
we give a linear-time algorithm for this task. We then show that, on the other
hand, determining the maximum number of moves that can be made from a
given set of points is NP-hard and not approximable within n1−ε for any ε > 0
(unless P = NP).

2 Notation

Let Gk(S) denote the maximum number of moves in a game starting with an
initial set S ⊆ Z

2 of points on the unit square grid, where at each step a
line joining k + 1 points is drawn through k existing points and a new one,
and where two lines with the same direction cannot share a point (the disjoint
model). Let G′

k(S) be the maximum number of moves in the variant where two
lines are allowed to share one point but not two (the touching model). Let Ak

be the traditional initial set of |Ak| = 12(k − 1) points formed by a plus sign of
thickness k. For example A4 is the configuration shown on the left of Figure 1,
|A4| = 36, and G4(A4) is the number of lines in the best possible solution of
the original puzzle. We also write Gk(n) and G′

k(n) for the maximum value of
Gk(S) and G′

k(S) respectively, over all sets S of n points, that is, the maximum
number of moves possible if we are allowed to choose the position of the n
starting points.

3

3 Combinatorial Results

In this section, we present upper and lower bounds on the values of Gk(S),
G′

k(S), Gk(Ak), and G′

k(Ak). Because the touching model is less restrictive
than the disjoint model, Gk(S) ≤ G′

k(S) for any S and any k.

3.1 Potential Function

The following potential-function argument is partially described in [2].
A drawing D is any set of grid points and horizontal, vertical, and diagonal

line segments, e.g., drawn during gameplay. Every point in the drawing can be
seen as having 8 slots in the 8 different directions, which line segments may or
may not connect to (overlap). We define the potential of a point in D to be
the number of directions in which no line segment is connected, i.e., the number
of empty slots. The potential φ(D) of the entire drawing D is the sum of the
potential of all its points.

In the game Gk(S), the potential at the beginning is 8|S|. Each move adds
a new point, which adds 8 to the potential, and a line which removes 2(k + 1)
from the potential. No further moves can be made when the potential is less
than 2k. This implies that 8|S| − (2(k + 1)− 8)(Gk(S) − 1) ≥ 2k, and so when
k > 3,

Gk(S) ≤ 1 +
4|S| − k

k − 3
.

For G′

k(S), the situation is identical except that adding a line removes only
2k from the potential, and no further lines can be added when the potential is
less than 2k − 1. So, for k > 4,

G′

k(S) ≤ 1 +
8|S| − 2k + 1

2(k − 4)
.

For example, these potential arguments give the upper bound G4(A4) ≤ 141.
Unfortunately, these simple arguments do not produce a bound for G′

4(A4). In
fact, in that case, a move keeps the potential unchanged.

3.2 Boundary Bound for G
′

k
(S)

Let D be a drawing at some time in the game G′

k(S), and let P be the set
of points in D. Form a new drawing Γ(P) by connecting every pair of points
in P that are adjacent either horizontally, vertically, or diagonally, i.e., every
pair of gridpoints with `∞ distance 1. Thus, Γ(P) forms a superset of the
drawing D, and φ(Γ(P)) ≤ φ(D). By extension, we define the potential of any
set of points Q: φ(Q) = φ(Γ(Q)). We assume that Γ(P) is connected; this
assumption can be later removed by considering each connected component
separately.

Our goal is to bound the numder e(P) of edges in Γ(P), which will provide
an upper bound on the number of moves in D. Brass [3] bounds the number of

4

edges in unit-distance graphs in general norms ‖·‖, i.e., the number of edges of
length 1 according to this norm, in terms of the number of vertices. His bound
depends on λ(‖·‖), the length of the longest line segment on a circle of radius 1.
In Γ(P), we are measuring unit distances in the `∞ norm, so λ(‖·‖) = 2. For
that case, Brass proves

e(P) ≤
⌊

4|P | −
√

28|P | − 12
⌋

.

(He also proves that this bound is tight in the worst case, even for our case
of `∞.)

For every point in P , each of its 8 incident edges is counted either in e(P)
(if the edge connects to another point in P) or in φ(P) (otherwise). The former
edges are counted only once in e(P) but twice if we consider each point in P
separately. Thus 2e(P) + φ(P) = 8|P |, so

φ(P)/2 ≥
⌈

√

28|P | − 12
⌉

.

But φ(P) is even, so we can drop the ceiling:

φ(P)/2 ≥
√

28|P | − 12.

Therefore we obtain the following bound on the size of a point set in terms of
its potential:

|P | ≤ (φ(P)2/4 + 12)/28 = (φ(P)2 + 48)/112. (1)

If m is the number of moves performed, we have |P | = |S| + m, and in the
game G′

k(S),
φ(P) ≤ φ(D) = 8|S|+ m(8 − 2k).

Therefore,

|S| + m ≤
(8|S| + m(8 − 2k))2 + 48

112
.

In particular, when k = 4, the maximum number of moves is bounded by

m ≤
4

7
|S|2 − |S|

which implies that the original G′

4(A4) ≤ 704. This upper bound applies to any
starting set of 36 points.

In the remainder of this section, we consider each value of k individually
and describe the best upper and lower bounds we know for the two games, in
particular Gk(Ak) and G′

k(Ak).

3.3 k = 1

Starting with one point, the game G1(S) can continue indefinitely, as shown in
Figure 2. Thus, for any S with |S| > 0, G1(S) = G′

1(S) = ∞.

5

20

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

1

Figure 2: G1(1) = G′

1(1) = ∞.

3.4 k = 2

Two starting points allow no more than one move: G2(2) = G′

2(2) = 1. But
there is a starting set of three points from which one can play indefinitely; see
Figure 3. So, G2(3) = G′

2(3) = ∞ and in particular, G2(A2) = G′

2(A2) = ∞.

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 3: G2(A2) = G′

2(A2) = G2(3) = G′

2(3) = ∞.

3.5 k = 3

The case k = 3 is the first interesting one. The potential argument does not help
because, for G3(S), the potential remains unchanged after a move. Moreover,
there exists a starting set of 7 points from which one can play indefinitely; see
Figure 4. So, G3(7) = G′

3(7) = ∞.

52

2 3 4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20 21

22

23

24

25

26

27

28

29

30

31 32

33

34

35

36 37

38

39

40

41

42

43

44

45

46

47 48

49

50

51

1

Figure 4: G3(7) = G′

3(7) = ∞.

Nevertheless, we can show that both G3(A3) and G3(A3) are bounded. As-
sume that the bottom leftmost point of A3 has coordinates (1, 1). We claim
that every point of A3 has at least one of its coordinates odd, so no point with
both coordinates even can ever be played during the game. To see this claim,
just notice that any segment of length 4 incident to one (even,even) point has to
be incident to exactly two (even,even) points. The claim reduces the number of
slots available at every point: an (odd, odd) point has 4 slots and an (odd, even)
point has 6 slots available. So the starting potential is 120.

6

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Figure 5: G3(A3) ≥ 31.

1

2

3

4

5

6

7

8

910 11

12

13

1415

16

17 18 19

20

21 22

23

24

25

26

27

28

29

30

31

32

33

3435

36

37 3839

40

41

42 43

44

45 4647

48

49

50

51

52

53

5455

56

Figure 6: G′

3(A3) ≥ 56.

We split the potential into three parts: φoo is the sum of all horizontal
and vertical free slots at (odd, odd) points, initially 48; φoe is the sum of all
horizontal and vertical free slots at (odd, even) points, initially 24; and φd is the
sum of all diagonal free slots (which never appear at (odd, odd) points), initially
48. Let moo be the number of moves placing an (odd, odd) point and drawing
a horizontal or vertical line, moe the number of moves placing an (odd, even)
point and drawing a horizontal or vertical line, and md the number of diagonal
moves (which place only (odd, even) points). The potentials can be expressed
by the following equations:

φoo = 48− 4moe,

φoe = 24− 2moe − 4moo + 2md,

φd = 48 + 4moe − 4md.

Solving the linear program of maximizing moo+moe+md subject to nonneg-
ativity constraints φoo, φoe, φd, moo, moe, md ≥ 0, we obtain moo = 12, moe =
12, md = 24, which imply that G3(A3) ≤ 48. Figure 5 shows that G3(A3) ≥ 31.

For the second variant G′

3(A3), the potentials can be expressed as follows:

φoo = 48 − 3moe + moo,

φoe = 24 − moe − 3moo + 2md,

φd = 48 + 4moe − 2md.

Solving the linear program of maximizing moo+moe+md subject to nonneg-
ativity constraints φoo, φoe, φd, moo, moe, md ≥ 0, we obtain moo = 60, moe =
96, md = 36, which imply that G′

3(A3) ≤ 192. Figure 6 shows that G′

3(A3) ≥ 56.

7

3.6 k = 4

The case k = 4 is the original game. The potential-function argument from
Section 3.1 shows that G4(n) ≤ 4n − 3, in particular, G4(A4) ≤ 141. Figure 7
shows that G4(A4) ≥ 68.

1

2

3

4

5

6 78 9

10 11

1213

14

15

16

17

18

19

20 21

22

23

24

25 26

27

28

29

30

31

32

33

34 35

36

37

38

39

40

41

4243

44

45

46

47

48

49

50

51

52 53

5455

56

57

58

59

60

61

6263

6465

66

67

68

Figure 7: G4(A4) ≥ 68.

The boundary argument from Section 3.2 shows that G′

4(n) ≤ 4
7n2 − n, in

particular, G′

4(A4) ≤ 704. Several lower bounds on G′

4(A4) are described in the
introduction; the best known is G′

4(A4) ≥ 170, as shown in Figure 8.
In independent work, Flammenkamp [5] claims a tighter upper bound of

G′

4(A4) ≤ 324, but we have been unable to verify his proof sketch.

3.7 k ≥ 5

Figure 9 shows all the new points that can be generated from Ak in the case
k ≥ 5. The addition of those points does not form any line of sufficient density
to perform another move. Furthermore, only 12 of those 24 points can appear
simultaneously in a game. This shows that Gk(Ak) = G′

k(Ak) = 12 for k ≥ 5.

4 Algorithmic Results

4.1 Verifying a Drawing

In this section, we present algorithms for verifying a drawing without an ordering
on the added points. We use a simple greedy algorithm: at every step, find a line
in the drawing that covers k existing points and one point not yet played. Play
that point and line, and repeat. If all lines have been played, report a success

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 1819

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71 72

73

74

75

76

77

78

79

80 81

82

83

84 85

86 87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143144

145

146

147

148

149

150151

152

153

154 155

156

157

158159

160

161

162

163

164

165

166

167

168

169

170

Figure 8: G′

4(A4) ≥ 170. This solution is by JB Bonté [9].

Figure 9: k ≥ 5.

and the ordering of the lines. Otherwise, if no playable line exists, report a
failure.

Lemma 1 The drawing is valid if and only if the greedy algorithm succeeds.

9

Proof: Because the greedy algorithm obeys the rules of the game, if it is suc-
cessful, then the drawing is valid. So we just have to show that if the drawing
is valid, then the greedy algorithm will succeed. So suppose there is a valid or-
dering `1, `2, . . . , `n for drawing the lines, that the greedy algorithm has already
drawn `1, . . . , `i, and let `j be a drawable line chosen by the greedy algorithm.
We just have to show that `1, . . . , `i, `j , `i+1, . . . , `j−1, `j+1, . . . , `n is also a valid
ordering. If this is not the case, it would mean that some line `j′ , i+1 ≤ j′ ≤ j−1
cannot be drawn because of the presence of `j . It cannot be because `j collides
with `j′ (i.e., they share a point in the same direction in the disjoint model, or
they share two points in the touching model), because the collision is indepen-
dent of the order in which the lines are drawn. The only other possible reason is
that when drawing `j , we drew the point that was supposed to be drawn for `j′ .
But then drawing `j′ before `j would produce the same problem, contradicting
that `1, `2, . . . , `n is a valid ordering. 2

Theorem 1 Given S and a set of n lines, it is possible to verify whether those
n lines are a solution for either Gk(S) or G′

k(S) in O(n + |S|) time and space,
and if so, report an order in which the lines can be drawn.

Proof: By the previous lemma, all we need to do is to be able to find drawable
lines quickly. For this task, we preprocess the drawing, creating for each line a
doubly linked list of its points, and pointing each drawn point to its position in
the lists of the ≤ 8 lines it is covered by. Whenever we draw a point, we remove
it from the lists of all the lines pointed to by the point. If a list contains only
one point, we put it in a drawable queue. First, the algorithm draws the points
from the starting configuration. Then, at every step, a line is taken from the
drawable queue, and drawn with its last remaining point. The running time for
the preprocessing is O(|S| + n), and every of the n steps takes O(1) time. 2

4.2 General Dot Patterns are Hard

In this section we prove that maximizing the number of lines played starting
from a general dot pattern is hard, even to approximate, in both versions of the
game. We first notice that the associated decision problem is in NP for k ≥ 4:
using the bounds from Sections 3.1 and 3.2, we know that the size of a solution
is polynomial in |S|, and can be verified in linear time using Theorem 1. The
same argument does not work for k = 2 and k = 3, and it remains open whether
those cases are in NP, or even in P for k = 2. For k ≥ 3, the problem is NP-hard
and inapproximable as shown in the remainder of this section.

Theorem 2 For any k ≥ 3, it is NP-hard to find the longest play from a pattern
of n dots, or even to find a play of length within n1−ε of the longest play, for
any constant ε > 0. This result holds for both variants of the game.

Proof: To prove this theorem we reduce from 3-SAT. The reduction is identical
for both variants of the game. The construction is only slightly different for

10

clauses
with

positive
literal
form

clauses
with

literal
form

negative

Split Variable Split

SplitSplit

(more
variables)

appropriate literals

Clause

appropriate literals

Clause

appropriate literals

Clause

Checker

true false

treasure

Figure 10: A schematic overview of our NP-hardness reduction from 3-SAT.
This diagram illustrates most of the gadgets as black boxes, and ignores the use
of crossover and shift gadgets.

different k; in the figures, we focus on k = 3. Figure 10 shows a schematic
overview of our reduction.

Our construction represents boolean values by whether certain dots can be
placed to make certain lines. The wire gadget in Figure 11 propagates this
information across the construction. Specifically, one unit of a wire consists of
k − 1 dots diagonally in a row.1 If a dot is placed on one side of these k − 1
dots, then we can draw a line and create a dot on the other side of the k − 1
dots. By arranging several of these k − 1 repeats to share the blank spaces on
their ends, we obtain a wire that propagates a single dot placement at one end
to a dot placement at the other end. To allow for the disjoint model, we do not
allow two k − 1 repeats in a row to be collinear, but this restriction does not
cause any difficulties in routing.

To start the wires with values corresponding to variables, we use the variable
gadget shown in Figure 12. This gadget simply consists of k dots in a row instead
of k − 1. Thus the wire on either end can be started, but both wires cannot

1The routing of wires is entirely diagonal, but some other gadgets use horizontal or vertical

connections to such wires. A single unit of horizontal or vertical wire works like a diagonal

wire, but it is dangerous to combine them: for example, an east wire followed by a south wire

followed by an east wire can be triggered without any extra dots by drawing a diagonal line.

This subtle danger is why most wires in our construction are diagonal.

11

1

2

3

4

5

6

7

8

9

Figure 11: Wire gadget with a 90◦ turn. The X in the upper-left can be
covered if and only if the X in the lower-right can be covered.

true false true false

1

2

true false

1

2

Figure 12: Variable gadget. The left or right wire can be triggered by this
gadget, but not both.

be started from this gadget because of the nonoverlapping constraint. Thus,
one wire represents the variable being true and the other wire represents the
variable being false.

To route the value of a variable to multiple clauses, we need the split gadget
shown in Figure 13. This gadget consists of joining three wire gadgets together.
However, to avoid multiple wires joining collinearly, we need to use some hor-
izontal wires. Any of the wires can be the effective “input” that triggers the
other two “outputs”.

1

2

3

4

5

6

Figure 13: Split gadget. The X on the left can be covered if and only if either
or both of the top and bottom X’s can be covered.

12

input

output

input

output

1

2

3

4 5

6 7 8

9

10

input

output

1

2

Figure 14: One-way gadget. If the X in the lower-left is covered, then the X in
the upper-right can be covered, but there is no such implication in the reverse
direction. Small X positions can be triggered but are irrelevant.

output

one−way

one−way

one−way

Figure 15: Clause gadget, which uses three one-way gadgets. The output wire
on the bottom can be triggered if any of the three input wires can be triggered,
but no other implications hold.

Before we can define the clause gadget, we need a one-way gadget that
prevents information flow in one direction. Figure 14 shows such a gadget. The
basic idea is to split the input wire into two so that two X’s can be created in
close proximity, enabling us to trigger the output wire. On the other hand, the
output wire itself creates only one X, but the relevant row is lacking two X’s
before a line can be drawn. Thus the input wire cannot be triggered from this
gadget even if the output wire is triggered.

The clause gadget is essentially three one-way input wires brought together,
together with an output wire, as shown in Figure 15. Thus whenever any of
the input wires is triggered, the output wire can be triggered, but the triggered
input wire does not contaminate the other input wires.

We connect all of the output wires of clause gadgets to a final checker gadget,
shown in Figure 16, which offers a large reward for setting all clause output wires

13

input input input

output

input input input

output

1 2 3

4

5

input input input

output

1 2 3

4

5 6 7

8

9 10 11

12

Figure 16: Checker gadget. The output wire can be triggered only if all input
wires have been triggered.

correctly. The checker gadget is self-triggered by k dots in a row, but the trigger
can continue at each stage only if another wire has triggered it. Thus the output
wire in the lower-right can be triggered only if all clauses have been satisfied.

The output wire is connected to “treasure” which is a wire of length n1/ε+O(1).
The reward of this treasure is so large compared to the nO(1) possible lines
obtained elsewhere in the construction that even approximate solution to the
instance requires solving the 3-SAT instance to gain the treasure.

Two technical issues not yet addressed in this construction are crossings and
parity. Crossings in the wiring map can be handled with the crossover gadget
in Figure 17. Parity issues arise when trying to connect gadgets whose sizes do
not evenly divide each other. These issues can be resolved using the shift gadget
in Figure 18, which moves a wire one step (modulo 3) in any desired direction.
By repeating O(1) shift gadgets, wires can be aligned horizontally or vertically
to match any target gadget. 2

Acknowledgments

We thank Walter Joris for introducing us to some of the previous work on
morpion solitaire; he also independently discovered an infinite play for the k = 3

14

wire A

wire A

wire B

wire B

wire A

wire A

wire B

wire B

1

2

3

4

5

Figure 17: Crossover gadget. Wires A and B act as if they did not cross.

1 2

3

4

5

Figure 18: Shift gadget, shown here shifting a horizontal wire up by one step.

touching variant. We thank Stefan Schmieta for helpful discussions and his
script for drawing game executions, on which our figures are based. We thank
KHBO Spellenarchief and Jean-Dominique Quinet for providing copies of the
Jeux & Stratégies articles. We thank Barry Cipra and the anonymous referee
for helpful comments on the paper.

References

[1] Enigma of malta cross game. http://croix2malte.free.fr/indexGB.php.

[2] Post-scriptum au no. 17. Jeux & Stratégie, 18:101, Dec. 1982 and Jan. 1983.

[3] P. Brass. Erdős distance problems in normed spaces. Comput. Geom. Theory
Appl., 6:195–214, 1996.

[4] Michel Brassine. Le morpion solitaire. Jeux & Stratégie, 16:28–29, Aug.–
Sept. 1982.

[5] Achim Flammenkamp. Le morpion solitaire. Manuscript, March 19 2003.
http://wwwhomes.uni-bielefeld.de/achim/morpion.dvi.

15

http://croix2malte.free.fr/indexGB.php
http://wwwhomes.uni-bielefeld.de/achim/morpion.dvi

[6] Walter Joris. All Squared Up: Tic-Tac-Toe for Geniuses (100 Strategic
Games for Pen and Paper). Carlton Books, 2002.

[7] Hugues Juille. Incremental co-evolution of organisms: a new approach for
optimization and discovery of strategies. In Proceedings of the Third Euro-
pean Conference on Artificial Life, volume 929 of LNCS, Granada, Spain,
June 1995.

[8] Stefan Langerman. A game. http://slef.org/jeu/.

[9] Jean-Charles Meyrignac. Morpion solitaire.
http://euler.free.fr/morpion.htm.

16

http://slef.org/jeu/
http://euler.free.fr/morpion.htm

	1 Introduction
	2 Notation
	3 Combinatorial Results
	3.1 Potential Function
	3.2 Boundary Bound for G'k(S)
	3.3 k=1
	3.4 k=2
	3.5 k=3
	3.6 k=4
	3.7 k 5

	4 Algorithmic Results
	4.1 Verifying a Drawing
	4.2 General Dot Patterns are Hard

