
A

Minimizing Movement: Fixed-Parameter Tractability1

Erik D. Demaine, MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St.,

Cambridge, MA 02139, USA, edemaine@mit.edu 2

MohammadTaghi Hajiaghayi, A. V. Williams Building, University of Maryland, College Park, MD

20742, USA, hajiagha@cs.umd.edu; and AT&T Labs — Research 3

Dániel Marx, Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA

SZTAKI), Budapest, Hungary, dmarx@cs.bme.hu 4

We study an extensive class of movement minimization problems which arise from many practical scenarios
but so far have little theoretical study. In general, these problems involve planning the coordinated motion

of a collection of agents (representing robots, people, map labels, network messages, etc.) to achieve a global

property in the network while minimizing the maximum or average movement (expended energy). The only
previous theoretical results about this class of problems are about approximation, and mainly negative: many

movement problems of interest have polynomial inapproximability. Given that the number of mobile agents

is typically much smaller than the complexity of the environment, we turn to fixed-parameter tractability.
We characterize the boundary between tractable and intractable movement problems in a very general

setup: it turns out the complexity of the problem fundamentally depends on the treewidth of the minimal

configurations. Thus the complexity of a particular problem can be determined by answering a purely
combinatorial question. Using our general tools, we determine the complexity of several concrete problems

and fortunately show that many movement problems of interest can be solved efficiently.

1. INTRODUCTION

In many applications, we have a relatively small number of mobile agents (e.g., a team of
autonomous robots or people) moving cooperatively in a vast terrain or complex building to
achieve some task. The number of cooperative agents is often small because of their expense:
only small groups of people (e.g., emergency response or special police units) can effectively
cooperate, and autonomous mobile robots are currently quite expensive (in contrast to, e.g.,
immobile sensors). Nonetheless, an accurate model of the immense/intricate environment
they traverse, and their ability to communicate or otherwise interact (say, by limited-range
wireless radios or walkie-talkies), is complicated and results in a large problem input. Thus,
to compute the most energy-efficient motion in such a scenario, we allow the running time to
be relatively large (exponential) in the number of agents, but it must be small (polynomial
or even linear) in the complexity of the environment. This setup motivates the study of fixed-
parameter tractability (FPT) [Downey and Fellows 1999; Flum and Grohe 2006; Niedermeier
2006; Hüffner et al. 2008] for minimizing movement, with running time f(k) ·nO(1) for some
function f , parameterized by the number k of mobile agents.

A movement minimization problem is defined by a class of target configurations that we
wish the mobile agents to form and a movement objective function. For example, we may
wish to move the agents to

(1) form a connected communication network (given a model of connectivity);
(2) form a fault-tolerant (say, k-connected) communication network;

1A preliminary version of this paper appeared in Proceedings of the 17th Annual European Symposium on
Algorithms, 2009.
2Research supported in part by NSF grant CCF-1161626 and DARPA/AFOSR grant FA9550-12-1-0423.
3Research supported in part by NSF CAREER award 1053605, NSF grant CCF-1161626, ONR YIP award
N000141110662, DARPA/AFOSR grant FA9550-12-1-0423, and a University of Maryland Research and
Scholarship Award (RASA).
4Research supported by the European Research Council (ERC) grant “PARAMTIGHT: Parameterized
complexity and the search for tight complexity results,” reference 280152.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

edemaine@mit.edu
hajiagha@cs.umd.edu
dmarx@cs.bme.hu

A:2 E. D. Demaine, M. T. Hajiaghayi, D. Marx

(3) disperse throughout the environment (forming an independent set in a graph represent-
ing proximity, which also has applications to map labeling [Doddi et al. 1997; Jiang
et al. 2004; Strijk and Wolff 2001; Jiang et al. 2003; Demaine et al. 2009]).

(4) collect into a small number of collocated groups (e.g., to form teams or arrange for a
small number of deliveries);

(5) form a perfect matching of communication pairs (e.g., to exchange information in each
step of a network multicast);

(6) arrange into a desired topological formation such as a grid (a common goal in providing
reliable communication infrastructure);

(7) service a collection of clients (e.g., sensors, who may themselves be mobile);
(8) separate “main” agents (say, representing population) from “obnoxious” agents (say,

representing power plants); or
(9) augment an existing immobile network to achieve a desired property such as connec-

tivity (viewing the agents as starting at infinity, and thus minimizing the number of
moved/used resources as in [Bredin et al. 2005; Corke et al. 2004a; Corke et al. 2004b]).

This list is just a partial collection of interesting agent formations; there are many other
desiderata of practical interest, including combinations of different constraints. See Sec-
tion 3.1 for more formal examples of problems and how our theory applies to them.

In the general formulation of the movement problem, we are given an arbitrary metric
defining feasible motion, a graph defining “connectivity” (possibly according to the infinite
Euclidean plane), and a desired property of the connectivity among the agents defined by
a class G of graphs. We view the agents as “pebbles” located at vertices of the connectivity
graph (and we use the two terms interchangeably). Our goal is to move the agents so that
they induce a subgraph of the connectivity graph that possesses the desired property, that
is, belongs to the class G. There are three natural measures of agent motion that we might
want to minimize: the total amount of motion, the maximum motion of any agent, and
the number of moved agents. To obtain further generality and to model a wider range of
problems, we augment this model with additional features: the agents have types, desired
solutions can require certain types of agents, multiple agents can be located at the same
vertex, and the cost of the movement can be different (even nonmetric) for the different
agents.

To what level of generality can we solve these movement problems? Several versions have
been studied from an approximation algorithms perspective [Demaine et al. 2009; Friggstad
and Salavatipour 2008], in addition to various specific problems considered less formally
in practical scenarios [Bredin et al. 2005; Corke et al. 2004a; Corke et al. 2004b; Hsiang
et al. 2003; LaValle 2006; Reif and Wang 1995; Schultz et al. 2003; Doddi et al. 1997;
Jiang et al. 2004; Strijk and Wolff 2001; Jiang et al. 2003]. Unfortunately, most forms of
the movement problem are NP-complete, and furthermore are often hard to approximate
even within polynomial factors [Demaine et al. 2009]. Nonetheless, the problems are of
significant practical interest, and the motion must be kept small in order to minimize energy
consumption. Fortunately, as motivated above, the number of mobile agents is often small.
Thus we have a natural context for considering fixed-parameter algorithms, i.e., algorithms
with running time f(k) · nO(1), where parameter k is the number of mobile agents.

In this paper, we develop general efficient fixed-parameter algorithms for a broad family
of movement problems. Furthermore, we show our results are tight by characterizing, in
a very general setting, the line between fixed-parameter tractability and intractability. It
turns out that the notion of treewidth plays an important role in defining this boundary
line. Specifically we show that, for problems closed under edge addition (i.e., adding an edge
to the connectivity graph cannot destroy a solution), the complexity of the problem depends
solely on whether the edge-deletion minimal graphs of the property have bounded treewidth.
If they all have bounded treewidth, we show how to solve a very general formulation of the

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing Movement: Fixed-Parameter Tractability A:3

problem with an efficient fixed-parameter algorithm. If they have unbounded treewidth, we
show that even very simple questions are W[1]-hard, meaning there is no efficient fixed-
parameter algorithm under the standard parameterized complexity assumption FPT 6=
W[1]. (This assumption is the parameterized analog of P 6= NP: it is stronger than P 6= NP,
but weaker than the Exponential Time Hypothesis.)

Our framework for movement problems is very general, and sometimes this full generality
is unnecessary. Thus, we begin in Section 2 with a simplified version of our framework, and
describe several of its applications to specific movement problems in Section 2.1. Then,
Section 3 presents the general version of our framework, which allows multiple types of
overlapping agents, and Section 3.1 presents many further applications of this framework to
specific movement problems. Finally, Section 4 presents further improvements for specific
problems and for specific graph classes such as planar graphs. The formal definition of all
the concepts appear in Section 5. The results are proved in Sections 6–8.

2. SIMPLIFIED RESULTS

We start by presenting simplified versions of our main results, which handle only a simpler
formulation of the movement problem, but are already capable of determining the complex-
ity of several natural problems. The full model is presented in Sections 3– 4 and the formal
definitions can be found in Section 5.

A (simplified) movement problem is specified by a graph property : an (infinite) set G
of desired configurations. Given a graph G with k agents on the vertices, the task in the
movement problem is to move the agents to k distinct vertices such that the graph induced
by the k agents is in G. The goal is to minimize the “cost” of the movements, such as the
total number of steps the agents move, the maximum movement of an agent, or the number
of agents that move at all.

In fact, we define the cost of a solution to be the sum of costs of each agent’s movement,
where we are given a (polynomially computable) movement cost function for each agent
specifying a nonnegative integer cost of moving that agent to each vertex in the graph. This
definition obviously includes counting the total number of steps agents move as a special
case, as well as modeling nonmetric terrains, agents of different speeds, immobile agents,
regions impassable by certain agents, etc. This definition of movement cost also includes
the other objectives mentioned above as special cases. To minimize the number of moved
agents, we can specify a movement cost function for each agent of 0 to remain stationary
and 1 to make any move. To minimize the maximum motion of an agent, we can binary
search on the maximum movement cost τ , and modify the movement cost function to jump
to ∞ whenever exceeding this threshold τ .

Our algorithmic result for these (simplified) movement problems considers graph proper-
ties that are closed under edge addition (which holds in particular for properties that model
some notion of connectivity):

Theorem 2.1. If G is a decidable graph property that is closed under edge addition, and
the edge-deletion minimal graphs in G have bounded treewidth, then the movement problem
can be solved in time f(k) · nO(1).

We prove a matching hardness result for Theorem 2.1: if the edge-deletion minimal graphs
in G have unbounded treewidth, then it is hard to answer even some very simple questions.

Theorem 2.2. If G is any graph property that is closed under edge addition and has
unbounded treewidth, then the movement problem is W[1]-hard parameterized by k, already
in the special case where each agent is allowed to move at most one step in the graph.

Theorems 2.1 and 2.2 show that the algorithmic/complexity question of whether a given
movement problem is FPT can be reduced to the purely combinatorial question of whether

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 E. D. Demaine, M. T. Hajiaghayi, D. Marx

a certain set of graphs has bounded treewidth. Thus treewidth plays an essential role in
the complexity of the problem, which is not apparent at first sight. As we shall see in
the examples below, this connection with treewidth allows us to understand how subtle
differences in the definition of the problem (e.g., connectivity vs. 2-connectivity or edge-
disjoint paths vs. vertex-disjoint paths) change the complexity of the problem.

Theorems 2.1 and 2.2 considered properties closed under edge addition. We prove another
general result, which considers hereditary properties, i.e., properties closed under taking
induced subgraphs:

Theorem 2.3. Let G be a decidable hereditary property. If G does not contain all cliques
or does not contain all independent sets, then the movement problem is W[1]-hard param-
eterized by k, already in the special case where each agent is allowed to move at most one
step in the graph.

2.1. Applications of Simplified Results

Theorems 2.1–2.3 immediately characterize the complexity of several natural problems:

Example: CONNECTIVITY. Move the pebbles (agents) so that they are connected and
on distinct vertices. The parameter is the number k of pebbles. Now G contains all connected
graphs. Clearly, G is closed under edge addition and the edge-deletion minimal graphs are
trees. Trees have treewidth 1, hence by Theorem 2.1, this movement problem is fixed-
parameter tractable for any movement cost function. 2

Example: 2-CONNECTIVITY. Move the pebbles so that they induce a 2-connected graph
and the pebbles are on distinct vertices. The parameter is the number k of pebbles. Now
G contains all 2-connected graphs and clearly G is closed under edge addition. The edge-
deletion minimal graphs have unbounded treewidth: subdividing every edge of a clique gives
an edge-deletion-minimal 2-connected graph. Thus by Theorem 2.2, it is W[1]-hard to decide
whether there is a solution where each pebble moves at most one step. 2

Example: GRID. Move the k pebbles so that they are on distinct vertices and they form
a b
√
kc × b

√
kc square grid. The parameter is the number k of pebbles. Let G contain all

graphs containing a spanning square grid subgraph. Clearly, G is closed under edge addition
and the edge-deletion minimal graphs are grids, which have arbitrarily large treewidth. Thus
Theorem 2.2 implies that it is W[1]-hard, to decide whether there is a solution where each
pebble moves at most one step. 2

Example: MATCHING. Move the pebbles so that the pebbles are on distinct vertices
and there is a perfect matching in the graph induced by the pebbles. The parameter is the
number of pebbles. Let G contain all graphs that have a perfect matching. The edge-deletion
minimal graphs are perfect matchings, (i.e., k/2 independent edges on k vertices), so they
have treewidth 1. By Theorem 2.1, the movement problem is FPT. 2

Example: DISPERSION. Move the pebbles to distinct vertices and such that no two peb-
bles are adjacent. The parameter is the number k of pebbles. Here G contains all independent
sets. Because G is hereditary and the maximum clique size is 1, Theorem 2.3 implies that
the movement problem is W[1]-hard, even in the case when each pebble is allowed to move
at most one step. 2

3. MAIN RESULTS

In this section, we present the full generality of the problem we consider and results we obtain
(note that the formal definitions are collected in Section 5). In particular, this generalization

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing Movement: Fixed-Parameter Tractability A:5

removes several limitations of the simplified version presented above, informally summarized
as follows:

(1) In many cases agents have different types (e.g., some of the agents are servers, some are
clients, etc.). and the solution should take these types into account.

(2) If, for example, the task is to provide connectivity between two specific vertices s and t,
then the model should be capable of specifying these two distinguished vertices in the
input.

(3) Agents should be able to share vertices, i.e., we should not require that the agents move
to distinct vertices. In fact, we may require that more than one agent is moved to a
single vertex, e.g., if the task is to move a server to each client.

(4) The graph induced by the agents might not suffice to certify that the solution is correct
(e.g., if the requirement is that the agents are at distance-2 from each other). We might
want to include (a bounded number of) unoccupied vertices into the solution in order
to produce a witness showing that the agents have the correct configuration.

(5) In some scenarios, agents are divided into “clients” that need to be satisfied somehow
and “facilities” that are helpful for satisfying the clients but otherwise do not introduce
any additional constraints to the problem. In many cases, we are able to extend the
fixed-parameter tractability results such that the parameter is the number of client
agents only, and thus the number of facility agents can be arbitrarily large. We introduce
a similar generalization with an unbounded number of “obnoxious” agents which can
interfere with clients, but otherwise do not introduce any requirements on their own.

Formally, the general model we consider divides the agents into three types—client, fa-
cility, and obnoxious agents—and the parameter is just the number of clients, which can
be much smaller than the total number of agents. The clients can require collocated or
nearby facility agents, among a potentially large set of facility agents, which themselves
are mobile. Intuitively, facilities provide some service needed by clients. Clients can also
require at most a certain number (e.g., zero) of collocated obnoxious agents (again among
a potentially large, mobile set), which can represent dangerous or undesirable resources. In
other words, adding facility agents or removing obnoxious agents does not make a correct
solution invalid. More generally, there can be many different subtypes of client, facility, and
obnoxious agents, and we may require a particular pattern of these types.

A (general) movement problem specifies a multicolored graph property : an (infinite) set G
of desired configurations, each specifying a desired subgraph and how that subgraph should
be populated by different types of agents (a multicolored graph). Each agent type (color)
is specified as client, facility, or obnoxious, but there can be more than three types; in this
way, we can specify different types of client agents that need to interact in a particular
way, or need particular types of nearby facility agents. The goal of the movement problem
is to move the agents into a configuration containing at most ` vertices that contain all k
client agents and induce a “good” target pattern. A good target pattern is a multicolored
graph that is either in the set G or it “dominates” some multicolored graph G ∈ G in the
sense that it contains more facility agents and fewer obnoxious agents of each color at each
vertex. To emphasize that the goal is to create a pattern containing all the client agents
(which may contain only a subset of facility and obnoxious agents), we will sometimes call
the client agents “main agents” and use the two terms interchangeably.

A mild technical condition that we require is that the multicolored graph property G is
regular : for every fixed numbers k and `, there are only finitely many graphs in G with at
most ` vertices and at most k client agents (as we do not bound the number of obnoxious
and facility agents here, this is a nontrivial restriction). In other words, there should be only
finitely many minimal ways to satisfy a bounded number of clients in a bounded subgraph.
For example, the property requiring that the number of facility agents at each vertex is not
less than the number of obnoxious agents at that vertex is not a regular property. Note that

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 E. D. Demaine, M. T. Hajiaghayi, D. Marx

this restriction does not say that there is only a finite number of good configurations, it
only says that there is a finite number of minimal good configurations: as mentioned in the
previous paragraph, we allow configurations having any number of extra facility agents.

For a regular multicolored graph property, the corresponding movement problem is as
follows: given an initial configuration (a multicolored graph), to minimize the total cost of
all movement subject to reaching one of the desired target configurations in G with at most
` vertices, where both ` and the number k of client agents are parameters. As before, we
are given a movement cost function for each agent, an arbitrary (polynomially computable)
function specifying the nonnegative integer cost of moving that agent to each vertex in the
graph.

Our main algorithmic result considers properties that are closed under edge addition (for
example, properties that model some notion of connectivity). Besides requiring that the
graph property is regular, another mild technical assumption is that two obnoxious agents
of the same type behave similarly, i.e., the cost of moving them from vertex v1 to v2 has
the same cost.

Theorem 3.1. If G is a regular multicolored graph property that is closed under edge
addition, and if the edge-deletion minimal graphs in G have bounded treewidth, then the
movement problem can be solved in f(k, `) · nO(1) time, assuming that the movement cost
function is the same on any two agents of the same obnoxious type that are initially located
on the same vertex.

Our main algorithm (Section 6) uses several tools from fixed-parameter tractability, color
coding, and graph structure theory, in particular treewidth. This combination of techniques
seems interesting in its own right.

We prove in Section 7 a matching hardness result for Theorem 3.1: if the edge-deletion
minimal graphs in G have unbounded treewidth, then it is hard to answer even some very
simple questions. Thus treewidth plays an essential role in the complexity of the problem,
which is not apparent at first sight.

Theorem 3.2. If G is any (possibly regular) multicolored graph property that is closed
under edge addition, and for every w ≥ 1, there is an edge-deletion minimal graph Gw ∈ G
with treewidth at least w and at least one client agent on each vertex (but no other type of
agent), then the movement problem is W[1]-hard with the combined parameter (k, `), already
in the special case where each agent is allowed to move at most one step.

If a movement problem can be modeled with colored pebbles and the target patterns are
closed under edge addition, then the complexity of the problem can be determined by solving
the (sometimes nontrivial) combinatorial question of whether the minimal configurations
have bounded treewidth. The minimal configurations are those pebbled graphs that are
acceptable solutions, but removing any edge makes them unacceptable.

As before, we also obtain a general hardness result for multicolored graph properties
that are not closed under edge addition, but rather are hereditary, i.e., closed under taking
induced subgraphs:

Theorem 3.3. Let G be a hereditary property where each vertex has exactly one client
agent and there are no other type of pebbles. If G does not contain all cliques or does not
contain all independent sets, then the movement problem is W[1]-hard with the combined
parameter (k, `), already in the special case where each agent is allowed to move at most
one step in the graph.

The proof of Theorem 3.3 (in Section 8.6) uses a hardness result by Khot and Raman
[2002] on the parameterized complexity of finding induced subgraphs with hereditary prop-
erties.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing Movement: Fixed-Parameter Tractability A:7

3.1. Applications of Main Results

Theorems 3.1 and 3.2 characterize the complexity of several additional natural problems
beyond Section 2.1:

Example: CONNECTIVITY (collocation allowed). The connectivity problem discussed
in Section 2.1 required that all the pebbles are moved to distinct vertices. For example,
moving all the pebbles to the same vertex is not a correct solution. It could be however that
some applications are more faithfully expressed if we allow pebbles to share vertices. It is
easy to express this variant using Theorem 3.1. Let G contain all connected graphs with at
least one pebble on each vertex. Setting ` = k, it follows from Theorem 3.1 that this variant
of the problem is FPT parameterized by k. 2

Example: s-t CONNECTIVITY (few pebbles). Move the pebbles to form a path of pebbled
vertices between fixed vertices s and t. The parameter is the number k of pebbles. Now there
are two main colors of pebbles, call them red and blue, and G consists of all graphs containing
exactly two red pebbles and a path between them using only vertices with blue pebbles. We
reduce s-t CONNECTIVITY to this movement problem by putting red pebbles at s and t,
and giving them an infinite movement cost to any other vertices. Clearly, G is closed under
edge addition and the edge-deletion minimal graphs are paths. Paths have treewidth 1, so
by Theorem 3.1, this problem is fixed-parameter tractable. 2

In the next example, we show that a much more general version of s-t CONNECTIVITY
is FPT: instead of parameterizing by the number k of pebbles, we can parameterize by the
maximum length L of the path. Thus we can have arbitrarily many pebbles that might form
the path, and allow the runtime to be exponential in the length of the path.

Example: s-t CONNECTIVITY (bounded length). Move the pebbles to form a path of
pebbled vertices of length at most L between fixed vertices s and t. The parameter is the
length L. Now we define one main color of pebbles, red, and one facility color of pebbles,
blue, and we define G as in the previous example. Again by Theorem 3.1, this problem is
fixed-parameter tractable in the combined parameter (k, `); in the example, we have k = 2
and ` = L+ 1. 2

Example: STEINER CONNECTIVITY. Connect the red pebbles (representing termi-
nals) by moving the blue pebbles to form a Steiner tree. The parameter is the number of
red pebbles plus the number of blue pebbles in the solution Steiner tree. This is simply a
generalization of s-t CONNECTIVITY to more than two red pebbles. Again by Theorem 3.1
the problem is fixed-parameter tractable with this parameterization (the edge-deletion min-
imal graphs are trees), even when the number of blue pebbles is very large in the input.

2

Example: s-t d-CONNECTIVITY (fixed d). Move the pebbles so that there are d vertex-
disjoint paths using pebbled vertices between two fixed vertices s and t. The parameter
is the total length L of the d paths in the solution. Now we use one main color, red, and
one facility color, blue, and Gd consists of all graphs containing two vertices with a red
pebble on each, and having d internally vertex-disjoint paths between these two vertices,
with blue pebbles on each internal vertex. In the input instance, there are red pebbles on s
and t, and the cost of moving them is infinite. Clearly, Gd is closed under edge addition and
the edge-deletion minimal graphs are series-parallel (as they consist of d internally vertex
disjoint paths connecting two vertices), which have treewidth 2. Hence, by Theorem 3.1,
this movement problem is fixed-parameter tractable with respect to L, for every fixed d.
Again the number of blue pebbles can be arbitrarily large. 2

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 E. D. Demaine, M. T. Hajiaghayi, D. Marx

The previous example shows that s-t d-CONNECTIVITY is FPT for every fixed value
of d, i.e., for every fixed d, there is an f(L) · nO(1) time algorithm. However, this statement
does not make it clear if the degree of n depends on d or not. To show that the degree of n
is independent of d and the problem can be solved in time f(L, d) ·nO(1), we need to encode
the number d in the input of the movement problem. We use dummy green pebbles for this
purpose.

Example: s-t d-CONNECTIVITY (unbounded version). Move the pebbles so that there
are d vertex-disjoint paths using pebbled vertices between two fixed vertices s and t, where
d is a number given in the input. The parameter is the total length L of the solution paths.
First, if d is larger than the bound on the total length of the paths, then there is no solution.
Otherwise, we can assume d is a fixed parameter. Now we use two main colors, red and
green, and one facility color, blue. A graph G is in G if the blue pebbles form d internally
vertex-disjoint paths between two vertices containing red pebbles, where d is the number
of green pebbles in G. Thus we use green pebbles to “label” a graph G in G according to
what level of connectivity it attains. Again G is closed under edge addition and the edge-
deletion minimal graphs are series-parallel, which have treewidth 2, so by Theorem 3.1, the
movement problem is fixed-parameter tractable with respect to k := 2 and ` := L. In the
initial configuration, we put red pebbles on s and t with infinite movement cost, and we
place d green pebbles arbitrarily in the graph. The target configuration we obtain will have
exactly d green pebbles, and thus d vertex-disjoint paths, because these are main pebbles.

2

We can also consider the edge-disjoint version of s-t connectivity. We need the following
combinatorial lemma to characterize the minimal graphs:

Lemma 3.4. Let G be a connected graph and assume that there are d edge-disjoint paths
between vertices s and t in G, but for any edge e ∈ E(G), there are at most d−1 edge-disjoint
paths between s and t in G \ e. Then the treewidth of G is at most 2d+ 1.

Proof. Note that the size of the minimum s − t cut is exactly d. We use the folklore
observation that there is a noncrossing family of minimum s−t cuts covering every minimum
s− t cut. (We say that two s− t cuts C1, C2 ⊆ E(G) cross if there is a vertex v1 reachable
from s in G \ C1 but not in G \ C2, and there is a vertex v2 reachable from s in G \ C2

but not in G \ C1.) The formal statement that we use is that there is a sequence {s} ⊆
X1 ⊆ X2 ⊆ · · · ⊆ Xr ⊆ V (G) \ {t} such that (1) for every 1 ≤ i ≤ t, exactly d edges go
between Xi and V (G) \Xi, and (2) if edge e appears in a minimum s− t cut, then there is
an 1 ≤ i ≤ r such that e connects Xi and V (G) \Xi. In our case, every edge appears in a
minimum s− t cut, thus the edges leaving the Xi’s cover every edge.

Let Yi be the endpoints of the edges connecting Xi and V (G) \Xi. Let T be a tree that
is a path with nodes v1, . . . , vr and let us define Bi := Yi ∪ {s, t}; clearly |Bi| ≤ 2d + 2.
We claim that (T,Bi) is a tree decomposition of width 2d+ 1. From our discussion above,
it is clear that every edge appears in one of the bags. To see the connectedness property,
suppose that v ∈ Bi and v 6∈ Bj for some j > i. We need to show that v 6∈ Bj′ for any
j′ > j. As v ∈ Bj , vertex v is the endpoint of an edge leaving Xi. Thus either v ∈ Xi or v
is adjacent to a vertex of Xi. In both cases, we have v ∈ Xj : in the first case, this follows
from Xi ⊆ Xj ; in the second case, v 6∈ Xj would mean that the edge connecting v with Xi

does not leave Xj , which is only possible if this edge is contained in Xj . Thus v ∈ Xj and
v has no neighbor outside Xj′ , hence Xj ⊆ Xj′ implies that v is in Xj′ as well and has no
neighbor outside Xj′ , that is, v 6∈ Xj′ .

Example: s-t d-EDGE-CONNECTIVITY (fixed d). Move the pebbles so that there are d
edge-disjoint paths of pebbled vertices between s and t. The parameter is the total length L
of the paths. Now we use one main color, red, and one facility color, blue, and Gd contains all

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing Movement: Fixed-Parameter Tractability A:9

\tex[r][r]{$v_{1,0}$}

\tex[][]{s}

\tex[][]{s}

\tex[l][l]{$v_{10,2}$}

\tex[l][l]{$v_{10,3}=v_{9,3}$}

\tex[l][l]{$v_{10,4}$}

\tex[l][l]{$v_{10,5}=v_{9,5}$}

\tex[l][l]{$v_{10,6}$}

\tex[l][l]{$v_{10,1}=v_{9,1}$}

\tex[l][l]{$v_{10,0}$}

\tex[r][r]{$v_{1,6}$}

\tex[r][r]{$v_{1,5}=v_{2,5}$}

\tex[r][r]{$v_{1,4}$}

\tex[r][r]{$v_{1,3}=v_{2,3}$}

\tex[r][r]{$v_{1,2}$}

\tex[r][r]{$v_{1,1}=v_{2,1}$}

Fig. 1. The graph G for d = 5 in the discussion of s-t d-EDGE-CONNECTIVITY (unbounded version).

graphs containing two vertices with a red pebble on each and having d edge-disjoint paths
between these two vertices, with blue pebbles on each path vertex. By Lemma 3.4, the
edge-deletion minimal graphs have treewidth O(d). Hence, by Theorem 3.1, the movement
problem is fixed-parameter tractable with respect to L. 2

The previous example shows that s-t d-EDGE-CONNECTIVITY is FPT parameterized
by L for every fixed value of d. As in the vertex-disjoint, we can ask if the problem is FPT
if d is part of the input and the parameters are L and d. Somewhat surprisingly, unlike the
vertex-disjoint case, the problem becomes hard:

Example: s-t d-EDGE-CONNECTIVITY (unbounded version). Move the pebbles so that
there are d edge-disjoint paths of pebbled vertices between s and t, where d is a number
given in the input. We use three main colors: red, green, and blue. A graph G is in G if the
blue pebbles form d edge-disjoint paths between two vertices containing red pebbles, where
d is the number of green pebbles in G. We show that G contains edge-deletion minimal
graphs of arbitrary large treewidth, so by Theorem 3.2, it is W[1]-hard to decide whether
there is a solution where each of the k pebbles move at most one step each. Assume d is
even and let G be a graph consisting of vertices s, t, and d vertex-disjoint s − t paths of
length d+ 2 such that vertices vi,0, . . . , vi,d+1 are the internal vertices of the ith path. Now
for every odd i and odd 1 ≤ j < d, let us identify vertices vi,j and vi+1,j , and for every
even i < d and even 1 < j ≤ d, let us identify vi,j and vi+1,j (see Figure 1). There are d
edge-disjoint s-t paths in this graph, but there are at most d−1 such paths after the deletion
of every edge. (It is easy to see that every edge is in an s-t cut of exactly d edges.) Thus
G is an edge-deletion minimal member of G. Furthermore, the graph contains a d/2 × d/2
grid, so the treewidth is Ω(d). 2

Example: FACILITY LOCATION (collocation version). Move client and facility agents
so that each client agent is collocated with at least one facility agent and the client agents are
at distinct locations. The parameter is the number of client agents. We use one main color,
red, for the clients, and one facility color, blue, for the facilities, and G contains all graphs in
which every vertex contains exactly one red and one blue pebble. The edge-deletion minimal
graphs in G have no edges, so have treewidth 0. By Theorem 3.1, the movement problem is
fixed-parameter tractable parameterized by the number of main pebbles, i.e., the number of

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 E. D. Demaine, M. T. Hajiaghayi, D. Marx

client agents. The number of facilities can be unbounded, which is useful, e.g., to organize
a small team within a large infrastructure of wired network hubs or mobile satellites. 2

Example: FACILITY LOCATION (distance-d version). Move client and facility agents
so that each client agent is within distance at most d from at least one facility pebble and
the client agents are at distinct locations. Now we use two main colors, red and green,
and one facility color, blue. Let G contain all graphs that contain some number d of green
pebbles and each red pebble is at distance at most d from some blue pebble. Given a graph
with k main (red) pebbles and some number of facility (blue) pebbles, we add d dummy
green pebbles and ask whether there is a solution on ` := k(d + 1) + d vertices. If we
move the pebbles so that each red pebble is at distance d from some blue pebble, then
there are k(d + 1) + d vertices that contain all d of the green pebbles and induce a graph
that belongs to G (such a set can be obtained by taking all the red and green pebbles and
selecting, for each red pebble, a path of at most d additional vertices that connect it to a
blue pebble). We claim that the edge-deletion minimal graphs in G are forests, and hence
have treewidth 1. Consider an edge-deletion minimal graph G ∈ G, and for each vertex v
without a blue pebble, select an edge uv that goes to a neighbor u that is closer to some
blue pebble than v. If an edge is not selected in this process, then it can be removed (it
does not change the distance to the blue pebbles), so by the minimality of G, every edge is
selected. Each connected component contains at least one blue pebble. This means that, in
each connected component, the number of selected edges is strictly smaller than the number
of vertices, i.e., each component is a tree. Thus, by Theorem 3.1, the movement problem is
FPT. 2

On the other hand, FACILITY LOCATION becomes W[2]-hard if the parameter is the
number of facilities, while the number of clients can be unbounded (Theorem 3.5 below).
This result cannot be obtained using the general result of Theorem 3.2 because in this
statement the parameter is the number of facility pebbles. However, it is not difficult to
give a problem-specific hardness proof for this variant.

Theorem 3.5. For every fixed d ≥ 0, FACILITY LOCATION (distance d version) is
W[2]-hard parameterized by the number of facilities, even if each pebble is allowed to move
at most one step in the graph.

Proof. To show that the problem is W[2]-hard, we show a reduction from MINIMUM
DOMINATING SET (recall that a set S ⊆ V (G) is a dominating set of G if every vertex
of G is either in S or adjacent to a vertex in S). Given a graph G and an integer k, we
construct an instance of FACILITY LOCATION with k facility pebbles which can be solved
by moving each pebble at most one step if and only if G has a dominating set of size k. Let
v1, . . . , vn be the vertices of G. We construct a graph F as follows. We start with vertices
s, b1, . . . , bn, c1, . . . , cn, where s is connected to every bi. If vi and vj are neighbors in
G, then bi and cj are connected with a path having d internal vertices. We place k facility
pebbles on s and one main pebble on each ci.

If G has a dominating set vi1 , . . . , vik , then we move the k facility pebbles to bi1 , . . . , bik ,
and if vertex vj of G is dominated by its neighbor vi` , then we move the main pebble at cj
one step closer to bi` . It is clear that each main pebble will be at distance exactly d from
some facility pebble. The other direction is also easy to see: if the facility pebbles move to
vertices bi1 , . . . , bik , then vertices vi1 , . . . , vik form a dominating set in G.

We remark that the fixed-parameter tractability of facility location problems has been
investigated in [Fellows and Fernau 2011]. The model studied there is somewhat different
from the one studied here, but [Fellows and Fernau 2011, Theorem 6] gives a very similar
simple reduction from (essentially) DOMINATING SET to facility location parameterized
by the number of facilities.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing Movement: Fixed-Parameter Tractability A:11

Example: SEPARATION. Move client agents (say, representing population) and/or ob-
noxious agents (say, representing power plants) so that each client agent is collocated with at
most o obnoxious pebbles. The parameter is the number of client agents. Here G contains all
graphs with the desired bounds, so the edge-deletion minimal graphs have no edges, which
have treewidth 0. By Theorem 3.1, the movement problem is fixed-parameter tractable. As
in previous examples, we can make o an input to the problem. 2

4. FURTHER RESULTS

In addition to our general classification and specific examples, we present many additional
fixed-parameter results. These results capture situations where the general classification
cannot be applied directly, or the general results apply but problem-specific approaches
enable more efficient algorithms. Specifically, we consider situations where the graphs are
more specific (e.g., almost planar), the property is not closed under edge addition, or the
number of client agents is not bounded. Our aim is to demonstrate that there are many
problem variants that can be explored and that there is a vast array of algorithmic tech-
niques that become relevant when studying movement problems. In particular, results from
algorithmic graph minor theory (Section 8.1), Courcelle’s Theorem (Section 8.2), bidimen-
sionality (Section 8.2), the fast set convolution algorithm of Björklund et al. (Section 8.3),
and Canny’s Roadmap Algorithm (Section 8.4) all find uses in this framework.

4.1. Planar Graphs and H-Minor-Free Graphs

Our general characterization makes no assumptions on the connectivity structure: it is an
arbitrary graph. However, significantly stronger results can be achieved if we have some
restriction on the connectivity graph. For example, many road networks, fiber networks,
and building floorplans can be accurately represented by planar graphs. We show that, for
planar graphs, the fixed-parameter algorithms of Theorem 3.1 work even if we remove the
requirement that G is closed under edge addition. That is, we can express for example that
the pebbles induce an independent set.

In many cases, approximation and fixed-parameter tractability results for planar graphs
generalize to arbitrary surfaces, to graphs of bounded local treewidth, and to H-minor-
free graph classes. These generalizations are made possible by the algorithmic consequences
of the Graph Minor Theorem [Demaine et al. 2005]; see Section 8.1. To obtain maximum
generality, we state the result on planar graphs generalized to arbitrary H-minor-free classes:

Theorem 4.1. If G is a regular multicolored graph property, then for every fixed
graph H, the movement problem can be solved on H-minor-free graphs in f(k, `) · nO(1)

time, assuming that the movement cost function is the same on any two agents of the same
obnoxious type that are initially located on the same vertex.

We stress that in Theorem 4.1, unlike in Theorem 3.1, the property G is not required to be
closed under edge addition. One possible application scenario where these generalizations
of planar graphs play a role is the following. The terrain is a multi-level building, where
the connectivity graph is planar on each level, and there are at most d connections between
two adjacent levels (for some fixed d ≥ 4). It is easy to see that the graph is Kd+1-free: a
Kd+1 minor would be contained on one level. Thus, for every fixed value of d, Theorem 4.1
applies for such connectivity graphs.

We also consider two specific problems in the context of planar graphs.

4.2. Bidimensionality

In Section 8.2, we show that bidimensionality theory can be exploited to obtain algorithms
for movement problems on planar graphs. In particular, we show that the version of DIS-
PERSION (see Section 2.1) where each pebble can move at most one step admits a subex-

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 E. D. Demaine, M. T. Hajiaghayi, D. Marx

ponential parameterized algorithm. The proof uses a combination of bidimensionality the-
ory, parameter-treewidth bounds, grid-minor theorems, Courcelle’s Theorem, and monadic
second-order logic.

4.3. Planar STEINER CONNECTIVITY

In the STEINER CONNECTIVITY problem (see Section 3.1), the goal is to connect one
type of agents (“terminals”) using another type of agents (“connectors”). Our general char-
acterization shows that this problem is fixed-parameter tractable if the numbers of both
types of agents are bounded, while it becomes W[1]-hard if only the number of connector
agents is bounded and the number of terminal pebbles is unbounded. On the other hand,
we show that this version of the problem is fixed-parameter tractable for planar graphs,
using problem-specific techniques; see Section 8.3.

4.4. Geometric Graphs

In some of the applications, the environment can be naturally modeled by the infinite
geometric graph defined by Euclidean space, where vertices correspond to points and edges
connect two vertices that are within a fixed distance of each other, say 1. In this case, we
develop efficient algorithms in a very general setting in Section 8.4, even though the graph
is infinite:

Theorem 4.2. If G is any regular graph property, then given rational starting co-
ordinates for k total agents (including facility and obnoxious agents) in Euclidean d-
space, we can find a solution to the movement problem up to additive error ε > 0 using
f(k, d) · nO(1)(lgD + lg(1/ε)) time, where D is the maximum distance between any two
starting coordinates.

The main tool for proving this theorem is Canny’s Roadmap Algorithm for motion plan-
ning in Euclidean space [Canny 1987], which lets us manipulate bounded-size semi-algebraic
sets; see Section 8.4.

4.5. Improving CONNECTIVITY with Fast Subset Convolution

Finally, we optimize one particularly practical problem, CONNECTIVITY: moving the
agents so that they form a connected subgraph. Our general characterization implies that
this problem is fixed-parameter tractable. Using the recent algorithm of Björklund et al.
[2007] for fast subset convolution in the min-sum semiring, in Section 8.5 we design a more
efficient algorithm for this problem: the exponential factor of the running time is only O(2k).

In summary, our results form a systematic study of the movement problem, using powerful
tools to classify the complexity of the different variants. Our algorithms are general, so may
not be optimal for any specific version of the problem, but they nonetheless characterize
which problems are tractable, and lead the way for future investigation into more efficient
algorithms for practical special cases.

5. MODEL AND DEFINITIONS

In this section, we make precise the model described in Section 1 and introduce some
additional notation.

Definition 5.1. We fix three finite sets of colors: Cm (main colors), Cf (facility colors),
Co (obnoxious colors).

Pebbles with main colors will represent the client agents: the target pattern has to contain
all such pebbles. Pebbles with facility colors are “good”: having more than the prescribed
number of such pebbles is still an acceptable solution. Conversely, pebbles with obnoxious
colors are “bad”: removing such a pebble from a target pattern does not make a solution
invalid.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing Movement: Fixed-Parameter Tractability A:13

Definition 5.2. A multicolored graph is a graph with a multiset of colored pebbles as-
signed to each vertex (a vertex can be assigned multiple pebbles with the same color).

We extend the notions of vertex removal, edge removal, edge addition, and induced sub-
graphs to multicolored graphs the obvious way, i.e., the set pebbles at the vertices (remaining
in the graph) is unchanged.

Definition 5.3.

— We denote by nG(c, v) the number of pebbles with color c at vertex v in G.
— A multicolored graph property is a (possibly infinite) recursively enumerable set G of

multicolored graphs.
— A graph property G is regular if for every fixed k, ` there is only a finite number of graphs

in G with at most ` vertices and at most k main pebbles and there is an algorithm that,
given k and `, enumerates these graphs. (Note that the number of facility and obnoxious
pebbles is not bounded here.)

— A graph property G is hereditary if, for every G ∈ G, every induced multicolored subgraph
of G is also in G.

— A graph property G is closed under edge addition if whenever G is in G and G′ is the
multicolored graph obtained from G by connecting two nonadjacent vertices, then G′ is
also in G.

— A graph G ∈ G is edge-deletion minimal if there is no multicolored graph G′ ∈ G that
can obtained from G by edge deletions.

Definition 5.4. Let G1 and G2 be two multicolored graphs whose underlying graphs are
isomorphic. G2 dominates G1 if there is an isomorphism φ : V (G1)→ V (G2) such that, for
every v ∈ V (G1),

(1) for every c ∈ Cm, vertices v and φ(v) have the same number of pebbles with color c;
(2) for every c ∈ Cf , vertex φ(v) has at least as many pebbles with color c as v; and
(3) for every c ∈ Co, vertex φ(v) has at most as many pebbles with color c as vertex v.

Definition 5.5. For every set G of multicolored graphs, the movement problem has the
following inputs:

(1) a multicolored graph G(V,E), P is the set of pebbles, k is the number of main pebbles;
(2) a movement cost function cp : V → Z+ for each pebble p ∈ P ;
(3) integer `, the maximum solution size; and
(4) integer C, the maximum cost.

The task is to find a movement plan m : P → V such that

(1) the total cost
∑
p∈P cp(m(p)) of the moves is at most C; and

(2) after the movements, there is a set S of at most ` vertices such that S contains all the
main pebbles and the multicolored graph G[S] dominates some graph in G.

By using different movement cost functions, we can express various goals:

(1) if cp(v) is the distance of p from v, then we have to minimize the sum of movements,
(2) if cp(v) = 0 if v is at distance at most d from p and ∞ otherwise, then we have to find

a solution where p moves at most d steps,
(3) if cp(v) = 0 if v is the initial location of p and cp(v) = 1 for every other vertex, then we

have to minimize the number of pebbles that move.

Of course, we can express combinations of these goals or the distance can be measured on
different graphs for the different pebbles, etc. The formulation is very flexible.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 E. D. Demaine, M. T. Hajiaghayi, D. Marx

6. MAIN ALGORITHM

In this section, we present our main algorithm, i.e., the proof of Theorem 3.1. The algo-
rithm is based on enumerating minimal configurations, nontrivially using the color-coding
technique to narrow the possibilities. Then it finds the best possible location in the graph
to realize each minimal configuration. By assumption, the minimal configurations have
bounded treewidth and, as the following classical result shows, finding such subgraphs is
FPT (see also [Plehn and Voigt 1991]):

Theorem 6.1 ([Alon et al. 1995]). Let F be an undirected graph on k vertices with
treewidth t. Let G be an undirected graph with n vertices. A subgraph of G isomorphic to
F , if one exists, can be found in time 2O(k) · nO(t).

However, we need a weighted version of this result in order to express the movement costs.
A subgraph embedding of F in G is a mapping φ : V (F)→ V (G) such that if u, v ∈ V (F) are
adjacent in F , then φ(u) and φ(v) are adjacent in G. Let c : V (F)× V (G)→ Z+ be a cost
function that determines the cost of mapping a vertex of F to a vertex ofG. If φ is a subgraph
embedding of F into G, then we define the cost of φ to be c(φ) :=

∑
v∈V (F) c(v, φ(v)). Note

that c(v1, u) is not necessarily equal to c(v2, u), thus the cost of mapping two different
vertices v1 and v2 of F to a particular vertex u of G can have different costs. By extending
the techniques of Theorem 6.1, we can find a subgraph embedding of minimum cost.

Theorem 6.2. Let F be an undirected graph on k vertices with treewidth t. Let G be
an undirected graph with n vertices and let c : V (F) × V (G) → Z+ be a cost function of
mapping a vertex of F to a vertex of G. If F is a subgraph of G, then it is possible to find
in time 2O(k) · nO(t) a subgraph embedding φ that minimizes c(φ).

Similarly to Theorem 6.1, the proof of Theorem 6.2 is based on dynamic programming
on the tree decomposition of F . However, here we have to maintain minimum-cost solutions
instead of feasibility. This modification of the proof is quite straightforward, but as the proof
in [Alon et al. 1995] is rather sketchy, we give a full proof in the Appendix for completeness.

Proof (of Theorem 3.1). In the solution, the set S ⊆ V (G) has to induce a graph F
that dominates some graph F ′ ∈ G. The graph F ′ has a subgraph F0 that is an edge-deletion
minimal graph of G. Let Gk,` be the set of edge-deletion minimal graphs in G with at most `
vertices and exactly k main pebbles. Since G is regular, Gk,` is finite and we can enumerate
the graphs in Gk,` in time depending only on k and `. Let us denote by Dk,` the maximum
number of pebbles in a graph of Gk,`. For each F0 ∈ Gk,`, we test whether there is a solution
with this particular F0.

For a given F0, we proceed as follows. Let v1, . . . , v`0 be the vertices of F0 (note that
`0 ≤ `). A solution consists of two parts: a subgraph embedding of F0 into G and a way
of moving the pebbles. Formally, a solution is a pair (φ,m) where φ : V (F0) → V (G)
is a subgraph embedding of F0 in G and m : P → V (G) describes how the pebbles are
moved. The objective is to minimize the total cost

∑
p∈P cp(m(p)) of the movements. For a

given embedding φ, there might be several possible movement plans m such that (φ,m) is
a solution, i.e., the vertices in φ(V (F0)) have the appropriate pebbles after the movements
of m. Thus for each embedding φ, there is a minimal cost cmin(φ) of a movement plan that
forms a solution together with φ. Therefore, we have to find an embedding φ such that
cmin(φ) is minimal. The main idea of the proof is to try to express this cost cmin(φ) as a
linear function of the mapping, i.e, as cmin(φ) =

∑
v∈V (F) c(v, φ(v)) for some appropriate

function c. If we can do that, then Theorem 6.2 can be invoked to find the embedding φ with
the smallest cmin(φ). However, it seems unlikely that the cost of the best way of moving the
pebbles can be expressed as a simple linear function of the embedding. If the embedding φ
is fixed, finding the best movement plan involves making non-independent decisions about

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing Movement: Fixed-Parameter Tractability A:15

which pebble goes where, hence cmin(φ) seems to be a very nonlinear function. What we do
instead is to make some guesses about the internal structure of the solution, and construct
a linear cost function that is correct for solutions with such structure.

Let L be a random labeling that assigns labels from {1, . . . , `} to the main and facility
pebbles, and labels from {0, 1, . . . , `} to the vertices of G. We say that a solution (φ,m) is
L-good if

(R1) for 1 ≤ i ≤ `0, vertex φ(vi) has label i;
(R2) if m(p) = φ(vi) for a main pebble p, then p has label i;
(R3) there are at least nF0

(vi, c) facility pebbles p having label i such that m(p) = φ(vi); and
(R4) for every 1 ≤ i ≤ `0, if p is an obnoxious pebble initially located at φ(vi), then either

m(p) = φ(vj) for some 1 ≤ j ≤ `0, or m(p) is a vertex with label 0.

We show that restricting our attention to L-good solutions is not a serious restriction, as
we can bound from below the probability that a fixed solution is L-good with respect to a
random labeling:

Lemma 6.3. Let (φ,m) be an optimum solution that moves the minimum number of
pebbles. Solution (φ,m) is L-good with respect to a random labeling L with positive probability
depending only on k, `, and |C0|.

Proof. Requirement (R1) holds with probability (` + 1)−`0 . There are at most Dk,`

facility pebbles in F0, thus there are no reason to move more than Dk,` facility pebbles.
Requirements (R2) and (R3) prescribe specific labels on at most Dk,` pebbles. Finally,
observe that if p1, p2 are two pebbles with color c ∈ Co initially located at φ(vi) and
m(p1),m(p2) 6∈ φ(V (F0)), then it can be assumed that m(p1) = m(p2) (here we use that
the movement cost functions of p1 and p2 are assumed to be the same, hence if both pebbles
are moved outside φ(V (F0)), then we can move them to the same vertex). Thus it can be
assumed that there are at most `0|Co| vertices outside φ(V (F0)) where obnoxious pebbles
are moved to, i.e., (R4) requires label 0 on at most `0|Co| vertices. Since the requirements
are independent, a random labeling satisfies all of them with positive probability.

Let us fix a subgraph embedding φ : V (F0) → V (G) and let us intuitively discuss what
is the cost of moving the pebbles in an L-good solution (φ,m). The cost comes from three
parts: moving the main, the facility, and the obnoxious pebbles.

— Main pebbles. As φ is L-good, every main pebble with label i should go to φ(vi). This
means that φ determines the cost of moving the main pebbles.

— Facility pebbles. For every color c, we have to ensure that at least nF0
(vi, c) facility

pebbles with color c and label i are moved to φ(vi) (including the possibility that some
of them were already there and stay there). It is clear that we can always do this the
cheapest possible way, i.e., by selecting those nF0

(vi, c) pebbles with color c and label
i whose cost of moving to φ(vi) is minimum possible. In particular, no conflict arises
between moving vertices to φ(vi) and to φ(vj), as they involve only vertices with label i
and j, respectively.

— Obnoxious pebbles. We have to ensure that at most nF0(vi, c) obnoxious pebbles of
color c remains at φ(vi) after the movement. The rest should be moved somewhere else,
preferably not to any other φ(vj). If the cheapest way of moving an obnoxious pebble
away from φ(vi) is outside φ(V (F0)), then we should definitely move the pebbles there.
However, it could be possible that the cheapest place is inside φ(V (F0)) and therefore
in an optimum solution we cannot avoid moving an obnoxious pebble from φ(vi) to
some φ(vj). To account for these movements, we guess the exact way the obnoxious
pebbles move inside φ(V (F0)). For every 1 ≤ i, j ≤ `0 and c ∈ Co, denote by ec,i,j
the number of pebbles with color c that is moved from φ(vi) to φ(vj) (in particular,
ec,i,i is the number of pebbles with color c that stay at φ(vi)). The tuple E of these

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 E. D. Demaine, M. T. Hajiaghayi, D. Marx

`0
2|Co| numbers will be called the scheme of the solution. Observe that ec,i,j ≤ Dk,`,

thus there are D
`0

2|Co|
k,` possible schemes, which is a constant depending only on k, `, and

the property G. We say that a scheme is correct if for every c ∈ Co and 1 ≤ j ≤ `0, the

sum
∑`0
i=1 ec,i,j ≤ nF0

(c, vj), i.e., the scheme does not move more obnoxious pebbles to a
vertex vj than it is allowed there. It is clear that the scheme of a solution is always correct.
The embedding φ and the scheme of the solution determines the way the obnoxious
pebbles are moved: ec,i,j tells us how many pebbles of color c have to be moved from
φ(vi) to φ(vj) and the remaining pebbles should be moved to the closest vertex with
label 0. Furthermore, if an obnoxious pebble is outside φ(V (F0)) initially, then there is
no reason to move it.

As mentioned earlier, we cannot make cmin(φ) a linear function. However, we can make it
a linear function for L-good embeddings with respect to a particular labeling L and scheme
E, in the following sense:

Claim 6.4. Let L be a labeling and E be a correct scheme. It is possible to define an
embedding function c(vi, u) with the following properties:

(P1) If (φ,m) is an L-good solution with the scheme E, then c(φ) is at most the cost of
(φ,m).

(P2) If F0 has an embedding φ′ into G, then there is a (not necessarily L-good) solution
(φ′,m) with cost at most c(φ′).

Proof. The embedding cost c(vi, u) of mapping vi ∈ V (F0) to u ∈ V (G) is defined to
be the sum of 3 terms:

(1) The total cost c1(vi, u) of moving all the main pebbles with label i to u.
(2) The total cost c2(vi, u) of moving, for every color c ∈ Cf , nF0

(vi, c) facility pebbles
with label i to u. If there are more than nF0

(vi, c) such facility pebbles, then we move
those whose movement cost to u is minimal. If there are less than nF0

(vi, c) such facility
pebbles, then we make the cost infinite.

(3) The total cost c3(vi, u) of moving away the obnoxious pebbles from u, according to the
scheme. For a color c ∈ Co, let t(c, u, j) be the minimum cost of moving a pebble with
color c from u to a vertex with label j. The total cost of removing the required number
of obnoxious pebbles from u is

c3(vi, u) =
∑
c∈Co

 `0∑
j=1

ec,i,j · t(c, u, j) +

nG(u, c)− nF0
(vi, c)−

`0∑
j=1

ec,i,j

 t(c, u, 0)

 .

Additionally, if u is a vertex with label different from i, then we make the cost c(vi, u)
infinite. It is straightforward to see that (P1) holds: the three components of c(φ) are
covered by the cost of moving the pebbles. The cost of moving a main or facility pebble
contributes to the embedding cost of the vertex where it arrives, while the cost of moving
an obnoxious vertex contributes to the embedding cost of the vertex where it was initially.

To see that (P2) holds, let φ′ be an embedding of F0 into G with cost c(φ′). We construct
a solution with cost at most c(φ′) where φ′(V (F0)) induces a multicolored graph that has a
subgraph dominating F0. First we move every main pebble with label i to vertex φ′(vi). The
cost of this is covered by the first component of the cost function. Next for every c ∈ Cf and
1 ≤ i ≤ `0, we move nF0

(vi, c) pebbles with color c and label i to φ′(vi). Note that there
are at least nF0

(vi, c) such pebbles: otherwise the cost would be infinite by our definition.
If there are more than nF0

(vi, c) such pebbles, then we move those pebbles whose cost of
moving to vi is minimal. The total cost of this is covered by the second component of c(φ′).

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing Movement: Fixed-Parameter Tractability A:17

Finally, we move the obnoxious pebbles according to the scheme. For each c ∈ Co and
1 ≤ i ≤ `0, we move ec,i,j of the pebbles at φ′(vi) to a vertex with label j. This incurs a total

cost of
∑
c∈Co

∑`0
j=1 ec,i,j · t(c, φ′(vi), j) when moving the pebbles initially located at φ′(vi).

After that, for each c ∈ C0, we have to move from φ′(vi) some of the remaining pebbles with
color c to ensure that only nF0

(vi, c) such pebbles with color c remain at φ′(vi). We move
these pebbles to the closest vertex having label 0, thus the total cost of these movements is∑
c∈Co

(nG(φ′(vi), c) − nF0
(vi, c) −

∑`0
j=1 ec,i,j)t(c, φ

′(vi), 0)). Clearly, the third component

of the cost covers the cost of these moves. As vertex φ′(vi) is a vertex with label i (otherwise

c(vi, u) would be infinite), there are at most
∑`0
j=1 ec,j,i pebbles with color c that goes to

φ′(vi), which is at most nF0(vi, v) since the scheme is correct.

Note that the solution (φ′,m) is not necessarily L-good and does not necessarily respect the
scheme E. However, we eventually do not care about internal properties of the solution other
than the cost. Observe that the only reason why (φ′,m) is not L-good is that obnoxious
pebbles can be moved to a vertex of label i different from φ(vi), but this just means that
fewer obnoxious pebbles are moved to φ(vi) than expected.

In summary, the algorithm performs the following steps:

(1) Try every F0 ∈ Gk,` and try every correct scheme E.
(2) Take a random labeling L of the pebbles and the vertices.
(3) Based on F0, the scheme E, and the labeling, construct the embedding cost function

c(vi, u) defined by Claim 6.4.
(4) Using Theorem 6.2, find the minimum cost subgraph embedding φ with this cost func-

tion.
(5) Construct the solution (φ,m) defined by (P2) of Claim 6.4.

We claim that the above algorithm finds an optimum solution with positive probability
depending only on k, `, G, thus by repeating the algorithm f(k, `,G) times, the error proba-
bility can be made arbitrarily small. (The algorithm can be derandomized by using k-perfect
families of hash functions instead of the random labeling [Alon et al. 1995], [Flum and Grohe
2006, Section 13.3]; we omit the details.) Let (φ,m) be an optimum solution with cost OPT
and let F0 ∈ Gk,` be the edge-deletion minimal graph of G corresponding to the solution. At
some point, the algorithm considers this particular F0 and the scheme E of this solution.
In Step 2, with constant probability, this particular solution (φ,m) is L-good (as discussed
above). Thus, by (P1) of Claim 6.4, the embedding cost of φ is at most OPT. This means
that in Step 5, we find an embedding with cost at most OPT, and in Step 6, by (P2) of
Claim 6.4, we find a solution with cost at most OPT.

The number of possibilities tried in Step 1 is a constant depending only on k and `.
The application of Theorem 6.2 in Step 5 takes time f(`)nO(w), where w is the maximum
treewidth of an edge-deletion minimal graph in G, which is a constant depending only on G
(and not on k and `). Every other step is polynomial. Thus the running time is f(k, `) ·nO(1)

for a fixed G.

7. MAIN HARDNESS PROOF

In this section, we prove the main hardness result, Theorem 3.2. The proof uses a result on
the structural complexity of constraint satisfaction problems. An instance of a constraint
satisfaction problem is a triple (V,D,C), where

(1) V is a set of variables,
(2) D is a domain of values,
(3) C is a set of constraints, {c1, c2, . . . , cq}. Each constraint ci ∈ C is a pair 〈si, Ri〉, where

(a) si is a tuple of variables of length mi, called the constraint scope, and

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 E. D. Demaine, M. T. Hajiaghayi, D. Marx

(b) Ri is an mi-ary relation over D, called the constraint relation.

For each constraint 〈si, Ri〉 the tuples of Ri indicate the allowed combinations of simulta-
neous values for the variables in si. The length mi of the tuple si is called the arity of the
constraint. A solution to a constraint satisfaction problem instance is a function f from
the set of variables V to the domain of values D such that for each constraint 〈si, Ri〉 with
si = 〈vi1 , vi2 , . . . , vmi〉, the tuple 〈f(vi1), f(vi2), . . . , f(vmi)〉 is a member of Ri. We say that
an instance is binary if each constraint relation is binary, i.e., mi = 2 for each constraint.

The primal graph of a binary constraint satisfaction instance is a graph where the vertices
are the variables and the edges are the constraints. Given a class G of graphs, we denote by
BINARY-CSP(G) the restriction of binary CSP to instances whose primal graph is in G. It
is well-known that if G has bounded treewidth, then BINARY-CSP(G) is polynomial-time
solvable [Freuder 1990]. The converse is also true:

Theorem 7.1 (Grohe [2007]). If G is a recursively enumerable class of graphs with
unbounded treewidth, then BINARY-CSP(G) parameterized by the number of variables is
W[1]-hard.

We prove Theorem 3.2 using Theorem 7.1.

Proof (of Theorem 3.2). Let G0 contain the underlying graphs (i.e., disregarding
pebbles) of all the multicolored graphs Gw (w ≥ 1) defined in the statement of the theorem.
It is easy to see that G0 is recursively enumerable. By assumption, G0 has unbounded
treewidth, hence BINARY-CSP(G0) is W[1]-hard by Theorem 7.1. We present a reduction
from BINARY-CSP(G0) to the movement problem.

Consider an instance of BINARY-CSP(G0) with primal graph F0 ∈ G0. Let x1, . . . , x` be
the variables of F0 and let {1, 2, . . . ,m} be the domain D. By the definition of G0, there is
an edge-deletion minimal multicolored graph F ∈ G whose underlying graph is F0; let u1,
. . . , u` be the vertices of F . (Since G is recursively enumerable, such an F can be found in
time depending only on the size of F0.) Let p1, . . . , pk be the pebbles in F (by assumption,
all these pebbles are main pebbles); assume that pebble pi is on vertex uti . We construct
a graph G as follows. Graph G has |D|` + k vertices: vi,j for 1 ≤ i ≤ ` and 1 ≤ j ≤ m
and qi for 1 ≤ i ≤ k. If pebble pi is on vertex uti in the graph F , then vertex qi of G is
connected to every vertex vti,j with 1 ≤ j ≤ m. For each binary constraint 〈(xi1 , xi2), R〉,
we add edges as follows: for every pair (di1 , di2) ∈ R, we connect the vertices vi1,di1 and
vi2,di2 . To complete the description of the instance, we put the pebble pi on qi for every i,
1 ≤ i ≤ k.

We claim that the CSP instance has a solution if and only if there is a solution for
the movement problem on at most ` vertices such that each pebble moves at most one
step. Assume that f : V → D is a solution for the CSP instance. For every 1 ≤ i ≤ k,
we move pebble pi from qi to vti,f(xti

). We show that the pebbles induce a multicolored
graph isomorphic to F . First, observe that all the pebbles are on the ` vertices v1,f(x1), . . . ,
v`,f(x`) and vi,f(xi) has the same number and types of pebbles as ui in F . If ui1 and ui2 are
connected in F , then there is a binary constraint 〈(xi1 , xi2), R〉 in the CSP instance. As f
is a solution, we have (f(xi1), f(xi2)) ∈ R and hence there is an edge connecting vi1,f(xi1

)

and vi2,f(xi2
). On the other hand, if ui1 and ui2 are not adjacent in the primal graph, then

there is no edge connecting any vi1,j1 with any vi2,j2 .
Conversely, we show that if there is a solution for the movement problem, then there

is a solution f for the CSP instance. Each pebble can move only one step, thus pebble
pi either stays at qi or goes to vti,j for some 1 ≤ j ≤ m. Therefore, at least ` vertices
contain pebbles after the moves. We assumed that the solution is on at most ` vertices,
hence for every 1 ≤ i ≤ `, there is at most one 1 ≤ j ≤ m such that there is a pebble on
vi,j . Define f(xi) to be this value j, or define f(xi) arbitrarily if there is no such j (i.e.,

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing Movement: Fixed-Parameter Tractability A:19

all the pebbles adjacent to vi,1, . . . , vi,|D| remained at their initial location). Observe that
if two pebbles in G are collocated after the moves, then they are collocated in F as well.
Therefore, the pebbles occupy at least |V (F)| = ` vertices. However, we know that in the
solution the pebbles occupy exactly ` vertices, which is only possible if whenever two pebbles
are collocated in F , then they are collocated in the solution. If pebbles pi1 and pi2 are not
neighbors in F , then they cannot be neighbors after the moves, since in that case there is
no edge connecting any vti1 ,j1 with any vti2 ,j2 . Thus the graph induced by the pebbles is a
subgraph of F . However, as F is an edge-deletion minimal graph of G, this is only possible
if the pebbles induce the graph F itself. This means that for every edge vi1vi2 of F , vertices
vi1,f(xi1)

and vi2,f(xi2)
have to be neighbors. By the way the graph was defined, this is only

possible if (f(xi1), f(xi2)) ∈ R, that is, f satisfies the constraint.

8. FURTHER TECHNIQUES

In this section, we prove the various results described in Section 4, as well as the hardness
result for hereditary problems described in Sections 2 and 3.

8.1. Planar Graphs and H-Minor-Free Graphs

To prove Theorem 4.1, we need a version of Theorem 6.2 that finds a minimum cost induced
subgraph embedding, i.e., a mapping φ : V (F)→ V (G) such that φ(v1)φ(v2) is an edge of G
if and only if v1v2 is an edge of F . First, the minimum cost induced subgraph embedding
can be found in linear time if G has bounded treewidth:

Theorem 8.1. Let F be an undirected graph on k vertices, let G be an undirected graph
with treewidth w, and let c : V (F)× V (G)→ Z+ be a cost function of mapping a vertex of
F to a vertex of G. It is possible to find in time f(k,w) · n an induced subgraph embedding
φ of F into G that minimizes c(φ) (if such an embedding exists).

The proof of Theorem 8.1 uses the standard algorithmic techniques of bounded treewidth
graphs (see e.g., [Eppstein 1999] for a similar result). We omit the details. To generalize
Theorem 8.1 to the case when G is planar, or more generally, H-minor-free, we need the
following result:

Theorem 8.2. [Demaine et al. 2005] For a fixed graph H, there is a constant cH such
that, for any integer k ≥ 1 and for every H-minor-free graph G, the vertices of G can be
partitioned into k + 1 sets such that any k of the sets induce a graph of treewidth at most
cHk. Furthermore, such a partition can be found in polynomial time.

Theorem 8.3. Let F be an undirected graph on k vertices, let G be an undirected graph,
and let c : V (F)×V (G)→ Z+ be a cost function of mapping a vertex of F to a vertex of G.
For every fixed graph H, if G is H-minor-free, then it is possible to find in time f(k) ·nO(1)

an induced subgraph embedding φ of F into G that minimizes c(φ) (if such an embedding
exists).

Proof. Let k := |V (F)| and let V1, . . . , Vk+1 be the partition of V (G) obtained by
Theorem 8.2. If φ is minimum cost embedding, then by the pigeon hole principle, there is
a 1 ≤ i ≤ k + 1 such that φ does not map vertices to Vi. This means that the minimum
cost embedding of F into G \ Vi has the same cost as φ. For every 1 ≤ i ≤ k + 1, we find
the minimum cost embedding φi from F to G \ Vi; clearly, the φi with minimum cost gives
an optimum solution. Because the treewidth of G \ Vi is at most cHk, by Theorem 8.1,
embedding φi can be found in time f(k, cHk)n. This means that for a fixed H, the whole
algorithm needs f ′(k)nO(1) time for some function f ′.

With these tools in hand, the proof of Theorem 4.1 is the same as the proof of Theorem 3.1,
but with the following differences:

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 E. D. Demaine, M. T. Hajiaghayi, D. Marx

(1) Gk,` contains every graph with k main pebbles and at most ` vertices, not only the
edge-deletion minimal ones.

(2) For a given F0 ∈ Gk,`, we find a minimum cost induced subgraph embedding using
Theorem 8.3, instead of a minimum cost subgraph embedding using Theorem 6.2.

8.2. Bidimensionality

Theorem 4.1 shows that the DISPERSION problem defined in Section 2.1 is FPT for planar
graphs, parameterized by the number k of pebbles. Note that Theorem 4.1 holds for arbitrary
movement cost functions. In the special case where each pebble is allowed to move only one
step in the planar graph, called SINGLE-MOVE DISPERSION, we show how to obtain a
simpler and more efficient algorithm using bidmensionality theory.

We argue as follows. If a vertex does not have a pebble in its closed neighborhood,
then it is irrelevant to the problem and can be deleted without changing the answer. Next
we establish a parameter-treewidth bound, as in bidimensionality theory [Demaine and
Hajiaghayi 2008]: if the treewidth is sufficiently large, then the parameter must be larger
than s, so we can simply answer “no”. To prove this relation we use the grid-minor theorem
of [Robertson et al. 1994]: there is a universal constant c such that if a planar graph has
treewidth at least c · s, then it has a s× s grid as a minor. Now suppose that the treewidth
of the graph is at least 4cd

√
ke, which implies that the graph has a 4d

√
ke × 4d

√
ke grid

minor. If we consider just the edge contractions that lead to this minor, ignoring the edge
deletions, we obtain a partially triangulated grid as in bidimensionality theory [Demaine
and Hajiaghayi 2008]. Let S be the set of grid vertices interior to the grid (excluding the
boundary) and having row and column numbers divisible by 3. In this way, we find a set
of at least k + 1 vertices such that any two vertices are at distance more than 2 from each
other. There is a pebble in the closed neighborhood of each vertex v ∈ S (otherwise v would
be irrelevant). But the closed neighborhoods are disjoint, implying that that there are at
least k + 1 pebbles, a contradiction.

Thus we can assume that the treewidth of the graph is at most 4cd
√
ke. In this case, we

can solve the problem with a simple application of Courcelle’s Theorem [Courcelle 1990].
Sentences in the Extended Monadic Second Order Logic of Graphs (EMSO) contain quanti-
fiers, logical connectives (¬, ∨, and ∧), vertex variables, edge variables, vertex set variables,
edge set variables, and the following binary relations: ∈, =, inc(e, v) (edge variable e is inci-
dent to vertex variable v), and adj(u, v) (vertex variables u, v are neighbors). Furthermore,
the language can contain arbitrary unary predicates on the vertices and edges. If a graph
property can be expressed in EMSO then, for every fixed w, the problem can be solved in
linear time on graphs with treewidth at most w [Courcelle 1990]. It is easy to verify that
the following formula expresses that the SINGLE-MOVE DISPERSION with k pebbles has
a solution. The predicate P (v) expresses that there is a pebble at vertex v in the initial
graph.

∃x1, . . . , xk, y1, . . . , yk :
∧

1≤i≤k

(P (xi) ∧ (adj(xi, yi) ∨ xi = yi))

∧
∧

1≤i<j≤k

(xi 6= xj ∧ yi 6= yj ∧ ¬adj(yi, yj))

Interestingly, one can give a single EMSO formula for SINGLE-MOVE DISPERSION
that does not depend on the number k of pebbles (we can describe by a set E of edges the
moves in the solution; we omit the details). Either way, we get that for every fixed k, the

problem can be solved in linear time on graphs with treewidth at most 4cd
√
ke, completing

the algorithm.

Theorem 8.4. SINGLE-MOVE DISPERSION can be solved in f(k) · nO(1) time.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing Movement: Fixed-Parameter Tractability A:21

Courcelle’s Theorem gives an easy way of showing that a certain problem is FPT, but it
cannot be used to optimize the exact running time, i.e., the function f(k). We believe we
can obtain a better running time via a direct dynamic programming algorithm for SINGLE-
MOVE DISPERSION on bounded-treewidth graphs. We do not give an explicit description
of this, as the techniques are standard and the details are somewhat tedious. The main
observation that if the tree decomposition has width w, then the dynamic programming
has to consider 2O(w) states describing which vertices of the bag have pebbles on it in the
solution and whether any pebble initially located in the bag was moved to a bag lower in
the decomposition. This would take more work than applying Courcelle’s Theorem, but

results in an algorithm where the function f(k) in the running time is only 2O(
√
k), which

is subexponential in k. It remains an interesting question for further work to determine
whether other variants of the problem (such having an unbounded number of pebbles but
parameterizing by the total movement) admit subexponential-time FPT algorithms based
on bidimensionality.

8.3. Planar STEINER CONNECTIVITY

We have seen in Section 3.1 that STEINER CONNECTIVITY (connect the red pebbles
using the blue pebbles) is FPT parameterized by the total number of pebbles (red and
blue). On the other hand, if the parameter is only the number of blue pebbles, then the
problem is W[2]-hard:

Theorem 8.5. STEINER CONNECTIVITY is W[2]-hard parameterized by the number
of blue pebbles, even in the special case when each blue pebble is allowed to move at most
one step in the graph (and the red pebbles are stationary).

Proof. The proof is similar to the proof Theorem 3.5. We present a reduction from
MINIMUM DOMINATING SET: given a graph G with n vertices and an integer k, we
construct an instance of STEINER CONNECTIVITY with n red pebbles and k blue pebbles
such that there is solution by moving each blue pebble at most one step if and only if G
has a dominating set of size k. Let v1, . . . , vn be the vertices of G. We construct a graph
F as follows. We start with vertices s, a1, . . . , an, b1, . . . , bn where s is connected to every
ai, and the ai’s form a clique of size n. Furthermore, if vi and vj are neighbors in G, then
ai and bj are adjacent in F . We place k blue pebbles on s and one red pebble on each bi.

If G has a dominating set vi1 , . . . , vik , then we move the k blue pebbles to ai1 , . . . ,
aik . Note that the k blue pebbles induce a clique in F . Furthermore, if vertex vj of G is
dominated by its neighbor vi` , then the red pebble on vertex bj is adjacent to the blue
pebble on vertex ai` . Thus the red pebbles are adjacent to the clique induced by the blue
pebbles, hence the graph induced by all the pebbles is connected. The other direction is also
easy to see: if the facility pebbles move to vertices ai1 , . . . , aik such that the red and blue
pebbles together induce a connected graph, then vertices vi1 , . . . , vik form a dominating
set in G.

In planar graphs, however, STEINER CONNECTIVITY is FPT parameterized by the
number of connector (blue) pebbles. We only sketch the proof, which is a quite simple
bounded search tree algorithm, using a combinatorial observation on the structure of planar
graphs.

Theorem 8.6. STEINER CONNECTIVITY, parameterized by the number of connec-
tor pebbles, is FPT on planar graphs.

Proof. First, contracting each connected component of red pebbles to a single vertex
does not change the problem, hence we can assume that the red pebbles are independent. It
follows that the blue pebbles dominate the red pebbles in the solution, i.e., each red pebble
has a blue neighbor. Let k be the number of blue pebbles. If there is no vertex having more

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 E. D. Demaine, M. T. Hajiaghayi, D. Marx

than 2k2 red neighbors, then the k blue pebbles can dominate at most 2k3 red pebbles, i.e.,
it can be assumed that there is only a bounded number of red pebbles and the algorithm in
Section 3.1 can be applied. Suppose that some vertex v has more than 2k2 red neighbors.
Then either a blue pebble is moved to v in a solution, or the red vertices are dominated some
other way, implying that there is a vertex u having more than 2k2/k = 2k red neighbors
common with v. By planarity, every vertex other than u and v can be adjacent to at most
two of these red pebbles, hence they cannot be dominated if neither u and v is used. Thus
we can branch into 2k directions: one of the k blue pebbles has to be moved to one of u and
v. Formally, moving a blue pebble p to, say, u means changing the initial location of p to u
and making it stationary by making the cost of moving p to any other vertex infinite. Since
pebble p cannot move and u has a red neighbor, changing the color of p to red does not
modify the problem. Thus in each branching step, we decrease the number blue pebbles,
which means that the search tree has height at most k and has at most 2k leaves.

8.4. Geometric Graphs

Proof (of Theorem 4.2):. There are at most 2k
2

possible graphs on k vertices. Sup-
pose we are given a list of all possible allowed subgraphs. We guess which graph in this

subset will be obtained by the pebbles (there are at most 2k
2

choices). We guess the map-
ping of which pebbles will be mapped to which vertices of the intended graph (there are at
most kk choices). It remains to optimize the maximum or total movement to realize this
solution.

We use Canny’s Roadmap Algorithm for general Euclidean motion planning [Canny 1987].
Given m semi-algebraic constraints, each of degree δ, over r real variables, this (randomized)
algorithm computes a connectivity-preserving representation of the space of all solutions in

mO(r)δO(r2) expected time. (Alternatively, the deterministic version of the algorithm runs

in mO(r)δO(r4); and a new deterministic algorithm runs in mO(r)δO(r1.5) [Basu et al. 2012].)
In particular, the algorithm decides whether the space is nonempty.

We use the Roadmap Algorithm as follows. For each vertex i, we make d real variables
representing the point pi to which that agent moves. For each edge (i, j) present in the
graph, we add the semi-algebraic constraint ‖pi − pj‖2 ≤ 1 (or < 1). For each edge (i, j)
absent from the graph, we add the semi-algebraic constraint ‖pi − pj‖2 > 1 (or ≥ 1). We
also add the algebraic constraints pi = oi + vi, where oi is the known (constant) original
position and vi is a vector of d additional variables representing the motion of agent i,
and we add the algebraic constraint m2

i = ‖vi‖2, where mi is another real variable to
measure the motion. To decide whether the total motion can be at most x, we can add a
constraint m1 + m2 + · · · + mn ≤ x and test with the Roadmap Algorithm whether the
space is nonempty. To decide whether the maximum motion can be at most x, we can add n
constraints mi ≤ x and test with the Roadmap Algorithm whether the space is nonempty.
In total, we have O(kd) real variables and O(k2 + kd) semi-algebraic constraints, so the

Roadmap Algorithm takes (k2 + kd)kd2O((kd)2) = 2O((kd)2) expected time.
Finally we binary search on the objective. Clearly the optimal solution we seek has cost

at least 0. We also claim that it has cost at most 2k2 + kD: move all agents to a common
point, which costs at most kD; and then move the agents to a modified instance of the target
graph where every connected component (which has diameter at most k) has distance at
most 2 to another connected component, and thus the overall diameter is at most 2k, for a
cost of at most 2k2. Thus a binary search, terminating when we have an interval of length
at most ε (and thus have an additive ε approximation), requires O(lg[(2k2 + kD)/ε]) =
O(lg k + lgD + lg(1/ε)) calls to the Roadmap Algorithm.

The overall expected running time is 2k
2

kk · 2O((kd)2) · (lg k + lgD + lg(1/ε)) =

2O((kd)2)(lgD + lg(1/ε)).

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing Movement: Fixed-Parameter Tractability A:23

8.5. Improving CONNECTIVITY with Fast Subset Convolution

Here we consider the version of CONNECTIVITY where the pebbles have to be moved
such that they induce a connected graph, and it is allowed that more than one pebbles are
on the same vertex. We have seen in Section 3.1 that the general results of Theorem 3.1
imply that this problem is FPT. Here we give a more efficient algorithm for this specific
problem: the exponential factor of the running time is only O(2k). The main tool we use is
the recent algorithm of Björklund et al. [2007] for fast subset convolution in the min-sum
semiring:

Theorem 8.7 (Björklund et al. [2007]). Let P be a set of size k and let f, g : 2N →
{−M, . . . ,M} be two functions. The 2k values of the function

h(S) := min
T⊆S

(f(T) + g(S \ T))

can be evaluated in time Õ(2kM).

(The notation Õ suppresses polylogarithmic factors.) For each vertex v and subset S ⊆ P of
pebbles, let fv(S) (resp., f ′v(S)) be the minimum cost of moving the pebbles in S to induce
a connected subgraph including v (resp., including a neighbor of v). Let fv,i(S) be fv(S) if
|S| ≤ i and infinity otherwise and define f ′v,i(S) similarly. Observe that fv,1(S) is trivial to
determine and if fv,i(S) is known for every v, then f ′v,i(S) is easy to determine as well (as
f ′v,i(S) is the minimum of fu,i(S), taken over all neighbors u of v).

Our strategy is to compute, iteratively for i = 1, 2, ..., k, the value of fv,i(S) (and hence
the value of f ′v,i(S)) for every v and S. To determine fv,i(S), first we have to consider the
trivial case when all the pebbles are moved to v; the cost of this is easy calculate. Otherwise,
if F is the connected subgraph induced by the pebbles in S (after the movement), then F \v
has at least one connected component, say C, and this component C contains a nonempty
proper subset T ⊂ S of the pebbles. In this case, the cost of the movement can be expressed
as f ′v,i(T) + fv,i(T \ S) = f ′v,i−1(T) + fv,i−1(S \ T) (the equality follows from |T | < |S| ≤ i,
|S \ T | < |S| ≤ i). Thus we have to determine minT⊆S(f ′v,i−1(T) + fv,i−1(S \ T)), and the
algorithm of Theorem 8.7 can be used for this purpose (as the functions f ′v,i−1 and fv,i−1
were already determined). If the values of the movement cost function are polynomially
bounded, then the resulting algorithm has running time O(2knO(1)).

Theorem 8.8. The movement problem CONNECTIVITY with k pebbles can be solved
in time 2k · nO(1) if the values of the movement cost function are polynomially bounded.

8.6. Hereditary Properties

To prove Theorem 3.3 we use the following hardness result on the parameterized complexity
of finding induced subgraphs with hereditary properties. Given a graph property H, in the
problem INDUCED-H, we are given a graph G and an integer k, and the task is to find k
vertices of G that induce a subgraph in H.

Theorem 8.9 (Khot and Raman [2002]). Let H be a decidable hereditary graph prop-
erty. If H includes all empty and all complete graphs, then INDUCED-H is FPT, and
W[1]-hard otherwise.

Proof (of Theorem 3.3). Let G be a hereditary property where each vertex has ex-
actly one client agent and there are no other type of pebbles. Let G0 contain the underlying
graphs of the multi-colored graphs in G; clearly G0 is hereditary. Let G′0 contain all the
graphs in G0 and those graphs G that can be made a member of G0 by connecting an arbi-
trary vertex of G with every other vertex. For example, if G0 is the set of all cliques, then
G′0 contains those graphs where there is only at most one vertex which is not connected to

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 E. D. Demaine, M. T. Hajiaghayi, D. Marx

every other vertex. On the other hand, if G0 is the set of all independent sets, then G′0 = G0.
It is easy to see that G′0 is hereditary, the largest clique appearing in G′0 is the same as the
largest clique appearing in G0, and the size of the largest independent set in G′0 is at most
one larger than the size of the largest independent set in G0. Therefore, INDUCED-G′0 is
W[1]-hard. We reduce this problem to the movement problem.

To prove the hardness of the movement problem, we reduce an instance (G, k) of
INDUCED-G′0 to the movement problem. Given a graph G, we construct a graph G′ by
adding a new vertex v that is adjacent to every other vertex. For every possible combina-
tions of k colors, we put k pebbles with these colors on v and check whether the movement
problem has a solution where each pebble moves at most one step. We claim that the move-
ment problem has such a solution for at least one combination of colors if and only if G has
an induced subgraph H ∈ G′0 on k vertices.

Assume first that the movement problem has a solution. We consider two cases. If all the
pebbles move, then they induce a multicolored graph that belongs to G. The underlying
graph of this multicolored graph in G is in G0 ⊆ G′0 by definition, that is, G has an induced
subgraph that belongs to G′0. If not all pebbles move, then exactly one pebble p stays at
v (as G has no member with more than one pebble at a vertex). The k pebbles induce a
graph H ∈ G0 and by construction p is adjacent to every other pebble, i.e., H has a universal
vertex. Thus if we move pebble p to an arbitrary vertex u not occupied by the other pebbles,
then the k pebbles induce a graph in G′0 (as this graph can be made a member of G0 by
making u an universal vertex).

The other direction is also easy to see. If G has a subgraph H ∈ G0 ⊆ G′0, then by
moving appropriately colored pebbles to these vertices we can obtain a solution where the
k pebbles induce a multicolored graph whose underlying graph is H. Assume now that G
has a subgraph H ∈ G′0 \ G0, i.e., connecting vertex u ∈ H with every other vertex gives a
graph H ′ ∈ G0. In this case we can obtain a solution by moving k− 1 appropriately colored
pebbles to the k − 1 vertices corresponding to H \ u and leaving one pebble at v.

9. CONCLUSIONS

We have introduced a very general formulation of movement minimization problems and
investigated their fixed-parameter tractability, parameterized by the number of pebbles (of
certain type). We obtained general meta-theorems, both on the algorithmic and complexity
side, which give us convenient tools to classify concrete problems. The interesting feature of
this results is that they reduce an algorithmic/complexity question (is the problem FPT?) to
a purely combinatorial question (is treewidth bounded?). By looking more closely at certain
variants, we observed that a wide range of algorithmic ideas are relevant for this class of
problems. Nevertheless, there are many natural problem variants for which our results do
not give satisfying answers. We list a few concrete questions to stimulate further research:

— Given a set of pebbles in a graph G, move the pebbles such that they induce a con-
nected graph and the total movement is at most k steps. Is this problem FPT in general
graphs/planar graphs, parameterized by k?

— For which problems can we use bidimensionality theory to obtain subexponential FPT
algorithms (i.e., running time of the form 2o(k)nO(1))?

— Prove that natural movement problems are NP-hard in the geometric setting. For exam-
ple, in the DISPERSION problem (move the agents such that the distance between any
two of them is at least 1), is it NP-hard to minimize the sum or the maximum of the
movements?

Finally, let us mention that the general hardness proof of Theorem 3.2 is limited in the
sense that it proves hardness only for a very specific question: finding a solution where
every pebble moves at most one step. While intuitively every reasonable question should be
at least as hard as this one-step question, this hardness result does not formally rule out

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing Movement: Fixed-Parameter Tractability A:25

the possibility that some other natural question is FPT. For example, it can happen that
the one-step question is W[1]-hard, but minimizing the total movement is FPT. It would
be interesting to adapt the hardness result to other reasonable questions.

References

Alon, N., Yuster, R., and Zwick, U. 1995. Color-coding. J. ACM 42, 4, 844–856.

Basu, S., Roy, M.-F., Din, M. S. E., and Schost, É. 2012. A baby step-giant step roadmap algorithm for
general algebraic sets. http://arxiv.org/abs/1201.6439.

Björklund, A., Husfeldt, T., Kaski, P., and Koivisto, M. 2007. Fourier meets Möbius: fast subset
convolution. In STOC. ACM, New York, NY, USA, 67–74.

Bredin, J. L., Demaine, E. D., Hajiaghayi, M., and Rus, D. 2005. Deploying sensor networks with
guaranteed capacity and fault tolerance. In MOBIHOC. Urbana-Champaign, Illinois, 309–319.

Canny, J. F. 1987. The Complexity of Robot Motion Planning. MIT Press.

Corke, P., Hrabar, S., Peterson, R., Rus, D., Saripalli, S., and Sukhatme, G. 2004a. Autonomous
deployment of a sensor network using an unmanned aerial vehicle. In ICRA. New Orleans, USA.

Corke, P., Hrabar, S., Peterson, R., Rus, D., Saripalli, S., and Sukhatme, G. 2004b. Deployment
and connectivity repair of a sensor net with a flying robot. In ISER. Singapore.

Courcelle, B. 1990. Graph rewriting: an algebraic and logic approach. In Handbook of Theoretical Com-
puter Science, Vol. B. Elsevier, Amsterdam, 193–242.

Demaine, E. D. and Hajiaghayi, M. 2008. The bidimensionality theory and its algorithmic applications.
The Computer Journal 51, 3, 292–302.

Demaine, E. D., Hajiaghayi, M., and Kawarabayashi, K. 2005. Algorithmic graph minor theory: Decom-
position, approximation, and coloring. In FOCS 2005. 637–646.

Demaine, E. D., Hajiaghayi, M. T., Mahini, H., Sayedi-Roshkhar, A. S., Gharan, S. O., and Zadi-
moghaddam, M. 2009. Minimizing movement. ACM Transactions on Algorithms 5, 3.

Doddi, S., Marathe, M. V., Mirzaian, A., Moret, B. M. E., and Zhu, B. 1997. Map labeling and its
generalizations. In SODA. New Orleans, LA, 148–157.

Downey, R. G. and Fellows, M. R. 1999. Parameterized Complexity. Monographs in Computer Science.
Springer, New York.

Eppstein, D. 1999. Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms
Appl. 3, 3.

Fellows, M. R. and Fernau, H. 2011. Facility location problems: A parameterized view. Discrete Applied
Mathematics 159, 11, 1118 – 1130.

Flum, J. and Grohe, M. 2006. Parameterized Complexity Theory. Springer-Verlag, Berlin.

Freuder, E. C. 1990. Complexity of k-tree structured constraint satisfaction problems. In AAAI. 4–9.

Friggstad, Z. and Salavatipour, M. R. 2008. Minimizing movement in mobile facility location problems.
In 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS’08). 357–366.

Grohe, M. 2007. The complexity of homomorphism and constraint satisfaction problems seen from the
other side. J. ACM 54, 1, 1.

Hsiang, T.-R., Arkin, E. M., Bender, M. A., Fekete, S. P., and Mitchell, J. S. B. 2003. Algorithms
for rapidly dispersing robot swarms in unknown environments. In Algorithmic Foundations of Robotics
V. Springer Tracts in Advanced Robotics Series, vol. 7. Springer-Verlag, 77–94.

Hüffner, F., Niedermeier, R., and Wernicke, S. 2008. Techniques for practical fixed-parameter algo-
rithms. The Computer Journal 51, 1, 7–25.

Jiang, M., Bereg, S., Qin, Z., and Zhu, B. 2004. New bounds on map labeling with circular labels. In
ISAAC. Lecture Notes in Computer Science Series, vol. 3341. Hong Kong, China, 606–617.

Jiang, M., Qian, J., Qin, Z., Zhu, B., and Cimikowski, R. 2003. A simple factor-3 approximation for
labeling points with circles. Information Processing Letters 87, 2, 101–105.

Khot, S. and Raman, V. 2002. Parameterized complexity of finding subgraphs with hereditary properties.
Theoret. Comput. Sci. 289, 2, 997–1008.

Kloks, T. 1994. Treewidth. Lecture Notes in Computer Science Series, vol. 842. Springer-Verlag, Berlin.

LaValle, S. M. 2006. Planning Algorithms. Cambridge University Press. http://msl.cs.uiuc.edu/planning/.

Niedermeier, R. 2006. Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and
its Applications Series, vol. 31. Oxford University Press, Oxford.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

http://arxiv.org/abs/1201.6439
http://msl.cs.uiuc.edu/planning/

A:26 E. D. Demaine, M. T. Hajiaghayi, D. Marx

Plehn, J. and Voigt, B. 1991. Finding minimally weighted subgraphs. In Graph-theoretic concepts in
computer science (Berlin, 1990). Lecture Notes in Comput. Sci. Series, vol. 484. Springer, Berlin,
18–29.

Reif, J. H. and Wang, H. 1995. Social potential fields: a distributed behavioral control for autonomous
robots. In Proceedings of the Workshop on Algorithmic Foundations of Robotics. 331–345.

Robertson, N., Seymour, P. D., and Thomas, R. 1994. Quickly excluding a planar graph. J. Combin.
Theory Ser. B 62, 2, 323–348.

Schultz, A. C., Parker, L. E., and Schneider, F. E., Eds. 2003. Multi-Robot Systems: From Swarms
to Intelligent Automata. Springer. Proceedings from the 2003 International Workshop on Multi-Robot
Systems.

Strijk, T. and Wolff, A. 2001. Labeling points with circles. International Journal of Computational
Geometry & Applications 11, 2, 181–195.

A. PROOF OF THEOREM 6.2

Let v1, . . . , vk be the vertices of F , and assign labels {1, . . . , k} to the vertices of G uniformly
and independently at random. We say that a mapping φ from a subset S ⊆ V (F) to V (G)
is colorful if the vertices in φ(S) have distinct labels. Below we present an algorithm for
finding the minimum cost colorful subgraph embedding with respect to a given labeling. This
cost might be larger than the cost of the minimum cost embedding. However, an arbitrary
embedding is colorful in a random labeling with probability at least k!/kk = 2−O(k), hence
if we try 2O(k) random labelings, then with constant probability at least one optimum
embedding becomes colorful in one of the labelings. This means that the probability of not
finding the optimum can be reduced to an arbitrarily small constant by trying 2O(k) random
labelings. The algorithm can be derandomized by using a k-perfect family of hash functions
instead of the random labelings [Alon et al. 1995], [Flum and Grohe 2006, Section 13.3].

Let the rooted tree T with the bags (Bu ⊆ V (G) : u ∈ V (T)) be a width t tree decom-
position of F . We assume this decomposition is nice [Kloks 1994]: every node u ∈ V (T) is
either a leaf node (u has no children), join node (u has two children u′, u′′ and Bu′ = Bu′′),
forget node (u has a single child u′ and Bu ⊆ Bu′ , |Bu| = |Bu′ | − 1), or introduce node (u
has a single child u′ and Bu ⊇ Bu′ , |Bu| = |Bu′ | + 1). For every u ∈ V (T), we denote by
Vu the union of the bags Bu′ for every descendant u′ of u (including u itself). Let us fix
a labeling ` : {1, . . . , k} → V (G) of the vertices. For every u ∈ V (T), L ⊆ {1, . . . , k}, and
mapping ψ : Bu → V (G), we define c(u, L, ψ) to be the cost of the minimum cost subgraph
embedding φ : Vu → V (G) of G[Vu] in G satisfying

(1) φ is colorful,
(2) φ(v) = ψ(v) for every v ∈ Bu, and
(3) φ(Vu) uses only the labels in L.

If there is no mapping φ satisfying the requirements, then c(u, L, ψ) is defined to be ∞. It
follows from these definitions that if r is the root of T , then the minimum cost of a colorful
embedding of F into G is given by minψ c(r, {1, . . . , k}, ψ), where the minimum is taken
over all mappings ψ : Br → V (G).

We determine the values c(u, L, ψ) in a bottom up traversal of the tree T , i.e., we assume
that these values are already determined for every child of u. Depending the type of node
u ∈ V (F) we do the following.

— Node u is a leaf node. In this case Vu = Bu. Thus we can simply try all subgraph
embeddings φ : Bu → V (G) of G[Bu] in G and define c(u, L, ψ) to be the minimum cost
of a mapping φ that satisfies all three constraints above.

— Node u is an introduce node with child u′. Let Bu \ Bu′ = {v}. To compute the value
c(u, L, ψ) for a given L and ψ, we first check if `(ψ(v)) ∈ L; if not, then clearly c(u, L, ψ) =
∞. Next we check if for every neighbor w ∈ Bu of v, ψ(w) is a neighbor of u. If this does
not hold for some w, then again we have c(u, L, ψ) =∞. Otherwise, let ψ′ be ψ restricted

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing Movement: Fixed-Parameter Tractability A:27

to Bu′ . Now it is easy to see that c(u, L, ψ) = c(u′, L \ {`(ψ(v))}, ψ′) + c(v, ψ(v)): any
mapping φ′ realizing the minimum c(u′, L \ {`(ψ(v))}, ψ′) can be extended to a suitable
mapping φ by defining φ(v) = ψ(v).

— Node u is a forget node with child u′. Let Bu′ \Bu′ = {v}. It is easy to see that c(u, L, ψ)
is the minimum of c(u′, L, ψ′), taken over every ψ′ : Bu′ → V (G) satisfying ψ′(w) =
ψ(w) for every w ∈ Bu. Thus c(u, L, ψ) can be obtained as the minimum of n already
determined values.

— Node u is a join node with children u′ and u′′. Let L0 be the labels of the vertices ψ(Bu)
and let Cu :=

∑
v∈Bu

c(v, ψ(v)). We show that

c(u, L, ψ) = min
L′,L′′⊆L

L′∩L′′=L0

(
c(u′, L′, ψ) + c(u′′, L′′, ψ)− Cu

)
, (1)

which means that c(u, L, ψ) can be determined in time 2O(k) using values already deter-
mined. Suppose that for some L′, L′′ ⊆ L with L′ ∩ L′′ = L0, mappings φ′ : Vu′ → V (G)
and φ′′ : Vu′′ → V (G) are minimum cost subgraph embeddings that define the values
c(u, L′, ψ′) and c(u, L′′, ψ′′), respectively. Since ψ′ and ψ′′ are the same as ψ on Bu, they
can be joined to obtain a subgraph embedding φ : Vu → V (G). Note that ψ is injective:
if φ′(w′) = φ′′(w′′), then `(φ′(w)) ∈ L′ ∩ L′′ = L0, which implies that w′, w′′ ∈ Bu and
w′ = w′′ follows. The cost of φ is

∑
v∈Vu′

c(v, φ′(v))+
∑
v∈Vu′′

c(v, φ′′(v))−Cu, where the

last term accounts for the double counting of the vertices in Bu. Thus c(u, L, ψ) cannot
be larger than the right hand side in (1).
Conversely, if φ is an embedding of Vu that defines c(u, L, ψ), then let L′ := `(ψ(Vu′))
and L′′ := `(ψ(Vu′′)). Since Vu′ ∩Vu′′ = Bu, L′ ∩L′′ = φ(Bu) = ψ(Bu) = L0. Restricting
φ to Vu′ and Vu′′ gives two embeddings φ′ and φ′′, respectively. By considering these two
particular embeddings φ′, φ′′, it is easy to see that the right hand side of (1) is at most
c(u, L, ψ), proving the equality.

As discussed above, a value c(u, L, ψ) can be determined in time 2O(k) ·nO(t) if the values
corresponding to the children of u are already determined. As there are 2O(k) · nO(t) values
c(u, L, ψ) and the running time of every other part of the algorithm (such as finding the
tree decomposition) is dominated by 2O(k) · nO(t), the total running time is 2O(k) · nO(t).

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

	1 Introduction
	2 Simplified Results
	2.1 Applications of Simplified Results

	3 Main Results
	3.1 Applications of Main Results

	4 Further Results
	4.1 Planar Graphs and H-Minor-Free Graphs
	4.2 Bidimensionality
	4.3 Planar STEINER CONNECTIVITY
	4.4 Geometric Graphs
	4.5 Improving CONNECTIVITY with Fast Subset Convolution

	5 Model and Definitions
	6 Main Algorithm
	7 Main Hardness Proof
	8 Further Techniques
	8.1 Planar Graphs and H-Minor-Free Graphs
	8.2 Bidimensionality
	8.3 Planar STEINER CONNECTIVITY
	8.4 Geometric Graphs
	8.5 Improving CONNECTIVITY with Fast Subset Convolution
	8.6 Hereditary Properties

	9 Conclusions
	A Proof of Theorem 6.2

