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Abstract

We consider a router on the Internet analyzing the statistical properties of a TCP/IP packet
stream. A fundamental difficulty with measuring traffic behavior on the Internet is that there is
simply too much data to be recorded for later analysis, on the order of gigabytes a second. As
a result, network routers can collect only relatively few statistics about the data. The central
problem addressed here is to use the limited memory of routers to determine essential features of
the network traffic stream. A particularly difficult and representative subproblem is to determine
the top k categories to which the most packets belong, for a desired value of k and for a given
notion of categorization such as the destination IP address.

We present an algorithm that deterministically finds (in particular) all categories having
a frequency above 1/(m + 1) using m counters, which we prove is best possible in the worst
case. We also present a sampling-based algorithm for the case that packet categories follow
an arbitrary distribution, but their order over time is permuted uniformly at random. Under
this model, our algorithm identifies flows above a frequency threshold of roughly 1/

√
nm with

high probability, where m is the number of counters and n is the number of packets observed.
This guarantee is not far off from the ideal of identifying all flows (probability 1/n), and we
prove that it is best possible up to a logarithmic factor. We show that the algorithm ranks the
identified flows according to frequency within any desired constant factor of accuracy.

1 Introduction

Problem. The goal of this research is to develop algorithms that extract essential characteristics
of network traffic streams passing through routers, specifically estimates of the heaviest users and
most popular sites, subject to a limited amount of memory about previously seen packets. Such
characteristics are essential for designing accurate models and developing a general understanding
of Internet traffic patterns, which are important for such applications as efficient network routing,
caching, prefetching, information delivery, and network upgrades. In addition, information of the
load distribution has direct applications to billing users.
As the network stream passes by, we have only a few nanoseconds to react to each packet. This

time permits, at best, indexing into one of a small number of registers and storing a new value or
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incrementing or decrementing a few counters. Memory is limited primarily because it must be on
the chip that is handling our processing, in order to keep up.
Ideally, we would like to determine the heaviest k users, for a desired value of k, over some time

period. However, because some users may have nearly equal load, answering this question exactly
is impossible using little space. Rather, one problem we consider is to determine all users above a
given load threshold during some time period. A second case of interest is the weaker requirement
of identifying a short list of elements guaranteed to include all of these heavy users. Of course,
we would like to be able to solve these problems in the worst case for all possible input sequences,
but failing that, we may settle for a probabilistic method provided it is robust (accurate with high
probability).

Application. In practice, this frequency estimation information is used both for billing purposes
and for traffic engineering decisions. In our particular case, this research is motivated by the need
to determine the largest packet flows which most heavily influence the characteristics of a router.
The routers in question serve large capacity connections on backbones across the continental United
States. In network-administration parlance, we need to determine the flows that “shape” the pipe.
The information collected in this scenario is important for short- and long-term traffic engineering
and routing decisions on the pipe.
In this application, we augment the router by adding a monitoring system to the router box

that collects aggregate statistics on the traffic. This system monitors the packet stream as it passes
by, and must collect statistical data in real time. Given the current bandwidth capacities at the
network core, the processing time must be on the order of nanoseconds for each packet. This
imposes particular restrictions in the nature and amount of operations that can be performed per
packet, usually limited to manipulating a small number of registers. Often we can assume the
existence of a hardware-based hash-table (associative memory). This table implements a hardware
lookup operation using only a few clock cycles. It returns an index associated with the entry if
present or an error flag otherwise.
As an example, routers from one of the largest vendors (Cisco) collect perfect statistics on

low-bandwidth connections but rely on sampling for higher speeds. The following excerpt from the
Cisco NetFlow manual [5] illustrates this:

Forwarding rates on a Gigabit Switch Router. . . an order of magnitude greater than tra-
ditional platforms that support NetFlow. “Touching” every switched packet for NetFlow ac-
counting becomes a challenge at these high switching rates. However, collecting characteristic
statistics on IP traffic being forwarded. . . is still a necessary tool for managing and planning a
network.

In order to scale to higher forwarding rates, NetFlow will now allow the user to sample one
out of every “x” IP packets being forwarded. . . This feature will substantially decrease the CPU
utilization needed to account for NetFlow packets.

However, this sampling method is often unsatisfactory given the nature of Internet traffic [9, 23].
Moreover, in many cases, a small percentage of the packet categories account for a large percentage
of the traffic. In general, because of the nature and characteristics of Internet traffic and intended
routing application, we require counting mechanisms that examine the vast majority of packets
using contiguous sampling of packet bursts.

Our results. We consider a general model in which packets have been classified into categories.
Examples of interesting categorizations include the IP address and/or port of the packet’s source
and/or destination. We illustrate under a variety of weak models of computation, storage, and
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network distributions that carefully arranged counting of repetitions of packets’ categories can
lead to accurate estimates of the most common packet categories above a certain threshold. To
give some intuition, a representative example of how counters can be used is the following: when
a packet streams by, the process can check whether its category matches any of the currently
monitored categories, and if so, increment that counter. The idea is that the category with the
highest counter is likely to be the most popular category.
The primary difficulty in counting with very few counters is to know which categories to monitor.

If we never reset the counters and start counting newly discovered categories, we may never notice
the most popular category, thus never counting them and discovering their popularity. On the
other hand, if we reset counters too frequently, we will not gain enough statistics to be sure which
counter is significantly higher than the others.
We resolve this trade-off with the following matching upper and lower bounds for monitoring a

stream of unknown length using m counters:

1. In the worst-case omniscient-adversary model [Section 3]:

(a) All categories that occur more than 1/(m + 1) of the time can (in particular) be de-
terministically reported after a single pass through the stream. However, it is unknown
which reported categories have this frequency.

(b) This result is best possible: if the most common category has frequency of less than
1/(m+1), then the algorithm can be forced to report only uniquely occurring elements.

2. In the stochastic model [Section 4]:

(a) All categories that occur with relative frequency more than (c lnn)/
√
mn for a constant

c > 0 can be reported after a single pass through the stream.

(b) The algorithm estimates the frequencies of the reported categories to within a desired
error factor ε > 0 (influencing c).

(c) The results hold with (polynomially) high probability, meaning that the probability of
failure is at most 1/ni for a desired constant i (also influencing c).

(d) This result is best possible up to constant factors: if the maximum frequency is below
f/
√
nm, then the algorithm can be forced to report only uniquely occurring elements

with probability at least (e−1+1/e)f .

3. Both of these one-pass algorithms can be implemented in a small constant amount of worst-
case time per packet.

Related work. Some variants of this problem have been previously considered in the context of
one pass analysis of database streams [1, 10, 20], query streams to a search engine [3], and packet
data streams [7, 9, 19, 21]. Morris [24] showed that it is possible to approximately count up to
n using lg lg n bits, and Flajolet [15] gave a detailed analysis of this algorithm. Vitter [26] shows
how to sample in a small amount of space and linear time in a single pass. A related problem is
computing the spectra (approximate number of distinct values) of a stream which can be achieved
in lg n space [16, 27]. Alon et al. show that the first five moments can be approximated in lgn
space while surprisingly all other (higher) moments require linear space [1].
On the particular issue of estimating frequencies, Fang et al. [10] propose heuristics to compute

all values above a threshold. Charikar et al. [3] propose algorithms to compute the top k candidates
in a list of length l under a Zipfian distribution. Estan and Varghese [9] identify supersets likely to
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contain the dominant flows and give a probabilistic estimate of the expect count value in terms of
a user selected threshold.

2 Model

This section formalizes the problems and models addressed in this paper, some aspects of which
were mentioned in Section 1 in the context of our application. There are three key aspects to the
problem and model: what computational power and storage we have to gather statistics about
streams, what distributions the streams follow, and what guarantees we make about quality of
results. We cover each aspect in the next three subsections.

2.1 Computation and Storage

We use a more restrictive model for the algorithms we develop, and a more powerful model for
proving lower bounds. This difference in models only strengthens our results.

2.1.1 Model for Algorithms

Figure 1: Schematic of a network router

with an attached statistics-gathering pro-

cess. The thick pipes denote network con-

nections.

As shown in Figure 1, our basic model of computation is
that a statistics-gathering process watches a stream of n
packets passing through an Internet router or similar de-
vice. The stream is rapid, so the process can make only one
pass through the data, and furthermore can perform little
computation per packet. Specifically, we limit the amount
of computation to O(1) operations per packet. The storage
space available to the process is limited, but a more impor-
tant limiting factor is that the working store of the process
is very small: all actively used variables (e.g., counters)
must fit in a small cache in order to keep up with the data
stream. Thus, in some settings, we may be willing to record
a significant amount of data (but still much less than one
item per packet) to external storage, and make a final pass
through these records at the end of the computation.
A key operation that the statistics gathering process

can perform is counting. The process is limited to having
at most m active counters at any time. Each counter has
an associated category that it monitors. A counter can be
incremented, decremented, or reset to monitor a different
category.
Counters can be associatively indexed based on the monitored category. This indexing structure

can be implemented in hardware by associative memory, or in software using dynamic perfect
hashing [25]. In the latter case, our worst-case running times turn into with-high-probability
running times.
We believe that this model of computation captures essentially the entire spectrum of possible

algorithms, while capturing all of the important limiting factors in the application. For lower
bounds, however, we will consider an even more powerful model, described next.

4



2.1.2 Model for Lower Bounds

For the purpose of lower bounds, we consider a broad model of computation in which the process can
maintain at most m categories in working store at any time, in addition to examining the category
of the current packet under consideration. Arbitrary amounts of memory and computation can
be used for counters or other structures, but categories must be treated as opaque objects from
an arbitrary space with unknown structure, and at most m categories can be stored. The only
operation allowed on categories is testing two for equality; in the lower-bound context where we
ignore computation time, this operation permits hashing based on categories currently in working
store. The process can return candidate most-popular categories only from the m categories that
it has in working store.

2.2 Network Traffic Distributions

We propose three broad models of the network traffic distributions that enable us to prove guaran-
tees on quality. All of these models lead to interesting theoretical results which are closely related
to the practical problem.
The two most general models are worst-case distributions. In this context, the network traffic

is essentially arbitrary, and at any moment, an adversary can choose the next packet’s category.
Algorithms in this model are difficult but surprisingly turn out to be possible. There are two subtly
different versions of the model. In the omniscient adversary model, the adversary knows everything
about the algorithm’s execution, and can choose the packet sequence to be the absolute most
difficult. In the slightly less powerful but highly natural oblivious adversary model, the adversary
knows the entire algorithm, but does not know the results of any random coin tosses made by the
algorithm. Thus the algorithm can hope to win over the adversary with high probability by using
random bits.
Of course, these worst-case models are overly pessimistic, and limit the provable strength of any

algorithm. Fortunately, real traffic is not worst-case, but rather follows some sort of distribution.
A natural such distribution is the stochastic model: an arbitrary probability distribution specifies
the relative frequencies of the category, but in what order these categories occur in the packet
stream is uniformly random. While this model may not precisely match reality, we feel that it
is sufficiently representative to lead to highly practical algorithms. (We plan to evaluate this
statement experimentally.)

2.3 Guarantees

It is impossible in general to report the most common category in one pass using less than Θ(n)
storage. For example, such storage is clearly necessary when all categories occur uniquely except
for one category that occurs twice. Fortunately, a user of this system is only interested in categories
that occur particularly often, i.e., above some frequency threshold.
It turns out that, for each model of network traffic, there is a particular threshold below which

it is impossible to accurately detect, but above which it is possible to accurately detect. When we
have no extra storage beyond the working store, we can only report m such categories with any
confidence. When we have extra storage beyond the working store, we can record more values and
make a final pass to choose the largest k frequencies for a desired value of k. In either case we
guarantee that, out of the categories whose frequencies are above threshold, the approximately top
k are reported. “Approximately” means that the frequency (as opposed to rank) is within a desired
constant-factor error.

5



3 Worst-Case Bounds without Randomization

This section develops an algorithm for the most difficult model, the worst-case omniscient adversary.

3.1 Classic Majority Algorithm

Our starting point is the elegant algorithm [13] for determining whether a value occurs a majority
of the time in a stream, i.e., occurs more than n/2 times in a stream of length n. The basic model
under which this algorithm was developed is that we should make as few passes as possible through
the data and as few comparisons as possible, while using the smallest possible amount of space—a
single counter.

Algorithm Majority

1. Initialize the counter to zero.
2. For each element in the stream:

(a) If the counter is zero, define the current element to be the monitored element of the counter.
(b) If the current element is the monitored element, increment the counter.

Otherwise, decrement the counter.

If the algorithm terminates with a counter value of zero, then the last monitored element or the
last value on the stream could have occurred up to n/2 times, though not a majority. On the other
hand, if the counter value is positive, the last monitored element is the only value that could have
occurred in a majority of the positions. A simple rescan (not permitted in our model) confirms or
denies the hypothesis, although Fischer and Salzberg [13] present the method somewhat differently
and reorder the elements in order to achieve the optimal worst-case bound of d3n/2e − 2.

3.2 Generalization

This majority algorithm is a gem, often used in undergraduate lectures and assignments. However,
the following generalization does not seem to have appeared. Our initial description ignores issues
of data structures required to effectively decrement m counters at once or manage any other aspects
of the algorithm; these issues will be addressed later.

Theorem 1 There is a single-pass algorithm using m counters that determines a set of at most m
values including all that occur strictly more than n/(m+ 1) times in an input stream of length n.

Proof. The scheme is indeed a generalization of Algorithm Majority:

Algorithm Frequent

1. Initialize the counters to zero.
2. For each element in the stream:

(a) If the current element is not monitored by any counter and some counter is zero,
define the current element to be the monitored element of that counter.

(b) If the current element is the monitored element of a counter, increment the counter.
Otherwise, decrement every counter.

The reaction to a value not in a full slate of candidates is admittedly Draconian, but it is
effective. To demonstrate this effectiveness, consider any element x that occurs t > n/(m + 1)
times. Suppose that x is read tf times when all other candidate locations are full with other values,
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and ti times when either it is already present or there is space to add it. Thus, x’s counter is
incremented ti times, and tf + ti = t > n/(m+1). Furthermore, let td denote the number of times
that a counter monitoring x is decremented as another value is read. Because a counter never goes
negative, ti ≥ td. If this inequality is strict, then x ends up with a positive count at the end of the
algorithm.
With each of the tf + td times decrements occur, we can associate m occurrences of other values

along with the occurrence of x, for a total of m + 1 unique locations in the input steam. Thus,
(m+1)(tf + td) ≤ n. If the final value of x’s counter is zero, then td = ti, so t = tf + ti = tf + td >
n/(m+1), i.e., (m+1)(tf + td) > n, which is a contradiction. Hence ti > td, so x’s counter remains
positive and x is one of at most m candidates remaining. 2

This method thus identifies at most m candidates for having appeared more than n/(m + 1)
times, and does so with no use of probabilistic methods. Clearly there remains the issue of how
to perform the appropriate updates quickly. Most notably, there is the issue of decrementing and
releasing several counters simultaneously.

3.3 Data Structures

First recall our assumption that we have a constant-time mapping from a category to its counter
and any associated data.
To support decrementing all counters at once in constant time, we store the counters in sorted

order using a differential encoding. That is, each counter actually only stores how much larger it is
compared to the next smallest counter. Now incrementing and decrementing counters requires them
to move significantly in the total order; to support these operations, we coalesce equal counters
(differentials of zero) into common groups.
The overall structure is a doubly linked list of groups, ordered by counter value. Each group

represents a collection of equal counters, consisting of two parts: (1) a doubly linked list of counters
(in no particular order, because they all have the same value), and (2) the difference in value between
these counters and the counters in the previous group, or, for the first group, the value itself. Each
“counter” no longer needs to store a value, but rather stores its group and its monitored element.
Modifying Algorithm Frequent to use these data structures, we obtain the following algorithm:

Algorithm Frequent’

1. Initialize the counters to zero by placing them in a common group with value zero.
2. For each element in the stream:

(a) Lookup the current element to see whether it is monitored by a counter.
(b) If not, and the value of the first group is zero, then define the current element to be the monitored

element of the first counter in the first group.
(c) If the current element is (now) monitored by a counter, increment the counter as follows:

i. Remove the counter from its group.
ii. If the next group has a value differential of one, store the counter there.

Otherwise:
• Decrement the next group’s value differential.
• Create a new group in between the current group and the next group, with a value

differential of one.
• Add the counter to this new group.

(d) Otherwise, decrement every counter by decrementing the value of the first group, which must
have been positive.

Because each part of Step 2 can be executed in constant time, we obtain the following result:
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Theorem 2 Algorithm Frequent’ implements Algorithm Frequent from Theorem 1 in O(1)
time per packet.

3.4 Lower Bound

Algorithm Frequent achieves the best possible frequency threshold according to the model pre-
sented in Section 2.1.2.

Theorem 3 For any n and m, and any deterministic one-pass algorithm storing at most m ele-
ments at once, there is a sequence of length n, in which one element occurs at least n/(m+ 1)− 1
times and the other elements are all unique, and on which the algorithm terminates with only
uniquely occurring elements stored.

Proof. We initially imagine there being n distinct elements, divided by a yet-to-be-determined
scheme into m + 1 classes. We maintain that each element stored by the algorithm is from a
different class. At each step, the algorithm examines its at most m+1 elements, discards one, and
reads the next element from the stream. The adversary chooses the next element from the same
class as the element that was discarded. (At the beginning, the adversary chooses arbitrarily.)
In this way, the algorithm learns only that elements from different classes are different, but does

not learn about elements from a common class. Thus, at the end, the adversary is free to choose
which elements in a class are equal and which are not. In particular, the adversary can choose the
largest class, which must have size at least n/(m + 1), to have all its members equal except for
possibly one member of the m being returned by the algorithm; and choose all other classes to have
all distinct elements. 2

4 Probabilistic Frequency Counts

This section develops algorithms for the stochastic model, in which an arbitrary probability distri-
bution specifies the relative frequencies of the categories, but in what order these categories occur
in the packet stream is uniformly random. We distinguish two cases according to whether the
process is allowed extra storage so long as the working store is small; see Section 2.1.1.

4.1 Overview

The basic algorithm works as follows. We divide the stream into a collection of rounds, carefully
sized to balance the counter-reset trade-off described in the first section. At the beginning of each
round, the algorithm samples the first m distinct packet categories, which is equivalent to sampling
m packets uniformly at random. The algorithm then counts their occurrences for the duration of
the round. Applying Chernoff bounds, we prove that the counts obtained during a round are close
to the actual frequencies of the categories. The k categories with the maximum counter values at
the end of the round are the winners for that round. If extra nonworking storage is available to
the algorithm, we record these winners and their counts for a final tournament at the end of the
algorithm. Otherwise, we reserve a constant fraction of the working storage for the current best
winners, and only compare against those. In either case, we prove that with high probability the
true frequencies of the final winners are close to the frequencies of the truly most popular categories.
The probabilities are slightly higher when extra nonworking space is available.
The ideal choice for the size of a round in this algorithm depends on the length n of the stream

and on the probability distribution on categories. Of course, the algorithm does not generally know
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the probabilities, and may not even know for how long it will be monitoring the stream: imagine
a scenario in which the statistics gathering process is running constantly, and at will a networks
designer can request the current guess and confidence of the most popular categories; as time
passes, the confidence increases. To solve these problems, we harness the algorithm in an adaptive
framework that gradually increases the round length until the confidence is determined to suffice.
This flexible framework requires monitoring the stream for only slightly longer.

4.2 Algorithm with Extra Nonworking Storage

More precisely, we divide the input stream into rounds of r packets each. The algorithm then
proceeds as follows:

Algorithm Probabilistic

1. For each round of r elements:
(a) Assign the m counters to monitor the first m distinct elements that appear in the round.
(b) For each element, if the element is being monitored, increment the appropriate counter.
(c) Store the elements and their counts to the extra nonworking storage.

2. Pass through the elements and counts stored in extra nonworking storage.
3. Return the k distinct elements with the largest counts, for the desired value of k. (If an element

appears multiple times in the list, we effectively drop all but its largest count.)

To prove high-probability bounds, we need the following Chernoff bound on tails of probability
distributions:

Lemma 1 (Chernoff Bounds [25, Theorems 4.1–4.2]) Let Sn be a sum of n Bernoulli trials
and let µ = E[S] be the expected value of Sn. Then
1. For any 0 < δ ≤ 1,

Pr{Sn < (1− δ)µ} <

(

e−δ

(1− δ)(1−δ)

)µ

< e−µδ
2/2.

2. For any δ > 0,

Pr{Sn > (1 + δ)µ} <

(

eδ

(1 + δ)(1+δ)

)µ

.

Theorem 4 Fix any constants c > 0 and α > 1. Call an element above threshold if it has relative
frequency at least τ = (c lnn)/

√
mn. Suppose that t elements are above threshold. If c is sufficiently

large with respect to α, then with high probability, Algorithm Probabilistic with r =
√
mn returns

a list of k elements whose first min{k, t} elements are as if we perturbed each element’s relative
frequency within a factor of α and then took the top min{k, t} elements.

Proof. For rounds of length r =
√
mn, the number of rounds is n/r =

√

n/m.
Consider an element x with relative frequency p ≥ τ . The probability that x is sampled by a

particular round is roughly mp >
√

m/n c lnn, so the expected number of rounds that sample x is

E[#rounds(x)] = (n/r)mp ≥ (n/r)
√

m/n c lnn = c lnn.

On the other hand, when element x is sampled in a round, the expected value of x’s counter at the
end of the round is

E[#occ/round(x)] = rp ≥ c lnn.
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Thus #rounds(x) (the number of rounds that sample x) and #occ/round(x) (x’s count from such
rounds) are both at least c lnn in expectation.
Now we can apply Lemma 1 to show that these random variables are Ω(lnn) with high proba-

bility. For #rounds(x), we obtain

Pr{#rounds(x) < (1− δ)E[#rounds(x)] < e−E[#rounds(x)]δ2/2 ≤ e−(c lnn)δ2/2 = 1/ncδ
2/2.

Thus, #rounds(x) ≥ 1
2c lnn with probability > 1 − 1/nc/8. In particular, with at least the same

probability, #rounds(x) ≥ 1, i.e., x is sampled by at least one round.
Now that we know that all elements above threshold are sampled by some round, we need to

guarantee that they achieve an appropriate count to imply the theorem. In addition, it may be that
elements below threshold end up with higher counts than elements above threshold. Fortunately,
we claim that only elements near the threshold (specifically, within α2 of the threshold) can have
this property, preserving the theorem.
So we consider #occ/round(y), but for elements y with relative frequency q ≥ τ/α2. Now

E[#occ/round(y)] = rq ≥ (c/α2) lnn, so by Lemma 1 we obtain

Pr
{

#occ/round(y) < (1− δ)E[#occ/round(y)]
}

< e−E[#occ/round(y)]δ2/2

≤ e−((c/α2) lnn)δ2/2

= 1/ncδ
2/2α2

.

Thus, #occ/round(y) ≥ (1/α)rq with probability > 1− 1/nc(1−1/α)2/2α2

.
We also apply Lemma 1 to give an upper bound on #occ/round(y):

Pr
{

#occ/round(y) > (1 + δ)E[#occ/round(y)]
}

<
(

eδ/(1 + δ)(1+δ)
)E[#occ/round(y)]

≤
(

eδ/(1 + δ)(1+δ)
)(c/α2) lnn

= 1/n(c/α2)((1+δ) ln(1+δ)−δ).

Thus, #occ/round(y) ≤ αrq with probability > 1− 1/nc(α lnα+1−α)/α2

.
For an element z that has relative frequency less than τ/α2, we still have that #occ/round(z)

is less than rτ/α with at least the same probability, because #occ/round(z) is only smaller than
#occ/round(y) where y has relative frequency at least τ/α2. Thus, z’s with relative frequencies
less than τ/α2 will not be confused with any x’s with relative frequencies at least τ .
Now we combine the upper and lower bounds on #occ/round(y). We obtain that, for every y

with relative frequency q ≥ τ/α2, #occ/round(y) is within a factor of α of its expectation rq with
probability

> 1− 1/nc(1−1/α)2/2α2 − 1/nc(α lnα+1−α)/α2

.

Taking the conjunction over all elements, this statement is true for all y simultaneously with
probability

> 1− 1/nc(1−1/α)2/2α2−1 − 1/nc(α lnα+1−α)/α2−1.

This conjunction, ignoring the scaling factor of r, is precisely the statement of the theorem. We
need in addition that each element x above threshold is sampled in at least one round, which
subtracts another 1/nc/8−1 from the probability. Thus, in total, the statement in the theorem
holds with probability at least

1− 1/nc(1−1/α)2/2α2−1 − 1/nc(α lnα+1−α)/α2−1 − 1/nc/8−1,

10



which for sufficiently large c with respect to α becomes at least 1− 1/ni for a desired i > 0.
This analysis assumed Bernoulli trials, which implies sampling with replacement. The same

analysis (with slightly tighter bounds) applies to our fixed-frequency model, i.e., sampling without
replacement (hypergeometric distribution) because this distribution has the same mean but lower
tails than sampling with replacement (Bernoulli trials) [22, pp. 174–175] and hence the Chernoff
bounds also hold. 2

4.3 Algorithm without Extra Nonworking Storage

A simple modification to Algorithm Probabilistic avoids the use of extra storage by computing
the maximum frequencies online at the cost of using some counter space:

Algorithm Probabilistic-Inplace

1. Reserve m/2 of the m counters to store the current best candidates.
2. For each round of r elements:

(a) Assign the m/2 unreserved counters to monitor the first m/2 distinct elements that appear in
the round, and zero these counters.

(b) For each element, if the element is being monitored, increment the appropriate counter.
(c) Replace the m/2 reserved counters with the top out of all m counters.

3. Return the m/2 reserved counters.

As stated, this algorithm does not run in constant time per packet, incurring a Θ(m) cost at
the end of every round. However, this large cost can be avoided as follows:

Algorithm Probabilistic-Inplace’

1. Store the counters in two sorted doubly linked lists, the current list and the old list, each list structured
as in Algorithm Frequent’.

2. Maintain with each counter to which of the two lists it belongs, and initially place every counter in
the old list.

3. Additionally, store a pointer to the middle (median) of each list, which is dynamically updated for the
current list, but remains fixed for the old list.

4. For each round of r elements:
(a) Our goal is to re-assign the m/2 lowest counters from the previous round to monitor the first

m/2 distinct elements that appear in the current round, and start all counters from zero.
(b) For each element:

i. If the element is being monitored by a counter in the current list, increment that counter.
ii. If the element is being monitored by a counter in the old list, set the counter to one and

move it to the current list.
iii. If the element is not being monitored, and the first counter in the old list is before the old

list’s middle, then assign that counter to this element, set its count to one, and move the
counter to the current list.

(c) Reset any counters remaining in the old list to zero and move them to the new list. (This
operation can be de-amortized over the preceding operations in this round.)

(d) Swap the old list (now empty) and the current list.
5. Return the m/2 currently largest counters.

These algorithms obtain the same results as in Theorem 4, only with m half as large and k
constrained to be at most m/2.

Theorem 5 Suppose that t elements are above threshold, i.e., have relatively frequency at least
(c lnn)/

√

mn/2. If c is sufficiently large with respect to α, then with high probability, Algorithms
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Probabilistic-Inplace and Probabilistic-Inplace’ with r =
√

mn/2 return a list of m/2
elements whose first min{m/2, t} elements are as if we perturbed each element’s relative frequency
within a factor of α and then took the top min{m/2, t} elements.

4.4 Streams of Unknown Length

If the value of n is unknown to the algorithm, we can guess the value of n to be 1 and run the
algorithm, then guess consecutively n = 2, 4, . . . , 2j , . . . until the stream is exhausted. At round
j, we can find the top elements so long as their probability satisfies p > j/

√
2jm. This bound is

within a factor of roughly
√
2 compared to if we knew n a priori.

4.5 Lower Bound

We prove a matching lower bound for the algorithms above, up to constant factors, in the model
of computation presented in Section 2.1.2:

Theorem 6 Consider the distribution in which one element x has relative frequently (just) below
f/
√
mn, and e.g. every other element occurs just once. For any probabilistic one-pass algorithm

storing at most m elements at once, the probability of failing to report element x is, asymptotically,
at least (e−1+1/e)f ≈ 0.5314636f . Consequently, if f = Θ(1), there is a constant probability of
failure, and f must be Ω(lg n) to achieve a polynomially small probability of failure.

Proof. The gist of the idea for f = 1 is as follows. On the one hand, if we samplem elements in each
round, then x is present in the counters for a given round with probability only m/

√
mn =

√

m/n.
Thus, the expected number of rounds that we need to perform before x enters the counters is
√

n/m. On the other hand, to distinguish x from other not-so-frequent elements in the counters,
we need to see at least a second occurrence of x. Hence, once we fill up the counters in a round,
we must wait for at least

√
mn + ε packets to check for any repeat elements, to have any hope of

identifying x. So all in all, we consume
√

n/m(
√
mn+ ε) packets before we have x in the counters

with count value at least 2. But
√

n/m(
√
mn+ ε) = n+ ε

√

n/m is strictly greater than n, which
means that the stream is not long enough to allow us to see x.
From the definition of the model, it follows that if the algorithm never sees a repeated packet,

its sampling strategy remains unchanged. For each counter i, what the counter monitors is changed
ri times after intervals of length wi,1, wi,2, . . . , wi,ri

. That is, the counter monitors one element for
wi,1 steps, then another element for wi,2 steps, etc. If x was not detected, then either it was not
admitted into a counter at all, or if ever present in a counter, a second occurrence was not observed
during the corresponding time interval.
During counter i’s round j (wi,j), x does not enter counter i with probability at least 1−f/

√
mn.

It enters counter i with probability at most f/
√
mn and then sees no second occurrence of x in

round j with probability at least (1 − f/
√
mn)wi,j . Hence the probability of x being missed in

round j is at least

1− f√
mn

+
f√
mn

(

1− f√
mn

)wi,j

.

Because rounds are independent events when x is never found, we have that the probability of
missing x throughout counter i’s lifetime is at least

ri
∏

j=1

(

1− f√
mn

+
f√
mn

(

1− f√
mn

)wi,j
)

.
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Observe that
∑

j wi,j = n−ri. It is not hard to see, for any β with 0 < β < 1, that (a+βk)(a+βn−k)
is minimized when k = n/2, and in general the product above is minimized when wi,j = wi,k = n/ri.
Then the product above becomes

(

1− f√
mn

+
f√
mn

(

1− f√
mn

)n/ri

)ri

.

By differentiating with respect to ri, we see that the expression above has, asymptotically, a min-
imum at ri = f

√

n/m. Then we observe that the probability of none of the m counters finding x
is the product of the probabilities, corresponding to raising the formula above to the power of m,
resulting in

(

1− f√
mn

+
f√
mn

(

1− f√
mn

)

√
mn/f

)f
√
mn

.

We obtain that the probability of missing x is asymptotically at least (see [14])

(

1−
(

1− 1
e

)

f√
mn

)f
√
mn

=

(

e−1+1/e +O

(

1√
mn

))f

≈ 0.5314636f .

2

5 Conclusion

The main open problem that remains is to consider the more relaxed but highly natural oblivious-
adversary worst-case model, which allows randomization internally to the algorithm but assumes
nothing about the input stream. We are hopeful that it is possible to achieve results similar to the
stochastic model by augmenting our algorithm to randomly perturb the sizes of the rounds. The
idea is that such perturbations prevent the adversary from knowing when the actual samples occur.
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