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Abstract. In the classical model of tile self-assembly, unit square tiles
translate in the plane and attach edgewise to form large crystalline
structures. This model of self-assembly has been shown to be capa-
ble of asymptotically optimal assembly of arbitrary shapes and, via
information-theoretic arguments, increasingly complex shapes necessar-
ily require increasing numbers of distinct types of tiles.

We explore the possibility of complex and efficient assembly using sys-
tems consisting of a single tile. Our main result shows that any system
of square tiles can be simulated using a system with a single tile that is
permitted to flip and rotate. We also show that systems of single tiles
restricted to translation only can simulate cellular automata for a lim-
ited number of steps given an appropriate seed assembly, and that any
longer-running simulation must induce infinite assembly.
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1 Introduction

This paper shows that many copies of a single rotatable polygonal tile type
suffices to simulate any square tile assembly system.
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Winfree [15] introduced the abstract Tile Assembly Model (aTAM) as a clean
theoretical model for nanoscale self-assembling systems. In several experiments
of increasing complexity and reliability [16,2,5,13,3], this model has been shown
to be physically practical, with tiles composed of DNA strands. As a result,
the aTAM has become the standard in theoretical work on self-assembly, with
previous work exploring its abilities and limitations in terms of its ability to use
computation to assemble shapes and patterns [12,1,14,6], as well comparing its
computational power and simulation abilities [7,10,18].

In the aTAM, we start with a single specific tile, or a connected assembly
of tiles, (called the seed) and repeatedly add any tile to the assembly that has
enough matching glues (colored edges) to “stick” to the rest of the assembly.
Each glue type (color class) has a natural number strength, which represents the
affinity for matching glues of that type, and a global temperature (typically 2) of
the system specifies the total required strength for a tile to attach to the assem-
bly. Unlike Wang tiling, in the aTAM we can never throw away partially formed
assemblies; in fact, the aTAM can be seen as a special kind of asynchronous, and
nondeterministic, cellular automaton. See Section 2 for more details.

1.1 Our results I: Universal self-assembly with one tile

We prove in Section 5 that any aTAM system can be simulated by just a single
tile, in a generalization of the aTAM model called the polygonal free-body Tile
Assembly Model (pfbTAM). More precisely, we show that any temperature-τ
aTAM system can be converted into a temperature-τ pfbTAM system with a
single tile type tU such that the two systems have exactly the same producible
assemblies, modulo isometry. This construction is self-seeding in the sense that
it starts from a single copy of the very same tile t; it is even a challenge to get
the next copy of t to attach without uncontrolled infinite growth.

Another contribution of this paper is in our proof technique: we use a chain of
four simulations. Such long chains of simulations, or reductions, are commonplace
throughout the theory of computation, but not seen (so far) in self-assembly. Our
single tile simulates an arbitrary square tile assembly system T as follows. We
begin with the fact that the aTAM is intrinsically universal [7], which means that
there is a single set of square tiles U that can simulate any square tile assembly
system T . Via the construction in [7], the tile assembly system T that we wish
to simulate is first encoded as a seed assembly using tiles from the intrinsically
universal tile set U to give a tile assembly system UT . Next, the system UT
is simulated by a “low-strength” hexagonal tile assembly system, as described
below. The main result of this paper is that the resulting hexagonal assembly
system can be simulated by a pfbTAM system consisting of only a single tile tU .
And, of course, our single tile tU works for any such system T we wish to simulate.
In particular, both the geometry and the dynamics of the simulated system
are, modulo rescaling, precisely simulated: for every sequence of tile placement
in the simulated system there is a sequence of blocks of tile placements of tU
in the simulator system, and vice-versa. Hence, when appropriately seeded, tU
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assembles scaled-up versions of what is assembled by T , and in the same way
that T does it.

It is worth noting that the notion of intrinsic universality, with its strict
notion of simulation, gives a framework to compare the power of tile assembly
models that at first sight seem very different and perhaps difficult to compare.
For example, in this paper we study rotatable and fliapable polygons, and trans-
latable polyominos, yet simulation gives a way to directly compare the power of
this model with the well-known square (aTAM) model. Intrinsic universality is
giving rise to a kind of complexity theory for self-assembly systems allowing us
to tease apart the power of different models [18].

Our universal tile tU is a kind of geometric analog to a universal Turing
machine, simultaneously simulating the shape construction and computational
ability of an arbitrary tile assembly system (although our definition of simula-
tion is in fact stronger—we care about dynamics, not merely input to output
mappings). The existence of a system with just a single tile demonstrates that
geometry alone (as opposed to, say, a large, although constant, number of square
tile types [7]) suffices to bootstrap a system of self-assembly in even the most
restrictive case where the system may only utilize copies of a single shape.

The pfbTAM model differs from aTAM in two ways: tiles consist of gen-
eral simple polygons rather than squares and tiles are (possibly) permitted to
rotate. Both are physically realistic aspects of self-assembling systems. For ex-
ample, DNA origami [11] is a rapidly evolving technology that has been used to
successfully build numerous complex shapes using strands of DNA. The tech-
nology has evolved to the point where free software automatically designs DNA
to fold into essentially arbitrary desired shapes. Polyomino generalizations of
square aTAM tiles have already been developed in practice [17] and studied in
theory [8]. Rotation is clearly a natural attribute of all physical systems – prior
work in the aTAM used a simple trick to eliminate rotation. Although our single
polygonal tile tU has such a large number of sides that its fabrication would be
extremely challenging, our work here demonstrates that rotation can be used as
an encoding mechanism to design systems that reuse a single tile at various ro-
tations to achieve universal tile assembly systems. It would not be inconceivable
to build a single tile with a more modest number of sides that simulates a simple
square tile system.

The full version of this paper also shows the existence of a single tile that
simulates any square tile system in the Wang model of plane tiling.

1.2 Our results II: Hexagonal tile assembly systems

As noted above, part of our proof involves the use hexagonal tiles: Section 4
describes aTAM systems with unit-sized hexagonal tiles on a hexagonal grid. The
only previous paper considering this model [9] simply showed differences between
squares and hexagons with respect to infinite constructions. Here we show that
any temperature-2 square aTAM system can be simulated by a temperature-
2 hexagonal aTAM system in which all glues have strength at most 1. The
construction works at a scale factor of only 3: each square tile is simulated by a
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3× 3 block of hexagonal tiles. The main reason we use hexagons is that no such
system is possible for square systems: any temperature-2 square aTAM system
in which all glues have strength at most 1 cannot grow outside its bounding box
(and so it cannot simulate arbitrary square-tile systems).

This result is a key step to proving our main positive result (aTAM simula-
tion allowing translation and rotation). Specifically, we show in Section 5 how
to simulate any temperature-2 hexagonal aTAM system that uses exclusively
strength-1 glues with a rotatable polygon tU that encodes different tile types by
attaching at different rotation angles. Independent of their use in our construc-
tions, hexagonal systems without strength-2 glues could be significantly easier
to implement in the laboratory than square systems using both strength-1 and
strength-2 glues in arbitrary arrangements on the tiles.

1.3 Our results III: Linear-time computation with a single
translation-only tile

In Section 6, we prove both a positive and a negative result on single-tile systems
where the tile is forbidden from rotating. On the positive side, we prove that
single-tile translation-only systems have non-trivial power: they are capable of
time-bounded simulation of computationally universal 1D cellular automaton.
Any 1D cellular automata that runs for n steps can be simulated starting with
a seed assembly of O(n) tiles. This is proved by first showing that single-tile
translation-only systems can simulate a restricted class of multi-tile systems,
which have previously been shown to simulate computationally universal 1D
cellular automata.

On the negative side, we prove that translation-only single-tile systems need
a seed assembly consisting of at least four tiles to carry out any non-trivial
assembly. More formally, we prove that any single-tile translation-only system
with a seed tile consisting of one, two, or three tiles either produces an infinite
assembly, or only the seed assembly. More generally, we conjecture that no finite
seed suffices for unbounded computational power with single-tile, translation-
only systems, in stark contrast to our result that general single-tile pfbTAM
systems have this power starting with a single-tile seed.

2 Model Definitions

The polygonal free-body Tile Assembly Model or pfbTAM generalizes self-assembly
models such as the aTAM by using tiles with arbitrary polygonal shapes that
may be translated and rotated. In our positive results, we only utilize tiles whose
shapes are convex regular n-gons with small surface geometries. Our negative
results are valid for arbitrary polygons, as discussed in Section 6.

A pfbTAM system Γ is defined as Γ = (T,Σ, τ, σ), where T is a tile set of
polygonal tiles, Σ is a collection of glue types, τ ∈ N is the temperature of the
system, and σ is a seed assembly consisting of an arrangement of tiles from T and
their locations. Each tile in T has a shape defined by a simple polygon (a polygon
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without holes), and each side of the tile has is assigned a glue from the collection
of glue types Σ of Γ . Each glue type g ∈ Σ is assigned a positive integer value
called a strength with the exception of special null glue whose strength is 0.

If a pair of tiles of Γ are arranged in the plane such that their interiors do
not overlap, and a pair of their edges are coincident, then these edges are said to
form a bond. The strength of this bond is determined by the glues of both sides,
with the strength equal to the strength of the glue if both sides have the same
glue type, and zero otherwise.

A collection of tiles arranged in the plane whose interiors are pairwise dis-
joint is an assembly. The bond graph of an assembly is the (planar) multigraph
consisting of labeled nodes for each tile, and an edge between a pair of nodes for
each positive-strength bond the tiles share. An assembly is τ -stable if any edge-
cut of the bond graph of the assembly has cut edges whose total corresponding
bond strength meets or exceeds τ , the temperature of the system.

The seed assembly σ of Γ is a τ -stable assembly consisting of the tiles in T .
The assembly process consists of attaching single tiles of T to a growing τ -
stable assembly, beginning with σ, the seed assembly of the system. Because
each single-tile attachment must yield a τ -stable assembly, a tile can attach to
the growing assembly if and only if it is able to form bonds with assembly whose
total strength is at least τ . Any assembly A that can be formed by this process
is a producible assembly of Γ and is said to be produced by Γ . If no tile can
attach to A, then A is also a terminal assembly of Γ . In some cases we consider
pfbTAM systems in which tiles are not permitted to rotate, but instead merely
translate. We call these system translation-only pfbTAM systems.

The well-studied aTAM and hTAM models (reviewed in Section 1) are both
special cases of translation-only pfbTAM systems. An abstract Tile Assembly
Model (aTAM) system is a translation-only pfbTAM system Γ = (T,Σ, τ, σ)
where the tiles in T are unit squares, while a hexagonal Tile Assembly Model
(hTAM) system is a system where the tiles in T are unit hexagons.

In Section 6 we also consider a restricted class of aTAM systems (rotated by
45◦) called pyramid aTAM systems, proving that single-tile, translation-only pfb-
TAM systems are capable of simulating them. An aTAM system Γ = (T,Σ, 2, σ)
is said to be a pyramid aTAM system if three conditions hold. First, σ contains n
tiles configured in the format described in Figure 1, with the property that all
coincident tile edges have matching glues. Second, all glues in T have strength 1.
Third, the tile set T and seed σ are such that no tiles can attach to the southern
face of the seed. In addition, a pyramid aTAM system is said to be double-
checkerboarded if every tile attaching to the seed assembly has distinct tile types
at the locations to the southwest, south, and southeast of the tile’s attachment
location. An example of a coloring scheme that denotes which tiles must be of
differing type is shown in Figure 1.
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Fig. 1. Pyramid aTAM systems start with a seed assembly (gray) and grow up-
wards with cooperative temperature-2 bonding, yielding an assembly that is maximally
pyramid-shaped. They can be used to simulate the light cone of a cellular automaton.

3 Simulation Definitions

En route to proving that pfbTAM systems with a single tile type are powerful,
we prove that pfbTAM and hTAM systems can capture the behavior of, or
simulate, aTAM systems. Below we define what it means for a pfbTAM system
to simulate hTAM and aTAM systems, and for an hTAM system to simulate an
aTAM system.

Loosely defined, a system simulates another if there is a mapping between
the producible assemblies of both systems, such that a producible assembly A
yields another producible assembly A′ via a single-tile addition in one system if
and only if, in the other system, the analogous assembly to A yields an analogous
assembly to A′ via a single-tile addition. In Sections 3.2 and 3.3 the simulating
systems use a block of tiles to represent a single tile in the simulated system,
and each single-tile addition in the simulated system is equivalent to a short
sequence of single-tile additions in the simulated system, where the final addition
completes the simulation of the single-tile addition in the simulated system.

3.1 Simulating hTAM systems with pfbTAM systems

A pfbTAM system Γp = (Tp, Σp, τp, σp) simulates an hTAM system Γh =
(Th, Σh, τh, σh) if there exists a mapping φ : Tp × [0, 2π) → Th of orientations
(specified by an angle in [0, 2π)) of tile in Tp to tiles in Th such that there exists
a bond graph GAp generated by a producible assembly Ap of Γp if and only if
mapping the label of each node v of GAp to φ(p) yields a bond graph GAh

of a
producible assembly Ah of Γh.

Also, for each producible assembly A′p produced by Γp via a single-tile ad-
dition to assembly Ap, an assembly A′h in Γh equivalent to A′p via φ can be
produced by Γh via a single-tile addition to assembly Ah equivalent to Af via
φ and vice versa. In other words, equivalent assemblies are producible in both
systems by equivalent sequences of tile additions.
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3.2 Simulating aTAM systems with hTAM systems

Our definition of pfbTAM systems simulating hTAM systems uses a strict one-to-
one-correspondence between tiles in the simulated and simulating systems. Here
and in Section 3.3, our definition of hTAM systems simulating aTAM systems
has a slightly weaker correspondence called a c-block representation where each
tile in the simulated aTAM system corresponds to a c × c grid of tiles in the
simulating hTAM system.

Let Ah be an assembly of an hTAM system Γh = (Th, Σh, τh, σh) and Aa

be an assembly of an aTAM system Γa = (Ta, Σa, τa, σa). Then Ah is a valid
c-block representation of Aa for an odd, positive integer c and partial function
φ : Th → Ta if two conditions hold. First, that Ah is evenly divisible in c × c
blocks of tiles, as shown in Figure 2. Second, that x is in the domain of φ if and
only if x is at the center of a c× c block.

Given a valid c-block representation Ah, define the c-bond graph of Ah to be
a graph with a labeled node for each center tile x of a c×c block with label φ(x).
The c-bond graph of Ah has an edge between two nodes corresponding to tiles x
and x′ if the bond graph of Ah has a length-c path between x and x′ consisting
of edges between tiles exclusively at angles 90◦ and −90◦, or 120◦ and −30◦.

Now we are ready to define simulation. We say that Γh simulates Γa at scale
c, if there exists a partial function φ : Th → Ta such that three conditions hold.
First, every tile in any producible assembly of Γh of size greater than c2 − 1 is
within distance at most c from a tile x for which φ(x) is defined. Second, there
exists a producible assembly Ah of Γh that is a valid c-block representation for
function φ(x), if and only if mapping the label of each node v in the c-block
bond graph of Ah yields a bond graph of a producible assembly of Γa. Third, for
each producible assembly A′a of Γa produced by Γa via a single-tile addition to
assembly Aa, there are equivalent c-block representation assemblies A′h and Ah

of Γh, such that A′h is producible from Ah via a sequence of tile additions, for
which each producible assembly created during this sequence of tile additions,
the thing in Γh is Ah.

3.3 Simulating aTAM systems with pfbTAM systems

We define a c-scaled simulation of an aTAM system by a pfbTAM system by
mapping c × c blocks within pfbTAM assemblies to aTAM tiles, where this
mapping reads rotations of pfbTAM tiles in the blocks. A pfbTAM system Γp =
(Tp, Σp, τp, σp) simulates an aTAM system Γa = (Ta, Σa, τa, σa) at scale c ∈ N
if the following conditions hold, based on the more formal definition of [7].

First, there exists a mapping φ : ((Tp ∪ {∅})× [0, 2π))c
2 → Ta ∪ {∅} of c× c

blocks of tiles from Tp (with the output of φ depends on the orientations of those
tiles, specified by a rotation angle in [0, 2π)) and empty locations (denoted ∅)
to tiles in Ta and empty locations such that for every producible assembly Ap

of Γp there is a producible assembly Aa in Γa, where Aa = φ∗(Ap) and for every
producible assembly Aa of Γa there exists a producible assembly Ap in Γp, where
Ap = φ∗(Aa) (here φ∗ denotes the function φ applied to an entire assembly, in
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the most obvious block-wise way). We also require that Ap maps cleanly to Aa

under φ∗, that is, for all non-empty c×c blocks b in Ap it is the case that at least
one neighbor of φ(b) in φ∗(Ap) is non-empty, or else Ap has at most one non-
empty c× c block. In other words, π may have tiles in c× c blocks representing
empty space in α, but only if that position is adjacent to a tile in α.

Second, there exist producible assemblies Aa and A′a of Γa such that Aa →1

A′a (growth by single tile addition), then for every producible assembly Ap of Γf ,
where Aa = φ∗(Ap) it is the case that there exists A′p such that Ap →∗ A′p
(growth by one or more tile additions) in Γf , where A′a = φ∗(A′a). Furthermore,
for every pair of producible assemblies Ap, A′p of Γf , if Ap →∗ A′p, and Aa =
φ∗(Ap) and A′p = φ∗(A′p), then Aa →∗ A′a for assemblies Aa, A′a of Γa.

3.4 Simulating pyramid aTAM systems with single-tile
translation-only pfbTAM systems

In Section 6 we simulate pyramid aTAM systems (defined in Section 2), a special
class of aTAM systems that have significant computational power but limited
enough to permit simulation by translation-only, single-tile pfbTAM systems.
Recall that a pyramid aTAM system is a restricted aTAM system in which
each tile must attach to the growing assembly using exactly the southwest and
southeast sides. The key idea of the simulation is to place an imaginary grid of
boxes over a given assembly in the simulating translation-only system to define
the position each tile (and specifically the tile’s north/south position) and thus
the tile of the aTAM system this tile is simulating; see Figure 3 for the idea.

We now define the mapping of an assembly in a single-tile, translation-only
pfbTAM system Γp = (Tp, Σp, 3, σp) to an assembly in the simulated pyramid
aTAM system Γa = (Ta, Σa, 2, σa). Consider a 2-stable assembly A consisting of
translations of tiles of type p. Now consider the westmost, southmost tile in A.
Assume this tile sits at coordinate position (0,−x1). Define a partial mapping
f : Z × Z → Z × Z × T that maps tile coordinate locations within an assembly
to both a 2D coordinate position and a tile type in T .

Given the partial mapping f , for an assembly A produced by Γp, we say A
simulates the assembly A′ in Γa if A′ is the assembly obtained by including each
tile of type t at position (w, y), such that f(x, y) = (w, u, t) for some tile in A at
position (x, y). If any tile in A is at a position at which f is not defined, then A
does not have a defined mapping to a square aTAM tile assembly over T .

We say that Γp terminally simulates, or simply simulates, Γa if the set of
terminal assemblies of Γp maps exactly to the set of terminal assemblies of Γa. 7

4 Low-Strength hTAM Systems Simulate aTAM Systems

In this section we prove that any temperature-τ aTAM system can be simulated
by a temperature-τ hTAM system that uses only glues of strength less than

7 This is a weaker definition of simulation than what is defined for the other pairs of
models. While our construction actually satisfies an equivalent stronger definition,
we omit the more involved simulation definition for simplicity.
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τ (called low-strength glues). We call these hTAM systems low-strength hTAM
systems. This is used later in Section 5 to simulate temperature-τ aTAM systems
with single-tile pfbTAM systems (Lemma 2). See Figure 2 for an example.

Fig. 2. Simulating a non-deterministic attachment in the aTAM via a low-strength
hTAM system. The center location in the 3×3 block is a location of contention; multiple
blocks compete and/or cooperate to claim it.

Lemma 1. For any aTAM system Γa = (Ta, Σa, τ, σa) with |σa| = 1 and τ ≥ 2,
there exists an hTAM system Γh = (Th, Σh, τ, σh) that simulates Γa at scale 3
and has the property that all glues in Σh are of strength less than τ . Also, |Th| =
O(|Ta|2) and |σh| = 3.

Furthermore, it is straightforward to see from the above construction that
an aTAM system with seed σa and |σa| ≥ 1, i.e. a seed assembly consisting of
multiple tiles, can be simulated by an hTAM system, where the 9|σa| hexagonal
tiles simulating the aTAM seed assembly are appropriately placed to represent
that seed assembly. This gives the following corollary:

Corollary 1. For any aTAM system Γa = (Ta, Σa, τ, σa) with |σa| ≥ 1 and τ ≥
2, there exists a low-strength hTAM system Γh = (Th, Σh, τ, σh) that simulates
Γa at scale 3. Also, |Th| = O(|Ta|2) and |σh| = 9|σa|.

5 Single-Tile pfbTAM Systems Simulate Low-Strength
hTAM Systems

In this section we show that pfbTAM systems with a single tile type can simulate
low-strength hTAM systems. Combining this result with Lemma 1 proves that
single-tile pfbTAM systems can simulate all aTAM systems. Two-step simulation
enables independent resolution of two main difficulties: using rotation as an
encoding mechanism and eliminating uncontrolled growth of a single tile type
with strength-τ glues.
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Lemma 2. For any low-strength hTAM system Γh = (Th, Σh, τ, σh) with |σh| =
3, there is a pfbTAM system Γp = (Tp, Σp, τ, σp) with |Tp| = 1 and |σp| = 3 that
simulates Γh at scale 1.

Theorem 1. (Universal Single-Tile Simulation) There exists a polygonal tile tU
such that for any aTAM system Γa = (Ta, Σa, τa, σa) with |σa| = 1 and τa ≥ 2,
there exists a pfbTAM system Γp = ({tU}, Σp, 2, σp) simulating Γa.

Here U denotes the intrinsically universal tile set [7]. As U is a fixed tile set,
tU is a tile with a constant number of sides. By adapting ideas from [4], we can
eliminate the need for a multi-tile seed assembly, making the system self-seeding.

Theorem 2. (Self-Seeding Single-Tile Simulation) For any aTAM system Γa =
(Ta, Σa, τ, σa) with |σa| = 1 and τ ≥ 2, there exists a pfbTAM system Γp =
(Tp, Σp, τ, σp) with |Tp| = 1 and |σp| = 1 that simulates Γa.

6 Single-Tile Translation-Only pfbTAM Systems
Simulate Cellular Automata

First we prove that single-tile pfbTAM systems where rotation is forbidden,
called translation-only systems, are capable of arbitrary computation given an
appropriately large seed. See Figure 3 for an example.

Theorem 3. For any double-checkerboarded pyramid aTAM system Γa = (Ta,
Σa, 2, σa), there exists a translation-only pfbTAM Γp = ({tp}, Σp, 3, σ2) that
simulates Γa. Furthermore, tp has O(|Ta|5) sides.

Next, we prove that any single-tile, translation-only pfbTAM system with a
seed assembly consisting of fewer than four tiles either produces only the seed
assembly, or produces an infinite assembly.

Lemma 3. Let S be a two-dimensional, bounded, connected, regular closed set
S and v be a two-dimensional vector. Define S + v = {p + v : p ∈ S}. If
S + v ∩ S = ∅, then S + c · v ∩ S = ∅ for any non-zero integer c.

Theorem 4. For any translation-only pfbTAM system Γ = (T,Σ, τ, σ) with
|T | = 1 and |σ| = 1, the set of producible assemblies of Γ is either {σ} or
contains assemblies of unbounded size.

Corollary 2. There are aTAM systems that cannot be simulated by any single-
tile, translation-only pfbTAM system.

Theorem 4 utilizes Lemma 3 and a simple observation about self-seeding
systems: to form a two-tile assembly requires a strength-τ attachment between
two individual tiles.

Theorem 5. For any translation-only pfbTAM system Γ = (T,Σ, τ, σ) with
|T | = 1 and |σ| = 3, the set of producible assemblies of Γ is either {σ} or
contains assemblies of unbounded size.
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Fig. 3. An assembly of sliders (right) is mapped to a corresponding square tile assembly
(left) by placing an imaginary grid (light blue).

A detailed proof is in the full paper. Matters get more involved with arbitrary
seeds, and we conjecture polynomially large seeds are needed in general.

Conjecture 1. Let Γ = (T,Σ, τ, σ) be a translation-only pfbTAM system with
|T | = 1 and |σ| = n. If |σ| = n, then the set of producible assemblies of Γ either
contains exclusively assemblies of size O(n2) or contains assemblies of unbounded
size.
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