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Abstract
We consider a model of algorithmic self-assembly of geometric shapes out of square Wang tiles
studied in SODA 2010, in which there are two types of tiles (e.g., constructed out of DNA and
RNA material) and one operation that destroys all tiles of a particular type (e.g., an RNAse
enzyme destroys all RNA tiles). We show that a single use of this destruction operation enables
much more efficient construction of arbitrary shapes. In particular, an arbitrary shape can be
constructed using an asymptotically optimal number of distinct tile types (related to the shape’s
Kolmogorov complexity), after scaling the shape by only a logarithmic factor. By contrast,
without the destruction operation, the best such result has a scale factor at least linear in the
size of the shape and is connected only by a spanning tree of the scaled tiles. We also characterize
a large collection of shapes that can be constructed efficiently without any scaling.

1998 ACM Subject Classification Theory

Keywords and phrases Biomolecular computation, RNAse enzyme self-assembly, algorithmic
self-assembly, Komogorov complexity

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

DNA self-assembly research attempts to harness the power of synthetic biology to manipulate
matter at the nanoscale. The general goal of this field is to design a simple system of
particles (e.g., DNA strands) that efficiently assemble into a desired macroscale object. Such
technology is fundamental to the field of nanotechnology and has the potential to allow for
massively parallel, bottom-up fabrication of complex nanodevices, or the implementation of
a biological computer. Motivated by experimental DNA assemblies of basic building blocks
or DNA tiles [5,7,14,16,17,19,26], the tile self-assembly model [18] has emerged as a premier
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theoretical model of self-assembly. Tile self-assembly models particles as four-sided Wang
tiles which float randomly in the plane and stick to one another when abutting edges have
sufficient affinity for attachment.

Perhaps the most fundamental question within the tile self-assembly model is how
efficiently, in terms of the number of distinct tile types needed, can a target shape be uniquely
assembled. For some special classes of shapes such as rectangles and squares, the problem
has been considered in depth under a number of tile-based self-assembly models. More
generally, researchers have considered the complexity of assembling arbitrary shapes [9,11,20].
In particular, Soloveichik and Winfree [20] show that any shape, modulo scaling, can be
self-assembled with a number of tile types close to the Kolmogorov complexity of the target
shape. While intriguing from a theoretical standpoint, this result has an important drawback:
it assembles an arbitrarily large scaled-up version of the target shape, rather than the exact
target shape. It is conceivable that a reasonable scale factor could be tolerated in practice
by simply engineering smaller tiles, but the scale factors needed for the Soloveichik-Winfree
construction are unbounded in general, proportional to the running time of the Kolmogorov
machine that generates the shape, which is at least linear in the size of the target shape in all
cases. This extreme resolution loss motivates the search for a practical model and construction
that can achieve extremely small scale factors while retaining the Kolmogorov-efficient tile
complexity for general shapes.

Our results. We achieve Kolmogorov-efficient tile complexity of general shapes with a
logarithmic bounded scale factor, using the experimentally motivated Staged RNA Assembly
Model (SRAM) introduced in [1]. The SRAM extends the standard tile self-assembly model
by distinguishing all tile types as consisting of either DNA or RNA material. Further, in a
second stage of assembly, an RNase enzyme may be added to the system which dissolves all
RNA tiles, thus potentially breaking assemblies apart and allowing for new assemblies to
form. While this modification to the model is simple and practically motivated (the idea was
first mentioned in [18]), we show that the achievable scale factor for Kolmogorov-efficient
assembly of general shapes drops dramatically: for arbitrary shapes of size n, a scale factor
of O(logn) is achieved, and for a large class of “nice” shapes, the Kolmogorov optimal
tile complexity can be achieved without scaling (scale factor 1). Refer to Figure 1. Note
that the lower bound proof of [20] holds with a simple modification to the program that
simulates self-assembly in the SRAM. Further, we show that arbitrarily large portions of
infinite computable patterns of the plane can be weakly assembled within the SRAM. Such
assembly has been proved impossible in the standard tile assembly model [13], illustrating an
important distinction in the power of SRAM compared to the standard tile assembly model.

In addition to tile complexity and scale factor, we also address the metrics of connectivity
and addressability. Full connectivity denotes whether all adjacent tiles making up the target
shape share positive strength bonds, a desirable property as it creates a stable final assembly.
All of our finite constructions are fully connected, unlike the previous result of [20] which
just connected a spanning tree of the scaled tiles, making for a potentially very floppy
construction. Addressability denotes whether a construction is able to assign arbitrary binary
labels to the tiles that make up the final assembly. Addressability may have important
practical applications for assemblies that are to serve as scaffolding for the fabrication of
nanodevices such as circuits in which specific components must be attached to specific
locations in the assembled shape. Our O(logn)-scale construction provides the flexibility
to encode an arbitrary binary label within the tile types of each scaled-up position in the
assembled shape, thus yielding a high degree of addressability, while our 1-scale construction
allows complete addressability. See [10] for a version of this paper that includes color images
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General shape S with n points Tile Types Stages Scale Connectivity
Previous work [20] Θ(K(S)/ log K(S)) 1 unbounded partial
Arbitrary shapes (Thm. 3.2) Θ(K(S)/ log K(S)) 2 O(log n) full
“Nice” shapes (Thm. 4.2) Θ(K(S)/ log K(S)) 2 1 full
Infinite computable pattern S Tile Types Stages Scale Connectivity
Computable patterns (Sec. 4.4) Θ(K(S)/ log K(S)) 2 1 partial
Table 1 Summary of the tile complexities, stage complexities, scale factors, and connectivity of

our RNA staged assembly constructions compared with relevant previous work. The value K(S)
denotes the Kolmogorov complexity of a given shape or pattern S, and n denotes the size of (number
of points in) S.

and a full technical appendix.

2 Preliminaries

We work in the 2-dimensional discrete space Z2. Let U2 = {(0, 1), (1, 0), (0,−1), (−1, 0)} be
the set of all unit vectors in Z2. We write [X]2 for the set of all 2-element subsets of a set
X. All graphs here are undirected graphs, i.e., ordered pairs G = (V,E), where V is the set
of vertices and E ⊆ [V ]2 is the set of edges. A grid graph is a graph G = (V,E) in which
V ⊆ Z2 and every edge {~a,~b} ∈ E has the property that ~a−~b ∈ U2. The full grid graph on
a set V ⊆ Z2 is the graph G#

V = (V,E) in which E contains every {~a,~b} ∈ [V ]2 such that
~a−~b ∈ U2.

A shape is a set S ⊆ Z2 such that G#
S is connected. In this paper, we consider scaled-up

versions of finite shapes. Formally, if X is a shape and c ∈ N, then a c-scaling of S is defined
as the set Sc =

{
(x, y) ∈ Z2

∣∣ (⌊x
c

⌋
,
⌊
y
c

⌋)
∈ X

}
. Intuitively, Sc is the shape obtained by

replacing each point in S with a c× c block of points. We refer to the natural number c as
the scaling factor or resolution loss. Note that scaled shapes have been studied extensively
in the context of a variety of self-assembly systems [6, 9, 11,20,25].

Fix some universal Turing machine U . The Kolmogorov complexity of a shape S, denoted
by K(S), is the size of the smallest program π that outputs an encoding of a list of all the
points in S. In other words K(S) = min{|π| | U(π) = 〈S〉}. The reader is encouraged to
consult [21] for a more detailed discussion of Kolmogorov complexity.

Here we give a sketch of a variant of Erik Winfree’s abstract Tile Assembly Model
(aTAM) [22,23] known as the two-handed aTAM, which has been studied previously under
various names [2, 4, 8, 9, 15,24]. Please see [12] for a more detailed description of the model
and our notation.

A tile type is a unit square with four sides, each having a glue consisting of a label (a finite
string) and strength (0, 1, or 2). We assume a finite set T of tile types, but an infinite number
of copies of each tile type, each copy referred to as a tile. A supertile (a.k.a., assembly) is
a positioning of tiles on the integer lattice Z2. Two adjacent tiles in a supertile interact if
the glues on their abutting sides are equal. Each supertile induces a binding graph, a grid
graph whose vertices are tiles, with an edge between two tiles if they interact. The supertile
is τ -stable if every cut of its binding graph has strength at least τ , where the weight of an
edge is the strength of the glue it represents. That is, the supertile is stable if at least energy
τ is required to separate the supertile into two parts. A tile assembly system (TAS) is a pair
T = (T, τ), where T is a finite tile set and τ is the temperature, usually 1 or 2. Throughout
this paper τ = 2 (unless explicitly stated otherwise). Given a TAS T = (T, τ), a supertile
is producible if either it is a single tile from T , or it is the τ -stable result of translating
two producible assemblies. A supertile α is terminal if for every producible supertile β, α
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and β cannot be τ -stably attached. A TAS is directed (a.k.a., deterministic, confluent) if
it has only one terminal, producible supertile. Given a connected shape X ⊆ Z2, a TAS T
produces X uniquely if every producible, terminal supertile places tiles only on positions in
X (appropriately translated if necessary).

RNA tiles and RNAse enzyme
In this paper, we assume that each tile type is defined as being composed of either DNA or
RNA. By careful selection of the actual nucleotides used to create the glues, tile types of any
combination of compositions can bind together. The utility of distinguishing RNA-based
tile types comes from that fact that, at prescribed points during the assembly process, the
experimenter can add an RNAse enzyme to the solution which causes all tiles composed
of RNA to dissolve. We assume that, when this occurs, all portions of all RNA tiles are
completely dissolved, including glue portions that may be bound to DNA tiles, returning the
previously bound edges of those DNA tiles to unbound states.

More formally, for a given supertile Γ that is stable at temperature τ , when the RNAse
enzyme is added, all positions in Γ which are occupied by RNA tiles change to the empty
tile. The resultant supertile may not be τ -stable and thus defines a multiset of subsupertiles
consisting of the maximal stable supertiles of Γ at temperature τ , denoted by BREAKτ (Γ).

The plausibility of this model was mentioned by Rothemund and Winfree in [18], and
formalized in SODA 2010 [1] when it was combined with the idea of staged assembly [9].

Staged assembly with RNA removals
Staged assembly consists of a finite sequence of stages, modeling the actions taken by an
experimenter (e.g., bioengineer). A stage assembly system specifies each stage as either a tile
addition stage, in which new tile types are added to the system, or an enzyme stage, in which
assembled supertiles are broken into pieces by deleting all occurrences of RNA tile types. In
both cases, each stage consists of an initial set of preassembled supertiles from the previous
stage, unioned with a new set of tile types in the case of a tile addition stage, or the current
supertile set broken into subsupertiles (which may then be able to bind to each other) in the
case of an enzyme stage. From this initial set, the output of the stage is determined by the
two-handed assembly model, and the stage ends once all supertiles are terminal, meaning
that no further bindings can occur. It is only at this point that the next stage can be initiated.

Complexity Measures of Tile Assembly Systems
In this paper, we are primarily concerned with measuring the “complexity” of a tile assembly
system with respect to the following metrics. Tile Complexity: we say that the tile
complexity (sometimes called the program-size complexity [18]) is the number of unique tile
types of the system. Stage Complexity: we say that the stage complexity is the number of
stages that a particular tile system must progress through in order to produce a terminal
assembly. (We sometimes also mention the BREAK complexity [1], which is simply the
number of BREAK stages.) Scale Factor: we say that a tile system produces a shape S
with scale factor c ∈ N if the system uniquely produces Sc. Connectivity: when a tile
system produces a terminal assembly in which not every adjacent edge interacts with positive
strength, then we say that the system has partial connectivity. On the other hand, a tile
assembly system achieves full connectivity if it only produces terminal assemblies in which
every abutting edge interacts with positive strength. Addressability: addressability (of
the final assembly of a tile assembly system) concerns the ability of a tile system to address
or mark each tile in the final assembly with a character drawn from Σ = {0, 1}. Note that
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addressability concerns the ability of tile systems to label certain (tiles placed at) locations
in their final assembly as “black” or “nonblack.”

3 The Pod Construction

3.1 Partial Connectivity Construction
As a warmup to our main result, we obtain partial connectivity:

I Theorem 3.1. For every finite shape S ⊂ Z2, there exists a staged RNA assembly system TS
that uniquely produces S and moreover, TS has tile complexity O

(
K(S)

logK(S)

)
, stage complexity

2, a scale factor of O(log |S|), and has partial connectivity.

One highlight of Theorem 3.1 is that the stage complexity of TS is 2, i.e., the stages in our
construction consist of the initial tile addition stage followed by a single BREAK stage. This
is the fewest stages possible in any construction that makes use of the power of the RNAse
enzyme. The remainder of this section is devoted to providing a proof sketch of Theorem 3.1.

At a high level, the construction for Theorem 3.1 works by forming a O(log |S|)×O(log |S|)
(roughly) square block to represent each point in S. The correct positioning of blocks is
ensured by encoding binary strings that are unique to each pair of adjacent edges as “teeth”
on the edges of the blocks. The assembly begins with a seed, composed of RNA tile types
representing a Turing machine that outputs S as a list of points. An assembly which simulates
that Turing machine and then outputs definitions for each of the blocks assembles first, with
all tiles being composed of RNA except for those forming the blocks, which are composed of
DNA. We think of these blocks as DNA “pods” growing off of the RNA assembly. A BREAK
operation is then performed which dissolves everything except for the DNA blocks. These
blocks then combine to form the scaled version of S. Details of this construction follow.
Figure 1a shows the basic design of the blocks used in this construction. Figure 1b depicts
the high level structure of this construction.

The seed row consists of a row of tiles that uniquely self-assemble into a binary represen-
tation of the shortest Turing machine M that outputs the definition of a desired shape S
as a list of points, and then halts. Note that we use the optimal encoding scheme of [3, 20],
which implies that the tile complexity of our construction is O

(
K(S)

logK(S)

)
.

Assembly begins with the “unpacking” phase (similar to the main construction of Solove-
ichik and Winfree [20]). Once this simulation completes, the top row of the assembly will
consist of the list of points in the shape. Next, another Turing machine, N (charged with the
task of executing the algorithm defined in Section A.4 of [10]), is simulated by the assembly.

Once N halts, the top row of the assembly will consist of a sequence of binary strings
that represent the binary values to be encoded along the edges of the DNA blocks. It is these
blocks that will come together in a 2-handed fashion to form the final, scaled version of S.
The correct positioning of the blocks is ensured by the patterns of binary teeth as well as the
glues on the corners of the blocks which ensure that only complementary corners of blocks
can bind (e.g., the northeast corner of one block could bind only to the northwest corner
of another). For block edges which correspond to an outer edge of the shape S, instead
of binary teeth a smooth edge with 0-strength glues will be formed. Note that the seed
tiles, Turing machine simulation tiles, and tiles outside of the blocks are all RNA tile types
which will ultimately be dissolved by RNase enzyme in the BREAK stage. Following the
BREAK, the O(log |S|)×O(log |S|) sized blocks representing each of the points in S are free
to self-assemble into the scaled up version of S, thus completing the construction.
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(a)
Seed:  Binary representation of TM M

Unpacking:  UTM(M)

Labeling:  N(S)

Definition of S, e.g. (0,1),(0,2),(1,1)....

Labeled S, e.g. W,N,E,S;W,N,E,S;... (where W,N,E, and S are the binary numbers for the corresponding sides of a block)

Block formation

(b)

Figure 1 (a) Top: Key showing the shapes assembled for bits on each side of a block. Middle:
Example East side and West side, each representing the bit pattern “1001”. Bottom: Example
block which has the bit pattern “1001” on each side. Note that the white tiles represent the binary
patterns and have null glues on their outer edges while each exposed side of each yellow block has a
single strength 1 glue exposed which is specific to its corner and direction. (b) High level overview
of the main components of the pod construction.

3.2 Full Addressability of Points in S

In the aTAM, tile types are allowed to have “labels” which are nonfunctional (not necessarily
unique) strings associated with each tile type. Often, labels are assigned to tile types to make
it easier to logically identify and group them (for instance, the “0” and “1” labels assigned
to the tile types that assemble into a binary counter). In laboratory implementations of
DNA tile types, tile types are often created with the equivalent of such binary labels by the
inclusion or exclusion of a hairpin loop structure which projects upward above the plane of
the tile, for 0 and 1 respectively (a notable example of this technique is due to Papadakis,
Rothemund and Winfree [19]). This is currently done to simplify the imaging process and
therefore the detection of errors that occur in the assembly. However, it is possible that in
the future such projecting labels could be also used to create binding sites for additional
materials, allowing the self-assembling structure to serve as a scaffolding for more complicated
productions. For simplicity, we let the set of available labels be Σ = {0, 1}.

Here we present a construction that facilitates the arbitrary assignment of labels to
subsets of locations in the final assembly. We consider such locations to be “addressable.”
This provides a method for associating labels, in the form of binary strings, with each of the
points in S. These binary strings will be represented by rows of tiles within the blocks, each
labeled with a “0” or “1.”

In the construction for Theorem 3.1, it is trivial to allow the TM M encoded in the seed
to also output a binary string to be used to label each/any point in S. This binary string can
be passed upward through the south sides of the DNA blocks so that they are represented
by the labels of the tile types which form the center of each block (either in particular,
designated rows or in all rows). Of course, doing so requires an appropriate increase in tile
complexity—the additional complexity of encoding each string that will ultimately be printed
on (e.g., used to address) each supertile in the final assembly.

This labeling method allows bit strings of length at most the width of the center portion
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of a DNA block (plus 2 additional tiles) to be specified for each DNA block. Only one such
unique label can be specified for each block, but the row (or rows) in which it appears can be
specified by M . The label can appear in any subset of the rows, or alternatively in columns.
Intuitively, this is done by including a label value, which passes either upward or to the right
as the center of the block assembles. At rows (or columns) that have been specified with
special markers as M output the definition of the block, the label values can be “expressed”
by tile types with the labels corresponding to the bit values.

3.3 Full Connectivity Construction
Recall that for the previous constructions, the only positive strength interaction between
the glues of adjacent blocks occurred at the corners of those blocks. We now strengthen
Theorem 3.1 as follows.

I Theorem 3.2. For every finite shape S ⊂ Z2, there exists a staged RNA assembly system TS
that uniquely produces X and moreover, TS has tile complexity O

(
K(S)

logK(S)

)
, stage complexity

2, a scale factor of O(log |S|), and achieves full connectivity of the terminal assembly.

A proof sketch of Theorem 3.2 follows. In order to generate shapes with full connectivity, the
scheme proposed below requires that the scaling factor be doubled from the construction of
Theorem 3.1 and also that, when the RNase enzyme is added, there are no remaining singleton
tiles (neither DNA nor RNA) in the solution, only the terminally produced assemblies. The
latter requirement is due to the fact that the teeth of the blocks produced have single strength
glues all along their edges to which single tiles of the correct types could attach and prevent
the proper connection of blocks. However, it is easy to remove this assumption by doubling
the system temperature from τ = 2 to τ = 4, and doubling the strength of every glue that is
internal to each DNA block while maintaining single strength glues that are on the outside
of the block. Note that this additional assumption is not needed for the construction for
Theorem 3.1 since with those blocks, there are no locations on the exposed sides to which
singleton tiles could attach, only the correct and fully formed complementary blocks.

South EastWestNorth

Figure 2 Positioning of block edge information.

Figure 2 shows the procedure by
which the values for the edges of a
block are moved into the necessary
positions relative to the edges of the
block to be formed. It also shows how
those values are turned into “casts”
formed of RNA tiles. The high level
idea is that first, before any DNA
tiles can attach to the assembly, RNA
tiles form a “cast” whose shape is the
complement of the teeth of the block.
Once the self-assembly of the portion of the cast for an edge is completed, the assembly of
the DNA teeth for that side is allowed to proceed. The cast is formed as a one-tile-wide path
of tiles whose order of growth is generally clockwise. Once the self-assembly of the entire cast
is completed, the DNA tiles can fully form the block. Every DNA tile has strength-1 glues on
every edge and attaches with its south and west sides as input sides, generally forming the
block from the bottom left to the top right (more details of the cast formation can be found
in Section A.7 of [10]). Once the blocks form, the remainder of the construction proceeds
similarly to the prior construction.
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4 Self-Assembly of Shapes without Scaling

4.1 A Bounded Rectangle Decomposition of an Arbitrary Shape

Figure 3 A shape to be formed (left) and the
possible rectangle decompositions thereof (mid-
dle,right).

Figure 4 One possible decomposition (among
several) of a shape into rectangles.

We will now show how the pod construc-
tion of Section 3 can be modified to reduce
the scale factor from O(log |S|) to 1 for a
large class of finite shapes, while still ob-
taining asymptotically optimal tile complex-
ity (according to the Kolmogorov complex-
ity of the target shape), using just a single
BREAK stage, and maintaining full connec-
tivity of the final assembly. The large class
of shapes will be the set of shapes that have
a “bounded rectangle decomposition”–the
definition of which follows.

The leftmost image in Figure 3 shows an example of a simple target shape to be assembled.
The middle and rightmost images show two different possible rectangle decompositions of
that shape. Instead of having binary teeth along the full edges of each constituent rectangle,
binary teeth need only be present at the locations where rectangles must come together, i.e.,
at the interface between two rectangles. The remainder of the outside edges can be made
smooth, with 0-strength glues. Throughout this section, S denotes an arbitrary finite shape.

A shape R is a rectangle if R = {(x, y) ∈ Z2 | a ≤ x < m + a and b ≤ y < n +
b for some a, b,m, n ∈ N}. In this case, we say that R is a rectangle of width m and
height n positioned at (a, b). We say that R(S) = {Ri}ki=0, for some k ∈ N is a rectangle
decomposition of S if for all 0 ≤ i < k, Ri is a non-empty rectangle,

⋃k−1
i=0 Ri = S and for

all i, j ∈ N such that i 6= j, Ri ∩Rj = ∅. See Figure 3 for examples. Let R = {Ri}k−1
i=0 be

a rectangle decomposition of S and suppose that Ri and Rj are rectangles in R. For each
~u ∈ U2 = {(0, 1), (1, 0), (0,−1), (−1, 0)}, denote as I~u(Ri, Rj) the interface between rectangles
Ri and Rj in direction ~u, i.e., I~u(Ri, Rj) is the set of all points (x, y) ∈ Rj such that
(x, y) = (w, z)+~u for some (w, z) ∈ Ri. It is easy to see that, for any rectangle decomposition
R, I~u(Ri, Rj) is the unique interface in direction ~u between Ri and Rj or I~u(Ri, Rj) = ∅.
For each ~u ∈ U2, the length of an interface I~u(Ri, Rj) is |I(Ri, Rj)|. For each ~u ∈ U2, we
say that the orientation of an interface I~u(Ri, Rj) is horizontal if ~u ∈ {(1, 0), (−1, 0)} and
vertical if ~u ∈ {(0, 1), (0,−1)}. We say that Ri and Rj are adjacent if I~u(Ri, Rj) 6= ∅ for
some ~u ∈ U2.

I Definition 4.1. Let R = {Ri}k−1
i=0 be a rectangle decomposition of S. We say that R is a

bounded rectangle decomposition if: (1) for each l ∈ N,∣∣{ ∣∣I~u(Ri, Rj)
∣∣ = l

∣∣ ~u ∈ U2, i, j ∈ N and Ri, Rj ∈ R
}∣∣ ≤ 2b

l−12
4 c

and (2) for all Ri, Rj ∈ R, if Ri and Rj are adjacent (in some particular direction ~u ∈ U2),
then

∣∣I~u(Ri, Rj)
∣∣ ≥ 16.

Definition 4.1 is motivated by the way we will ultimately construct tile interfaces between
DNA supertiles in our forth-coming construction (discussed in the next subsection): each
supertile-supertile interface of length l can play host to at most

⌊
l−12

4
⌋
binary “teeth” since

we will use 6 tiles for each corner piece and 4 tiles for the representation of each bit in the
interface. Intuitively, the first condition in Definition 4.1 says that there cannot be “too
many” (i.e., roughly exponentially-many) interfaces of each length in R, whereas the second
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Figure 5 Schematic of the self-assembly of a fixed-width, fully addressable rectangle that will
ultimately (after the RNAse enzyme is applied) participate in the self-assembly of a fully connected
and fully addressable unique terminal assembly (see Section A.8 of [10] for more details). The cast
forms as a single path around the entire perimeter, beginning at the bottom left side. Shaded/colored
tiles are DNA tiles while white tiles are RNA. Only colored, non-grey tiles are allowed to assemble
before the entire cast assembles. We depict single strength bonds as little colored (and labeled)
squares along the edges of tiles. Arrows represent double strength bonds between contiguous groups
of tiles through which they pass.

condition is merely saying that every non-empty interface must be at least a certain length.
In order to bypass the limitation imposed by the first condition, the shape could simply be
scaled, with a worst possible case being a scale factor of O(log |S|).

4.2 Self-Assembly of Rectangles of Arbitrary Dimension
The construction for Theorem 3.2 can be modified to prove the following result.

I Theorem 4.2. For every finite shape S ⊂ Z2, if S has a bounded rectangle decomposition,
then there exists a staged RNA assembly system TS that uniquely produces S, TS has
tile complexity O

(
K(S)

logK(S)

)
, utilizes 2 stages with a single BREAK step and achieves full

connectivity of the terminal assembly.

4.3 Full Addressability of Every Tile in the Final Assembly
In this section, we sketch a construction utilizing a single BREAK step that assembles
shapes (that can be “nicely” decomposed into rectangles) with no scaling, full connectivity,
and full addressability (in the form of specifying either a 0 or 1 label to appear in every
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(a) (b) (c)

Figure 6 Each individual supertile is colored so as to correspond to the more detailed Figure 5.
Note that the bottommost supertile attaches via two north-facing interfaces! (a) An example target
shape X and a candidate bounded-rectangle decomposition (b) The corresponding supertiles. For
the sake of example, assume the width of each supertile must not exceed that of the bottommost
supertile (c) The final assembly

single tile position of the final assembly). This strengthens Theorem 4.2 with respect to
addressability but with an additional increase in tile complexity of O(K(B)), where B ⊆ S
is the set of points to be addressed, i.e., the set of points in the final assembly at which tiles
labeled with a “1” are placed, as well as requiring an additional constraint on the rectangles
contained within the rectangle decomposition. For this construction, we require that there is
some constant k ∈ Z+ that bounds at least one dimension of every rectangle in every valid
rectangle decomposition. That is, every rectangle, although potentially arbitrarily long (or
wide) in one dimension, must be no longer or wider in the other dimension, than k tiles.

The details of how the rectangular blocks for this construction are formed are depicted in
Figure 5. Our construction can be thought of to proceed in four logical phases: the unpacking
process, self-assembly of the RNA cast, self-assembly of the rectangular supertiles, and
self-assembly of the target shape. The main difference with the previous construction is in the
complexity of the cast and the order of assembly of the tiles forming the rectangular supertiles.
At a high level, this is due to the fact that information about the specific labels, and therefore
tile types–that need to eventually occupy every single position–must be propagated from the
casts into the forming rectangular supertiles. This forces the constraint on one dimension
of each rectangle, and the fact that the construction retains full connectivity forces the
positioning of the glues on the cast that propagate the information to be greatly complicated.
Details of this construction can be found in Section A.8 of [10], and a high level schematic
can be seen in Figure 6.

4.4 Weak Self-Assembly of Computable Patterns

Weak self-assembly is a general notion of self-assembly that applies to the self-assembly of
patterns that are in some sense “painted” on a canvas of tiles that strictly contains S (as
opposed to strict self-assembly, which pertains to the self-assembly of a given target shape
and nothing else). Intuitively, we say that a pattern S ⊆ Z2 weakly self-assembles if there
is a tile system that places special “black” marker tiles on—and only on—every point that
belongs to the set S.

Our final construction self-assembles an arbitrarily “large” (square) portion of any
computable pattern, with the size of the portion of the pattern determined simply by how
long the self-assembly is allowed to proceed before the BREAK operation is performed. This
clearly demonstrates the fact that staged self-assembly with DNA removals is strictly more
powerful than the aTAM, in terms of the weak self-assembly of patterns, as it was shown
in [13] that there are (decidable) patterns that cannot weakly self-assembles in the aTAM.
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Figure 7 The first 10 rectangles weakly self-
assembling an arbitrary computable pattern.

Essentially, this assembly simulates a
Turing machine using RNA tiles and cre-
ates pods for DNA tile rectangles with con-
stant width (or height) and increasingly large
height (or width). Tiles on these pods are
labeled corresponding to the portion of the
pattern which they will occupy. Figure 7
demonstrates the manner in which these rect-
angles will ultimately combine.

The darker grey portions represent the
binary teeth used to connect the rectan-
gles. Note that these rectangle-rectangle
interfaces get larger as the rectangles grow
out from the center, but since there remain
unconnected portions of the perimeters of each rectangle, the final assembly is not fully
connected. For infinite patterns, the portion of the construction that performs the Turing
machine computation and outputs the definitions of the rectangles must be slightly modified
so that the rectangles are formed on the left side of the north-growing simulation, enumerated
one after another. This allows for an arbitrarily large portion of such a pattern to be weakly
self-assembled by simply allowing the assembly to proceed for a “long enough” period of
time before performing the BREAK operation.
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