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Abstract This paper describes an algorithm for generating a guaranteed-inter-
section-free interpolation sequence between any pair of compatible polygons. Our
algorithm builds on prior results from linkage unfolding, and if desired it can en-
sure that every edge length changes monotonically over the course of the interpola-
tion sequence. The computational machinery that ensures against self-intersection
is independent from a distance metric that determines the overall character of
the interpolation sequence. This decoupled approach provides a powerful con-
trol mechanism for determining how the interpolation should appear, while still
assuring against intersection and guaranteeing termination of the algorithm. Our
algorithm also allows additional control by accommodating a set of algebraic con-
straints that can be weakly enforced throughout the interpolation sequence.

1 Introduction

In this paper we describe an algorithm for interpolating, or “morphing,” between
two planar, non-self-intersecting polygons. We assume only that the polygons are
simple (no initial self-intersections) and that they form a compatible pair (the same,
finite, number of vertices in both polygons). With these assumptions, our algorithm
is guaranteed to always find a continuous interpolation path between the two input
polygons, and every intermediate polygon along the computed interpolation path
is guaranteed to be intersection free.

Our algorithm is flexible in that it can accommodate substantial control over
the character of the resulting interpolation sequence through two distinct methods.
The first is the specification of a desired distance metric between a polygon pair.
The algorithm will greedily move the polygons towards each other by following
the gradient of this metric and detouring to avoid intersection. Second, additional
algebraic constraints may be specified on the vertices of the intermediate polygons.
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Fig. 1 An intersection-free interpolation sequence generated using our algorithm. The first
and last frames are the two polygons being interpolated. For this example, all edge lengths
were held constant, and the distance metric was the l2-norm on the vector of vertex posi-
tions. The total computation time was 1.6 minutes.

The algorithm will attempt to stay within the tangent space of the constraint set,
breaking constraints only when the constraints become incompatible with the con-
ditions preventing intersection. In the special case where the constraints require
that the edge-lengths change monotonically, we can guarantee that the constraints
never conflict with intersection avoidance.

Our technique builds on recent theoretical results from discrete and computa-
tional geometry, specifically [8] and [21], which show that any planar collection
of polygons and polylines can be “unfolded” to an “outer-convex” configuration.
In the case of a single polygon, these results imply that any arbitrary polygon can
be continuously deformed into a convex polygon without changing any of its edge
lengths and without self-intersection along the way. The motions implied by [8]
and [21] are difficult to compute directly, but based on the existence of these mo-
tions, we have shown in [5] that a much simpler class of motions can also unfold
any collection of polygons and polylines to an outer-convex configuration. The
simpler motions are easy to compute, corresponding to the downward gradient
of a “repulsive” energy function based on the vertex-to-edge distances within the
polygon.

Because one can easily interpolate between any two compatible convex poly-
gons (see e.g. [1]), these unfolding results provide an obvious way to build a path
from one polygon to another. However, interpolating between two similar poly-
gons by ballooning the first polygon into a convex shape and then folding it back
down to the shape of the second polygon is probably not useful in most contexts.
This paper builds the theory of polygon unfolding into an approach to polygon
refolding that can be used to generate non-intersecting interpolation sequences be-
tween any two compatible polygons.

Our algorithm makes use of any valid metric for measuring distances between
pairs of polygons. This metric should have the properties of a symmetric norm
in the space used to describe polygon configurations, and one simple example is
the l2-norm on the vector of concatenated vertex positions. This metric provides
a measure of how “direct” an interpolation is: the most direct interpolation sim-
ply follows the metric’s gradient exactly. Of course, directness is not the only de-
sire, because gradient descent may cause self-intersection. Our algorithm attempts
to greedily find the most direct interpolation path subject to the constraint of no
self-intersection. As the gradient descent attempts to build a path interpolating be-
tween the two polygons, our algorithm uses the repulsive energy function from
polygon unfolding to steer around self-intersections. As demonstrated by Figure 1
and several more figures in Section 7, the appearance of the resulting motion is
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predominantly governed by the distance metric yet still avoids self-intersection.
Although to guarantee convergence of our algorithm we require that “direct” paths
follow the gradient of a distance metric, this condition is not strictly necessary for
convergence. Any reasonable “direction heuristic” that locally determines how to
make a polygon more similar to another would likely also cause our algorithm to
converge.

The user can also specify a set of algebraic, or even semi-algebraic, constraints
to be satisfied by polygons throughout the interpolation sequence. Our technique
satisfies the specified constraints if they are consistent with the requirement of
non-intersection. If the constraints cannot be satisfied, we still guarantee non-
intersection and satisfy the constraints as much as possible in a locally-greedy
least-squares sense. In particular, using the theory of polygon unfolding, we show
that the algorithm can always satisfy the constraints of fixing the edge lengths
throughout the motion, assuming that corresponding edges have matching lengths
in the two polygons being interpolated. More generally, when the edge lengths
do not match, the algorithm can force every edge length to change monotonically
throughout the interpolation. These constraints in particular often lead to pleasing
motions, but the user has the freedom to specify which if any edges should change
length monotonically.

2 Background

The task of interpolating between polygons, also called “polygon morphing,” is of-
ten divided into two subproblems: establishing vertex correspondences and com-
puting vertex paths. In some cases, for example [19] and [6], researchers have
focused primarily on establishing vertex correspondences while using a simple
method, such as linear interpolation of the vertex positions, to create the interme-
diate polygons. In this paper, we do not discuss algorithms for finding vertex cor-
respondences. We assume that some other algorithm, or the user, supplies suitable
correspondences. So long as the correspondences order the vertices consistently,
our interpolation algorithm is guaranteed to succeed.

Other approaches have focused on more sophisticated interpolating schemes
for computing vertex paths. In [18], intermediate frames between two shapes are
computed by linearly interpolating the vertex angles and the edge lengths, giving
better results for rigid transformations than previous work using vertex positions.
The authors of [11] create a multiresolution representation for each input polygon.
Their algorithm interpolates between these representations to create the intermedi-
ate polygons. The method described in [20] decomposes each input polygon into
a planar tree of star-shaped pieces, called a star skeleton. The points of the star
skeleton, represented in polar coordinates, are linearly interpolated to create the
intermediate shapes. In [2], the authors decompose the input objects into compati-
ble triangulations. They then compute transformations between the triangulations
that minimize local distortion. None of these methods guarantee that the interme-
diate polygons they generate will be intersection-free.
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Both [13] and [10] generate non-intersecting sequences for limited types of
input. The method in [13] operates on pairs of polygons that have corresponding
parallel edges. The method in [10] operates on simple polylines.

A more general method appearing in [12] embeds the polygons inside a convex
region, generates a pair of compatible triangulations, and then builds a sequence
between them by interpolating the stochastic matrices whose unit eigenvectors en-
code the triangulations’ geometries. In a related approach, [22] uses the matrix rep-
resentations to generate a morphing sequence where the trajectories of the interior
vertices can be linear with constant velocities, or as close to linear as possible. This
approach enables additional control over the morph, such as forcing the sequence
through an intermediate triangulation. In [23], the authors present a method to gen-
erate a more natural-looking morph between compatible triangulations by interpo-
lating the angles and edge lengths when computing the intermediate mean value
barycentric coordinates. This enables morphing between two stick figures. Like the
method we present here, these methods guarantee that all intermediate polygons
will not self intersect, however the types of user control afforded by these systems
differs substantially. The character of the motions created by these methods also
differs dramatically from that of those generated by our method. Furthermore the
methods derived from [12] cannot implement edge-length or other constraints.

Our algorithm ensures that the computed interpolation sequences are inter-
section-free, and it also decouples vertex correspondence and path computation
from intersection avoidance. Intersection avoidance does, of course, affect the ver-
tex paths, but users are free to supply a suitable distance metric to generate what-
ever type of path they like. The intersection avoidance machinery interferes as
needed to prevent intersection. Thus, one could see our method either as an inde-
pendent interpolation method, or as a wrapper to be used with any of the above
methods that generate interesting, but possibly intersecting, vertex paths. For ex-
ample, the approach in [2] produces paths that avoid needless distortion, but that
might intersect. If combined with our method, we expect that the resulting algo-
rithm would produce predominantly “rigid-as-possible” motions that distort only
as needed to avoid intersection.

In addition to methods that operate directly on explicit polygonal representa-
tions, several other methods for interpolating shapes have been described in the
literature. For example, both [24] and [7] interpolate between shapes by interpo-
lating scalar fields that implicitly define the shapes. The authors of [14] and [15]
discuss methods for interpolating volumetric data. A method based on Minkowski
sums appears in [16].

3 Unfolding Groundwork

Our method stems from recent results showing that any planar collection of poly-
gons and polylines can be unfolded to an outer-convex configuration. In an outer-
convex configuration, all polygons or polylines that are not contained inside an-
other polygon are separated from each other, and made either convex (polygons)
or straight (polylines). An unfolding motion preserves edge lengths and avoids
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self-intersection. The existence of these unfolding motions has been demonstrated
in both [8] and [21] using two distinct approaches.

While both imply the existence of unfolding motions, actually computing the
motions directly implied by these proofs can be difficult. However, the motion
implied by [8] has the additional property that it is strictly expansive, meaning
that the motion strictly increases the distances between all vertices not sharing
an edge. In [5] we show that given the existence of expansive motions, one can
reformulate the unfolding problem as one where one simply seeks to minimize
a suitable energy function. A suitable energy function is one with the following
properties:

Charge — the value of the function is finite for any intersection-free configuration
and approaches +∞ as the system approaches self-intersection.

Repulsive — the energy function decreases to first order under any expansive
motion.

Separable — as distinct connected components recede from each other, any en-
ergy terms relating them should vanish.

C1,1 — the function should be C1 continuous with bounded curvature.

It can then be shown that a simple optimization strategy, such as gradient de-
scent, can be used to generate an intersection-free interpolation path from any
polygon to a convex polygon, and that the space of valid configurations contains
no local minima in which the process might get stuck. The results also imply that
a valid energy function contains no critical points of any kind at non-outer-convex
points in the space of valid configurations and that the valid configuration space is
simply connected. A detailed convergence proof with step bounds appears in [5],
but in summary, for a single polygon:

1. By charge, the energy function is finite for any valid initial polygon and the
energy function approaches +∞ as the system approaches self-intersection,
so any path that starts with a non-intersecting polygon and strictly decreases
energy cannot lead to a self-intersection.

2. By repulsiveness, an expansive direction in configuration space is a direction
that decreases the energy, and from [8] we know that such a direction always
exists unless the polygon is already convex. Therefore, the gradient can never
vanish except for convex polygons, and there can be no local minima that do
not correspond to a convex configuration.

Together these two observations guarantee that any continuous gradient de-
scent path starting from any valid polygon will converge to a convexified polygon,
and that at no point along the path will the polygon intersect itself.

4 Energy and Parameterization

In [5], we used an energy function based on the elliptic distance between edges and
vertices because a C2 energy function facilitates placing an actual bound on the
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Fig. 2 The top row demonstrates how using the vertex-position metric alone will, as ex-
pected, generate a sequence with self intersections. The bottom row illustrates how the
collision-avoidance machinery alters the vertex motions to avoid self intersection. Compu-
tation times were less than one second.

worst-case number of Euler steps that might be required to convexify a given col-
lection of polygons and polylines. We also used an angle-based parameterization
because it allows us to guarantee that all edge lengths are preserved exactly.

Here, however, we prefer to use an energy based on Euclidean distances be-
cause we have found that it converges faster in practice. Additionally, we choose
to parameterize using the vertex positions directly and enforce any desired edge-
length preservation using algebraic constraints. This decision simplifies interpo-
lation between polygons with different edge lengths, and it also preserves any
symmetries by treating all edges equivalently.

For a polygon with N vertices, let vi with i ∈ [1 . . . N ] denote the positions
of the vertices, let ei be the edge between vi and vi+1, and let li be the edge’s
length1. The energy corresponding to the polygon’s configuration is given by

E =
N∑

i=1

N∑
j=1

j 6=i,j 6=i−1

1
dist(vi, ej)2

(1)

where dist(vi, ej) is the Euclidean distance between edge j and vertex i. It is easy
to verify that this energy function is charge, separable, C1,1, and, except for the
trivial cases of N ≤ 4, repulsive.

5 Refolding

Our interpolation algorithm relies on the energy-based unfolding framework to
guarantee that it can always construct an intersection-free sequence between any
two polygons. In the worst case, the algorithm will convexify both polygons, triv-
ially interpolate between the two convex polygons, and produce the sequence
begin-polygon → convexified-begin-polygon → convexified-end-polygon → end-
polygon.

In most contexts, this worst-case result is not particularly useful, so the algo-
rithm uses an additional distance metric to generate a more desirable path. Because

1 Index arithmetic is modulo N , so vN+1 is equivalent to v1.
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the energy function provides a guiding framework, this metric can be quite sim-
plistic and still produce good results. In fact, many of the examples shown in this
paper were produced using the trivial metric based on the norm of differences in
vertex positions. That metric would simply move the vertices on a straight line to
their target location. As shown in Figure 2, this metric alone produces intersect-
ing sequences, but it can be guided around intersections by an appropriate energy
function.

We can also include algebraic constraints that should be enforced through-
out the interpolation. These constraints could be simply bundled into the distance
metric, but then the intersection-avoidance machinery would tend to violate them
needlessly. Instead, we combine the projection step that prevents self-intersection
with the projections that preserve the user constraints. In the special case where
the user constraints seek to make edge lengths constant (or change them monoton-
ically) we can guarantee, based on the previously described unfolding results, that
they will not conflict with intersection avoidance. However, arbitrary constraints
may conflict with intersection avoidance, so they will only be enforced to the ex-
tent that they do not cause the algorithm to fail.

5.1 The Algorithm

The following pseudocode describes our algorithm for generating an interpolation
sequence between two polygons, A and B:

1. Establish compatibility and correspondence:
The user, or some heuristic, indicates the desired correspondence between A
and B and renumbers vertices accordingly. If one of the polygons has fewer
vertices than the other, then additional vertices are inserted by splitting edges.

2. While A and B are different:
a. Compute the energy for A and B.
b. Use the gradient of the distance metric to determine a direction, D, that

would move the higher-energy polygon, H , closer toward the lower-energy
one, L.

c. Optional: Project D to enforce edge-length or other constraints.
d. If D would move H to a higher-energy configuration:

– Project D so that it is perpendicular to the energy gradient. (Attempt
to honor any constraints if they are in use.)

e. If D is not null:
– Perform a bounded search in the direction D for a new state that decre-

ses the distance metric by some minimal amount and does not result
in an energy increase.

f. If D is null or the search in (2.e) failed:
– Set G to the direction of the downward energy gradient at H . (Again,

attempt to honor any constraints if they are in use.)
– Move H in the direction G.

g. If both A and B are convex:
– Use the method from [1] to move A to B.
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3. Output the path taken by A to the common configuration followed by the re-
verse of the path taken by B.

At each iteration of the while loop, the higher-energy polygon, H , attempts to
move closer to the other, lower-energy one, L. The projection step in (2.d) ensures
that H does not move up in energy and therefore protects against self-intersection.
If the direction from H toward L is the same as the upward energy gradient at H ,
the projection would take D to the null vector2. In that case the algorithm simply
moves H downward in energy, which we know is always possible from [5].

A formal proof that this algorithm will terminate after a finite number of steps
appears in Section 6. Informally, if we assume that the direction used in step (2.b)
to compute D is the gradient of a suitable distance metric, we can guarantee that
the above algorithm will always converge. We note that each iteration of the while
loop makes either an “approach” move (bringing A and B closer to one another)
or a “descent” move (decreasing the energy of H). The descent moves may undo
some of the progress made by approach moves, but the approach moves cannot
undo progress made by the descent moves. The algorithm cannot fail to converge
by taking an infinite number of descent moves because each decreases the en-
ergy toward a minimal value and no moves ever increase the energy. Similarly,
the algorithm should not be able to take an infinite number of approach moves
because each move decreases the distance between A and B as measured by the
distance metric. A sequence of an infinite number of interleaved approach and de-
scent moves continually undoing each other cannot occur because the approach
moves cannot undo descent progress.

This algorithm is essentially a variation of numerical constrained gradient de-
scent. We suggest [9] for a discussion of the conditions under which descent meth-
ods generally converge, and [3] or [17] for a general introduction to relevant nu-
merical methods. For our current implementation we have found it sufficient to use
a fixed step size that has been selected conservatively by the user.

5.2 A Distance Metric

As described above, the interpolation algorithm is designed to work with a user-
supplied distance metric. Given an initial configuration, S, and a target configura-
tion T , the gradient of the metric indicates a direction, D, that moves S closer to
T in the space of polygon configurations.

In our implementation, each polygon configuration is represented as a vector
of length 2N that contains the interleaved x and y coordinates of each vertex. The
most obvious distance metric is simply ||T − S|| so that D is the unit vector in
the direction T − S. If we were to use this naı̈ve direction alone, the resulting
motion would most often include self-intersections. However, when embedded in
our energy-guided algorithm it generates an interpolation sequence free of self-
intersection.

2 Because the gradient of the nonlinear energy function varies over configuration space,
this situation will occur occasionally.
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Fig. 3 These images show interpolation between a box with an arm-like protrusion and
a rotated version of the box with the arm bent. These simple examples demonstrate how
the direction metric and constraints can affect the computed sequence. The first row shows
the result computed using a vertex position metric. The second row shows the result for the
vertex position metric after several distance constraints have been added. The bottom row
uses a metric based on joint angles with no constraints. For each row, the edge lengths were
held fixed and less than two seconds of computation was required.

In Section 7 we show both results generated using this simple distance metric
and results generated with other metrics. The ability to specify an arbitrary distance
metric, or even a direction heuristic not explicitly tied to some metric, affords the
user with some aesthetic control over the resulting interpolation sequence. The
use of a direction heuristic not explicitly tied to some metric could also cause
the algorithm to fail. If given the opportunity, the heuristic must cause the two
polygons to converge in a finite number of steps. Further, the directions generated
by the heuristic should not include any extraneous components or else the energy
projection could potentially cancel the useful portion leaving a non-zero vector that
might then fail to converge. Alternatively, the direction heuristic could be allowed
to include additional spurious components that do not correspond to the gradient
of any distance metric, but the conditions in steps (2.e) and (2.f) should then test
to see if the projected vector lacks a component in the direction of the distance
metric’s downward gradient, rather than just testing whether it is null.

5.3 Energy Projection

To avoid self-intersection, each step must move H to an equal- or lower-energy
configuration. This requires that D · G ≤ 0 where G is the normalized gradient
of the repulsive energy function evaluated at H . The algorithm accomplishes this
by testing a candidate direction against the gradient direction. If the dot product
is less than or equal to zero, then the direction is left unchanged. Otherwise, the
direction is replaced with

D :=
(
I −G GT

)
D (2)

where I is the identity matrix.
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Because the gradient is not constant, a finite sized step following D may still
yield an increase in energy even if D · G ≤ 0. When this condition occurs, we
bias D downward by subtracting γG from the direction where γ is a small positive
number determined numerically to ensure that the step leads to an equal or lower
energy level. This standard technique, commonly used in numerical minimization
codes, does not adversely affect our convergence guarantee.

5.4 Constraints

In addition to specifying vertex correspondences and a distance metric, the user
can also control the interpolation by specifying constraints that should be satisfied
by each polygon in the sequence. One could choose to incorporate user constraints
into the direction given by the distance metric, but the energy gradient projection
done by Equation (2) would tend to violate the constraints needlessly. Instead,
when the user desires constraints we can attempt to satisfy both them and the
energy constraint simultaneously. If they cannot all be satisfied simultaneously,
then the energy constraint will be satisfied and the user constraints only as much
as possible. We treat the energy constraint with higher priority because it is what
assures convergence and non-intersection.

We assume that each constraint applies to an individual polygon P , is differ-
entiable, and can be expressed in the form

Ω (P ) = 0 . (3)

For example, we could constrain the edge lengths of a polygon to be constant with

‖vi − vi+1‖2 − l2i = 0 ∀i ∈ [1 . . . N ] (4)

where the vi and li are the vertex positions and edge lengths of P .
If there are M constraints, let J be the M × N matrix whose rows are the

gradient vectors for each of the constraints, ∇Ω. If the initial polygons honor the
constraints, then in step (2.c) we can project D to a direction that will not violate
them with

D := D − JT l (5)

where l is determined by
J JT l = J D . (6)

In general, a finite step in this direction would still allow any nonlinear constraints
to be violated by a small amount, and this error could accumulate to unacceptable
levels if not managed. If e is the length M vector whose entries are each of the Ω
evaluated at H , then we can prevent error accumulation by instead solving for l
using

J JT l = J D + α e (7)

where α is a small constant. (See, for example, [4] for a discussion of constraint
stabilization and how α should be selected.)
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Fig. 4 This example interpolates between two configurations of interlocked teeth. The top
row shows the result computed with the edge lengths constrained to change monotonically
and required 5.0 minutes of computation. The bottom row shows the result computed with
unconstrained edge lengths and required 1.8 minutes of computation.

As before, if the adjusted direction would move upward in energy, it must be
adjusted. However, using Equation (2) could break the projection done by Equa-
tion (7) because, in general, G will not be orthogonal to all of the constraints (rows
of J ). To avoid violating the constraints needlessly, let K be the matrix formed
by appending G as an extra row to J and let f be the vector formed by appending
−γ/α to e. Step (2.d) sets

D := D −KT l (8)

where l was solved for using

K KT l = K D + α f (9)

with some small value used for γ. This value is iteratively increased until a down-
ward energy step results.

Both Equations (7) and (9) can be solved efficiently using the conjugate-gra-
dient method. The matrices J JT and K KT may be under-constrained, over-
constrained, or both. When the matrix is over-constrained, not all of the constraints
can be satisfied and the conjugate-gradient method will produce a solution that
satisfies them all equally in a least-squares sense. Increasing γ causes the energy
constraint to have greater importance until it is satisfied. Figure 3 shows a simple
example computed with and without additional constraints.

For the special case where all of the user constraints correspond to edge-length
preservation, we know from [5] that Equation (9) is never over-constrained because
an energy-decreasing motion exists even when the edge lengths are fixed. Thus,
for two polygons with the same edge lengths we can always interpolate between
them while holding the edge lengths constant. When the polygons have different
edge lengths, we can force them to change monotonically by only including the
appropriate row of J or K if omitting that row would result in an edge becoming
further in length from its target rather than closer. This type of linear-programming
approach could also be used to include other semi-algebraic constraints.
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6 Proof of Convergence

In this section we present a formal proof showing that our refolding algorithm
converges in a finite number of steps, under basic assumptions on the user-supplied
distance metric. For simplicity, we consider the case where the two polygons have
corresponding edges of the same length and the only constraints are preservation
of edge lengths. In this case the angle-based parameterization of [5] can be used
and the methods for enforcing algebraic constraints described in Section 5.4 are
not required.

Definition 1 A valid distance metric is a scalar function, φ(H,L), that has the
properties of a norm on the space of polygon configurations. In particular, φ(H,L)
is zero if and only if H and L correspond to the same configuration. We also
require that ∇φ ≤ κ for some constant κ, so that ||∆H|| < d implies that |∆φ| <
dκ.

Definition 2 A descent step is one that takes H to a new, lower-energy configu-
ration by moving in the direction of the downward energy gradient. Descent steps
occur in (2.f) of the algorithm listing.

Definition 3 An approach step is one that takes H to a new configuration such that
φ(H,L) = ||H − L|| decreases according to the chosen distance metric. Further,
an acceptable approach step must decrease φ(H,L) = ||H −L|| by at least some
minimal amount ε, and the energy value of H after the step must be less than or
equal to the value prior to the step. Approach steps occur in (2.e) of the algorithm
listing.

Theorem 1 The total number of descent steps taken by the algorithm is finite.

Proof In [5] we bound the total number of descent steps taken by a polygon A
in terms of the number of vertices and the ratio between the largest and smallest
distance in the original configuration of A. The same energy bound applies to B.
Because approach steps cannot move upward in energy, this bound on descent
steps for each polygon must apply to the algorithm as a whole irrespective of any
interleaved approach steps. �

Theorem 2 The total number of approach steps taken by the algorithm is finite.

Proof By definition, any approach step must decrease φ(L,H) by at least ε or it
will be replaced by a descent step. Therefore the total number of descent steps is
bounded by (φ0 + φ+)/ε where φ0 is the initial value of φ(L,H) and φ+ is the
total increase caused by all descent steps. From [5] we obtain an upper bound on
the maximum distance that each descent step can move in configuration space by
dividing an upper bound on energy by a lower bound on the energy gradient. We
also know from Theorem 1 that the total number of descent steps is bounded. By
Definition 1, the gradient of φ is bounded as well, so the bound on the change in
the configuration implies a bound on φ+. Therefore we obtain a finite upper bound
on (φ0 + φ+)/ε. �
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Fig. 5 Examples with relaxed energy constraint; see text. In the top row constrained edge
lengths, 4.1 minutes computation. In the bottom row unconstrained edge lengths, 2.0 min-
utes computation. The leaf and plane outlines were provided by Marc Alexa. Note that these
input objects are not symmetric.

Corollary 1 The algorithm must terminate after a finite number of steps.

Proof By Theorems 1 and 2, the algorithm can take only a finite number each
of approach and descent steps. If the approach steps are exhausted first, then the
two configurations are equal and the algorithm has completed. If the descent steps
are exhausted first, then both polygons are convex and we may hand off to the
algorithm of [1] that completes in polynomially many steps. �

The structure of the above proof remains the same for the general case of un-
equal corresponding edges with included constraints. However, the extended ver-
sions of Theorems 1 and 2 would require an analysis of the numerical algorithms
used in Section 5.4 that is beyond the scope of this paper.

7 Results and Discussion

We have implemented our algorithm and used it to create the examples shown in
this paper. The accompanying video contains animations corresponding to these
examples3. Information about the running times and the methods used to create the
examples can be found in their respective figure captions. The running times for
our C++ implementation were measured in CPU seconds on a 3.06 GHz Pentium
IV computer with 1 GB of memory.

The rows of images in Figure 3 illustrate the use of different distance metrics.
As can be seen in the top and bottom rows, metrics based on the Cartesian coordi-
nates of the vertices and on joint angle coordinates produce very different results.
The middle row shows how the motion can be modified by adding additional con-
straints. In Figure 7, distance constraints were added to maintain the shape of the
six arms and outside box and also to keep the inside box rigid throughout the
motion. Figure 10 illustrates adding distance constraints to control an animation

3 The video, in QuickTime format, may be accessed on-line at the following URL:
http://www.cs.berkeley.edu/b-cam/Papers/Iben-2006-RPP .

http://www.cs.berkeley.edu/b-cam/Papers/Iben-2006-RPP
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Fig. 6 Examples of interpolating with constrained edge lengths between levels of the
Hilbert curve. The frames in the top row have 260 vertices and computation time was 2.0
minutes. The bottom row frames have 1026 vertices and required 1.3 hours of computation.

sequence. Using the directions based on vertex position differences alone, as illus-
trated in the top row, produces an animation that expands unnecessarily. Adding
distance constraints creates a more rigid motion, as shown in the middle and bot-
tom rows.

A feature of the method is that it preserves spatial and temporal symmetries.
In Figures 1 and 7, the input polygons are symmetric about a central horizontal
axis. It is evident that the animation preserves this symmetry throughout the in-
terpolation. Similarly, the input for Figure 9 is symmetric about a central vertical
axis. Figures 3 and 4, both demonstrate animations where the input polygons mir-
ror each other and the method creates temporally symmetric sequences.

Our method also enables the user to choose the behavior of the edge lengths
during the animation. The sequence in Figure 1 shows our method with the con-
straint that edge lengths are held constant. The examples in Figures 4 and 5 illus-
trate the difference between constraining the edge lengths to change monotonically
(top row) or allowing them to change freely (bottom row). For some examples,
constraining the edge lengths generated pleasing results. However, in the leaf-
plane example the constraint causes an ugly pinch to form in the leaf-stem/plane-
tail. Because a “good” sequence depends on the subjective criteria applied by the
user, we feel the flexibility afforded by our approach is highly desirable. Other
examples using unconstrained edge lengths are pictured in Figures 8 and 9. In Fig-
ure 11, we decided based on aesthetic considerations to morph from T to E with
constrained edge lengths while the other letters’ animations are unconstrained.

Figure 6 shows interpolation between different levels of the two-dimensional
Hilbert curve. The large bottom edge connecting the two sides of the curve is
changing monotonically throughout the animation, while the rest of the edges are
constrained to be constant length. To maximize visibility, configurations are uni-
formly scaled to give a constant image size.

We can also relax the requirement that steps never increase the energy. As
an experiment, we allowed the leaf-plane examples in Figure 5 to take steps that
increase the energy up to a threshold. This modified algorithm still avoids self-
intersection, but it could potentially fail to converge.
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Fig. 7 In addition to constrained edge lengths, this example has eighteen distance con-
straints (drawn light gray in the first and last frames). The total computation time was 1.3
minutes.

Fig. 8 This example was created by generating two successive sequences using three key
frames. The keys are shown in the first, center, and last positions. Total computation time
was three seconds.

Fig. 9 Transforming between two polygons. Unrestricted edge lengths, less than three
seconds computation.

One possible problem with our method is that it uses information, the energy
function gradient, that is local to the current polygon. As a result, we cannot guar-
antee that the path generated is globally optimal in any sense: we can guaran-
tee only that we find a path. In practice, however the algorithm appears to do a
good job finding paths that do not detour needlessly. We have experimented with
applying relatively expensive optimization procedures to, for example, shorten a
computed path as much as possible. So far, we have not observed that this effort
produces any significant improvements. These experiments suggest that the com-
puted paths might be at least locally optimal, at all times greedily minimizing the
deviation from the greedy direction given by the distance metric’s gradient. It is
tempting to wonder whether properties of the energy landscape might mean that
locally optimality implies some global property.

The collision-avoidance technique presented here provides a method for gener-
ating intersection-free interpolation sequences between arbitrary, non-intersecting,
planar polygons. We can guarantee that such a path can be found when used with
any suitable distance metric or direction heuristic. The examples illustrate that our
method can handle a variety of polygons and produce pleasing results. In addition
to shape morphing applications in computer graphics, the facility to include length
and other constraints may allow our work to be useful for other problems, such as
finding efficient, direct motion paths for planar robotic arm manipulators.
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Fig. 10 This example interpolates between a letter U and S, demonstrating that adding dis-
tance constraints can control the animation sequence. The first row shows the result com-
puted using the vertex position metric alone, requiring eighteen seconds of computation
time. The middle row shows the animation after adding 41 distance constraints to create
a more rigid motion, requiring 5.5 minutes. The bottom row displays a different motion
created using less distance constraints (19), requiring 3.0 minutes. For each row, the edge
lengths were constrained to change monotonically. The middle row may be compared to
results shown in [12] and [22].

There are several directions for improving our results further. Although our
C++ implementation is robust and fast, using an adaptive time step would likely
improve running times. Other areas for future work include exploring interesting
direction heuristics and adding other types of constraints to the system. It would
also be interesting to explore the extent to which our techniques can be applied to
3D polygons and tree skeletons. In these contexts, interpolation sequences would,
in general, be forced to intersect. However, non-intersecting solutions between
similar objects might be useful in contexts such as character animation.
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ful suggestions. Demaine was partially supported by NSF CAREER award CCF-
0347776, DOE grant DE-FG02-04ER25647, and AFOSR grant FA9550-07-1-0538.
Iben was supported by NSF and GAANN Fellowships. Iben and O’Brien were
supported in part by NSF CCR-0204377, State of California MICRO 04-066 and
05-044, and by generous support from Pixar Animation Studios, Intel Corpora-
tion, Sony Computer Entertainment America, Apple Computer Inc., Autodesk, the
Okawa Foundation, and the Alfred P. Sloan Foundation.



Refolding Planar Polygons 17

Fig. 11 Our final example. Total computation time was less than a second.

References

1. Oswin Aichholzer, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, Mark Overmars,
Michael A. Soss, and Godfried T. Toussaint. Reconfiguring convex polygons. Compu-
tational Geometry: Theory and Applications, 20(1–2):85–95, October 2001.

2. Marc Alexa, Daniel Cohen-Or, and David Levin. As-rigid-as-possible shape interpola-
tion. In Proceedings of ACM SIGGRAPH 2000, pages 157–164, July 2000.

3. Kendall E. Atkinson. An introduction to numerical analysis. John Wiley & Sons Inc.,
New York, second edition, 1989.

4. J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical systems.
Computer Methods in Applied Mechanics and Engineering, 1:1–16, 1972.

5. Jason H. Cantarella, Erik D. Demaine, Hayley N. Iben, and James F. O’Brien. An
energy-driven approach to linkage unfolding. In Proceedings of the 20th Annual Sym-
posium on Computational Geometry, pages 134–143, June 2004.

6. Eyal Carmel and Daniel Cohen-Or. Warp-guided object-space morphing. The Visual
Computer, 13:465–478, 1997.

7. Daniel Cohen-Or, Amira Solomovic, and David Levin. Three-dimensional distance
field metamorphosis. ACM Transactions on Graphics, 17(2):116–141, 1998.

8. Robert Connelly, Erik D. Demaine, and Günter Rote. Straightening polygonal arcs and
convexifying polygonal cycles. Discrete & Computational Geometry, 30(2):205–239,
September 2003.

9. J. E. Dennis and Robert B. Schnabel. Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations. SIAM, Englewood Cliffs, NJ, 1996.

10. Alon Efrat, Sariel Har-Peled, Leonidas J. Guibas, and T. M. Murali. Morphing be-
tween polylines. In Proceedings of the twelfth ACM-SIAM Symposium on Discrete
Algorithms, pages 680–689, 2001.

11. Eli Goldstein and Craig Gotsman. Polygon morphing using a multiresolution represen-
tation. In Proceedings of Graphics Interface, pages 247–254, 1995.

12. Craig Gotsman and Vitaly Surazhsky. Guaranteed intersection-free polygon morphing.
Computers and Graphics, 25(1):67–75, 2001.

13. Leonidas Guibas and John Hershberger. Morphing simple polygons. In Proceedings
of the 10th Annual Symposium on Computational Geometry, pages 267–276, 1994.



18 Iben, O’Brien, Demaine

14. Taosong He, Sidney Wang, and Arie Kaufman. Wavelet-based volume morphing. In
Daniel Bergeron and Arie Kaufman, editors, Proceedings of Visualization ’94, pages
85–92, 1994.

15. John F. Hughes. Scheduled fourier volume morphing. In Proceedings of ACM SIG-
GRAPH 1992, pages 43–46, 1992.

16. Anil Kaul and Jarek Rossignac. Solid-interpolating deformations: Construction and
animation of PIPs. In Proceedings of Eurographics ’91, pages 493–505, 1991.

17. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes
in C. Cambridge University Press, second edition, 1994.

18. Thomas W. Sederberg, Peisheng Gao, Guojin Wang, and Hong Mu. 2-d shape blending:
an intrinsic solution to the vertex path problem. In Proceedings of ACM SIGGRAPH
1993, pages 15–18, August 1993.

19. Thomas W. Sederberg and Eugene Greenwood. A physically based approach to 2-d
shape blending. In Proceedings of ACM SIGGRAPH 1992, pages 25–34, July 1992.

20. Michal Shapira and Ari Rappoport. Shape blending using the star-skeleton representa-
tion. IEEE Computer Graphics and Applications, 15:44–50, March 1995.

21. Ileana Streinu. A combinatorial approach to planar non-colliding robot arm motion
planning. In Proceedings of the 41st Annual Symposium on Foundations of Computer
Science, pages 443–453, Redondo Beach, California, November 2000.

22. Vitaly Surazhsky and Craig Gotsman. Controllable morphing of compatible planar
triangulations. ACM Transactions on Graphics, 20(4):203–231, 2001.

23. Vitaly Surazhsky and Craig Gotsman. Intrinsic morphing of compatible triangulations.
International Journal of Shape Modeling, 9(2):191–201, 2003.

24. Greg Turk and James F. O’Brien. Shape transformation using variational implicit func-
tions. In Proceedings of ACM SIGGRAPH 1999, pages 335–342, August 1999.


	1 Introduction
	2 Background
	3 Unfolding Groundwork
	4 Energy and Parameterization
	5 Refolding
	6 Proof of Convergence
	7 Results and Discussion

