
Making Polygons by Simple Folds
and One Straight Cut

Erik D. Demaine1, Martin L. Demaine1, Andrea Hawksley1, Hiro Ito2,
Po-Ru Loh1, Shelly Manber1, and Omari Stephens1

1 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA,

{edemaine,mdemaine,hawksley,ploh}@mit.edu,
shellym@alum.mit.edu, xsdg@xsdg.org

2 School of Informatics, Kyoto University,
Kyoto 606-8501, Japan,
itohiro@i.kyoto-u.ac.jp

Abstract. We give an efficient algorithmic characterization of simple
polygons whose edges can be aligned onto a common line, with nothing
else on that line, by a sequence of all-layers simple folds. In particular,
such alignments enable the cutting out of the polygon and its comple-
ment with one complete straight cut. We also show that these makeable
polygons include all convex polygons possessing a line of symmetry.

1 Introduction

Take a sheet of paper, fold it flat, and then make one complete straight cut. What
shapes can the unfolded pieces have? This fold-and-cut problem was introduced
formally at JCDCG’98 [3], motivated by a 1922 magic trick by Harry Houdini,
but with history going back to a 1721 Japanese puzzle book. The answer is that
any pattern of straight-line-segment cuts can be obtained in this way [3,2,6,
ch. 17]. More precisely, any graph drawn on a piece of paper with edges as
straight line segments can be folded so as to align the vertices and edges of the
graph onto a line that contains no other points of paper.

We consider a special case of the fold-and-cut problem, called simple fold-
and-cut, where we require the folding process to consist of a sequence of all-layers
simple folds. Given an existing flat folded state, an all-layers simple fold [1] is
defined by a line segment that divides the paper into two portions, and consists of
folding one of those two portions along the segment, through all layers of paper,
by ±180◦, so that afterward all paper is planar. We call a graph simple-fold-and-
cuttable if a sequence of all-layers simple folds brings the graph’s vertices and
edges to a line, with no excess paper on that line.

We prove two main theorems.

Theorem 1. There is a strongly polynomial-time algorithm for determining
whether a given (not necessarily convex) simple polygon is simple-fold-and-cuttable,
starting from a piece of paper strictly containing the convex hull of the polygon.

{edemaine,mdemaine,hawksley,ploh}@mit.edu
shellym@alum.mit.edu
xsdg@xsdg.org
itohiro@i.kyoto-u.ac.jp

Fig. 1: The graph on the left is simple-fold-and-cuttable, as shown, but as the
two acute base angles approach 90◦, the number of simple folds grows without
bound.

The polynomial running time is a function of the number n of vertices in the
input polygon, even though the number of required simple folds can be arbitrary
large for a fixed n; see Fig. 1. As a result, when a polygon is simple-fold-and-
cuttable, the algorithm produces only an implicit representation of the folding
sequence. An explicit representation can be obtained, at the cost of adding to
the running time a term linear in the output size.

Theorem 2. A convex polygon is simple-fold-and-cuttable if and only if it has
a line of reflectional symmetry.

2 Definitions

The input to the (simple-)fold-and-cut problem consists of a piece of paper P ,
which we require to be a polygonal region,3 and a graph G drawn on P with
edges drawn as straight line segments. We view each vertex v of G as a point
of P , and thus each edge {v, w} of G corresponds to the segment vw, which
we require to be contained in P . In fact, we can also view G as a subset of P ,
namely the set of all points on vertices and edges of G. From this perspective,
we naturally remove any degree-2 vertices forming an angle of 180◦, as we can
3 We treat a piece of paper as a closed region, namely, the set of all points interior or

on the boundary of the polygon.

simply merge to two incident edges. For convenience, we refer to such a drawing
(G,P) as a graffito.4

We make one assumption about the input graffito (G,P), that the interior of
P contains the convex hull of G; we say that (G,P) has a margin. This condition
is required only of the initial graffito; indeed, it immediately becomes violated
after making one fold.

For a graffito (G,P), we call an all-layers simple fold feasible if no point of
G folds on top of a point in P \ G; in other words, every point of G folds to
either another point of G or a point outside P . Because we consider all-layers
simple folds, we can effectively glue together multiple layers of paper into one
layer, resulting in a new polygonal region P ′ of paper, as well as a new graph G′

drawn on P ′. We write (G,P) → (G′, P ′) when a feasible all-layers simple fold
takes (G,P) to (G′, P ′). We write (G,P) →∗ (G′, P ′) to denote zero or more
transitions (G,P)→ · · · → (G′, P ′), allowing in particular (G,P) = (G′, P ′).

A graffito (G,P) is cuttable if there is a straight line ` such that G ⊂ ` (all
vertices and edges of G are on `) and P \G is disjoint from ` (the rest of the paper
is off `). We call a graffito (G,P) simple-fold-and-cuttable if (G,P)→∗ (G′, P ′)
for some cuttable graffito (G′, P ′).

The main problem considered in this paper is determining whether a given
graffito (G,P) with margin, where G is a simple polygon, is simple-fold-and-
cuttable. Our model of computation is a real RAM.

3 Passages

The first feasible fold of a graffito (G,P) with margin, where G is a simple
polygon, must be a line of reflectional symmetry of the polygon: a simple fold
reflects one side onto the other, and cannot map G to anything other than G
because of the margin. All such symmetry lines can be found in O(n) time [8].

Suppose the first fold has effect (G,P) → (G′, P ′). Then G′ is no longer a
polygon, but rather a subchain of G, with endpoints on the boundary of P ′.
In fact, (G′, P ′) has substantial additional structure, which will be preserved
throughout the folding process; we call (G′, P ′) a “passage”.

A graffito (G,P) is a passage if it satisfies the following four conditions (see
Fig. 2):

(a) G is a simple polygonal line,
(b) the two endpoints of G are on the boundary of P ,
(c) no point of G except the two endpoints is on the boundary of P , and
(d) for some ε > 0, P contains the ε-thickened hull of G: the convex hull of the

union of G with ε-radius disks centered at non-end vertices of G.

Properties (b–d) essentially encapsulate what is preserved of the margin prop-
erty throughout folding, when starting from a simple polygon.
4 “Graffito” is the singular form of “graffiti” (both in English and Italian), though it

seems rarely used in English.

(a) (b) (c)

Fig. 2: (a) is a passage; (b) and (c) are not passages.

4 Algorithm

Our algorithm to determine simple-fold-and-cuttability of a graffito (G,P) with
margin, where G is a simple polygon with n vertices, runs in O(n2) time. The
algorithm follows a greedy approach: repeatedly make feasible folds, until either
we get stuck or the result is cuttable. This greedy approach is motivated by
the following lemma, proved in Section 5.3, which states that feasible folds are
always “safe” to make.

Lemma 1. If (G,P) is a passage, P is convex, and (G,P) → (G′, P ′), then
(G,P) is simple-fold-and-cuttable if and only if (G′, P ′) is simple-fold-and-cuttable.

If (G,P) is a graffito with margin, G is a simple polygon, and (G,P) →
(G′, P ′), then (G,P) is simple-fold-and-cuttable if and only if (G′, P ′) is simple-
fold-and-cuttable.

Proof (sketch). The fold realizing (G,P) → (G′, P ′) divides G into two parts.
Using the properties of passage or margin, we argue that one part is the reflection
of a subset of the other part. Thus the first part folds on top of the larger part
and effectively disappears; thus G′ ⊂ G. (This is the critical point where we use
that the original graph is a polygon.) But we may not have P ′ ⊂ P . To fix this,
we fold P ′ down to P ∩ P ′, which is convex. Now any simple-fold sequence for
(G,P) applies as well to (G′, P ′). 2

4.1 High-Level Algorithm

Our algorithm first finds any line of reflectional symmetry of the input polygon,
using the O(n)-time algorithm of [8], and folds along it. If there is no such line,
then the input is trivially not simple-fold-and-cuttable. Otherwise, we obtain a
passage, which we denote (G,P).

It remains to characterize simple-fold-and-cuttable passages in O(n2) time.
Initially we mark the endpoints of G as “real”; in the future, the endpoints may
become marked as “limit” (meaning that the end edges are in fact slightly longer,

but can be shortened arbitrarily close to reaching this endpoint). Throughout,
we maintain the invariant that (G,P) is a passage. The algorithm repeatedly
loops through the following steps.

Step 1. We replace P with the ε-thickened hull of G for an arbitrarily small
(infinitesimal) ε > 0. Here we modify the notion of ε-thickened hull to also
include an ε-radius disk for limit endpoints, while real endpoints remain on the
hull as before.

Step 2. We look for feasible folds (keeping in mind the infinitesimal extension
of limit endpoints and ε-thickened hull) that either hit a vertex of G other than
an endpoint, or cross an edge of G other than an end edge. If there is at least
one such fold, we arbitrarily chose one and fold it, marking the new endpoint as
real.

Step 3. If there are no vertex or non-end-edge folds, but there are feasible folds
through end edges, we compute the limit of repeatedly folding folds that cross
just the end edges (as detailed below, intuitively mimicking Fig. 1), and mark
any modified endpoints as limits.

Exit condition. If there are no feasible folds whatsoever, then we claim that
(G,P) is simple-fold-and-cuttable if and only if it is cuttable, i.e., a single edge.
Otherwise, the loop proceeds back to Step 1.

4.2 Algorithmic Details

The description above leaves out a few algorithmic details.

Step 1: Computing the convex hull. We can compute the convex hull of the
polygonal line G in linear time using, e.g., Melkman’s algorithm [7]. The intuition
behind replacing P with the ε-thickened convex hull of G is that, as we show in
Section 5.4, we can always fold P down to this hull without touching G, and this
can create new feasible folds and (by Lemma 1) cannot destroy old feasible folds.
Indeed, the ε-thickened convex hull represents the maximum limiting effect we
can achieve by making all feasible folds that do not intersect G (while the other
steps consider feasible folds intersecting G).

Step 2: Finding feasible folds that hit a non-end vertex/edge. For each non-end
vertex and the midpoint of each non-end edge, we test foldability of the angular
bisector (treating midpoints as degree-2 vertices) as follows. We start at our
vertex or midpoint, choose a direction, and walk along it until we hit the next
vertex, say v1. We check that the fold maps v1 to a point v2 on G or outside of
P , and also maps an arbitrarily small neighborhood of v1 onto the corresponding
neighborhood of v2. We must be careful if either v1 or v2 is marked as a limit
vertex or if some of the margin touching this vertex is infinitesimally small. For
example, if v1 is a limit vertex and v2 is not, we can consider the fold feasible

only if the direction in which v1 extends folds either to a line segment of G of
positive length or folds outside P . Similarly, we cannot assume that P is exactly
the convex hull of G: if v1 is surrounded by an infinitesimally small margin, we
must ensure that even this margin folds onto P \G or outside P .

We continue this process until we hit an endpoint of G on either side of our
starting vertex. If the reflection of the first endpoint we meet is not also an
endpoint, we continue walking from that point away from the fold line, checking
to ensure that the image of the remainder of the polygonal line falls outside
of P . The running time for each traversal is O(n), and we perform a check for
up to O(n) vertices and midpoints, yielding an overall runtime of O(n2). An
interesting open problem is whether this algorithm can be improved to run in
O(n) time overall, e.g., along the lines of symmetry finding [8].

Step 3: Computing the limit of folds that cross only end edges. We distinguish
two cases according to whether the two rays extending the end edges beyond
G’s endpoints intersect.

First consider the case in which the rays do not intersect. For each end edge
e = vw with end vertex v, we project the union of the non-end edges (which
form a path starting at w) onto the line through e, obtaining in O(n) time a
line segment s containing w. No fold through e that crosses only end edges can
pass through s; thus, if s contains e, then no fold across e is possible. Otherwise,
the endpoint of s closer to v is a strict upper bound on the extent to which e
can be folded. (Here we use that we have already reduced P to a convex set
containing G.)

If the above procedure provides information that some or all of an end edge
e′ cannot be folded, then we project the nonfoldable segment of e′ onto the
opposite end edge e and update the bound for e accordingly (see Fig. 3). If we
have nonfoldability information about both end edges, then we apply the above
step twice, using each edge to update the other.

We show in Section 5.5 that the updated bounds are the desired limits, that
is, the end edges can be folded to within infinitesimal amounts of their updated
bounds, and in particular, updating the bound for e can give us no new bound
on the foldability of e′.

The situation is slightly different if the rays extending the end edges do
intersect at a point x: in this case, it is possible that the above approach would
cause an infinite cascade of back-and-forth bound updates on the two end edges.
Fortunately, in this case, the end edge farther from x is actually not foldable at
all (as we will also show in Section 5.5), so it suffices to apply the projection
method once to determine the foldability of the end edge closer to x.

5 Correctness

To prove correctness, we first show the invariant that (G,P) remains a passage
(Section 5.1). Second we develop tools for folding away excess paper (Section 5.2).
Then we show that the exit condition is correct, that is, prove Lemma 1 described

(a) (b)

11
22

1

1

2
2

limit line

candidate limit line

Fig. 3: Computing limit points of end-edge foldability by (1) projecting non-end
edges onto end edges and (2) further projecting portions of the end edges deter-
mined to be nonfoldable. Limit points computed by the algorithm are identified
with circular markers.

above (Section 5.3). Next we show that each step is correct. For Step 1, we need
to show how to fold an ε-thickened hull of G, and that this is the limiting effect
of folds not intersecting G (Section 5.4). For Step 2, there is nothing to show.
For Step 3, we have argued that the limit points we compute are indeed limits,
but it remains to show that they are in fact achievable by folding (Section 5.5).
Together, these lemmas prove correctness of the algorithm’s output, and thus
Theorem 1.

5.1 Passage Invariant

Here we show that feasible all-layers simple folds preserve the passage property.
In addition, we show that the graph part of the graffito only reduces under such
folds, which will be useful in the proof of Lemma 1.

Lemma 2. Let (G,P) be a passage, and suppose that (G,P)→ (G′, P ′). Then
(G′, P ′) is also a passage, and G′ = G ∩ P ′.

The proof is a somewhat tedious geometric/topological argument.

Proof. Refer to Fig. 4. If G does not intersect the fold line segment ` realizing
(G,P) → (G′, P ′), then G = G′ and clearly (G′, P ′) is still a passage. If G
intersects ` at exactly one point, say p, and we denote the polygonal lines lying
on either side of p by G1 and G2, then we have either G1 ⊆ G2 or G2 ⊆ G1

in order for the fold to be feasible. Thus G′ is the longer of G1 and G2, and
its endpoints in P ′ are p and the endpoint of the longer of G1 and G2, both of
which are on the edge of P ′. Because G was a passage, G′ satisfies the remaining
conditions for being a passage. Clearly G′ = G ∩ P ′.

ℓ

ℓ

G1

q1

v1

v2q2

x

RĜ
G2
ˆ G2

G1
ˆ G1x̂

G2

P1 P2

ℓ

one intersectionzero intersections two intersections

Fig. 4: Proof of Lemma 2.

If G crosses ` at two or more points, let Ĝ be a section of G that connects
two consecutive intersection points q1 and q2 along `. The line ` divides P into
two pieces; let P1 denote the piece containing Ĝ, and let P2 be the other piece.
Because ` is a feasible fold, every point of the reflection R of Ĝ through ` is
either on G or not in P .

If no point of R lies outside of P , then R ⊆ G and the union of Ĝ and R is a
cycle in G, contradicting that (G,P) is a passage. Thus some point x of R must
lie outside of P . Let x̂ be the corresponding point of Ĝ that reflects to x, and
consider the polygonal segment Ĝ1 connecting q1 to x̂. Because the reflection of
q1 through ` is q1, which is in P , and the reflection of x̂ is x, which is not in P ,
the reflection G1 of Ĝ1 intersects the edge of P and thus contains an endpoint
of G, say v1. Similarly, if Ĝ2 is the path connecting q2 and x̂, then its reflection
G2 contains an endpoint v2 of G.

We cannot have v1 = v2, for then v1 = v2 would be connected to both q1 and
q2 via paths lying only in P2, hence forming a cycle with G′. So we have identified
the two endpoints of G (v1 and v2), and have described a polygon consisting
of the concatenation of Ĝ1, G1, G2, Ĝ2 that enters/exits P only at those two
endpoints. Therefore the portion of the polygon interior to P is exactly G itself.

By assumption, G1, G2, and Ĝ do not intersect ` outside of q1 and q2. Thus G
crosses ` at exactly two points. Furthermore, when folded, v1 and v2 lie atop Ĝ,
which is completely contained in P ′, and because G was a passage, G1, G2, and
G′ therefore do not touch any edge of P ′ other than `. Hence G′ = Ĝ = G ∩ P ′
and (G′, P ′) a passage. 2

5.2 Shrinking Excess Paper

In two related situations below, we have need for folding the piece of paper P
down to a convex subset containing G, via a sequence of feasible folds. This task
is similar in spirit to the hide gadget of [4], which folds a polygonal piece of
paper P down to any desired convex subpolygon, but without respecting such
obstacles as those imposed by feasibility and G. Another related construction
is the folding of an arbitrary simple polygon down to a small triangular subset,
with each fold reducing the polygon of paper to a subset [5,6, Sec. 11.6]. This

construction effectively avoids obstacles, because any obstacles must be outside
the initial polygon, and all intermediate polygons are within the initial polygon;
but the construction does allow specifying a very specific target shape.

We build on the ideas of both of these constructions to obtain the results we
need in our context, which in some sense generalize the previous results. Our
results proceed in a sequence of increasingly general settings, starting with just
a triangle:

Lemma 3. A given triangle of paper 4abc, with a specified base edge ab, can be
folded down to a trapezoid with base ab whose height and base angles are each at
most a specified bound ε > 0. The folding does not disturb the base edge ab, never
places material outside 4abc, and consists of a sequence of all-layers simple folds
assuming that edges ac and bc are on the paper boundary.

The proof of this lemma is similar in spirit to [5, Fig. 6], [6, Fig. 11.11],
though the details differ.

Proof. Refer to Fig. 5. If a base angle is obtuse, say at a, then we conceptually
split it into two triangles, by cutting along the segment aa′ orthogonal to bc.
The triangle aa′c, with base aa′, is non-obtuse. Assuming the lemma for such
triangles, we can reduce the triangle to a thin triangle against aa′, at which
point we can fold it into the other triangle aba′. Now we are left with triangle
aba′ with base ab, which is also non-obtuse. Thus we can apply the lemma again,
completing the obtuse case.

a

a′

c

b

Fig. 5: Shrinking triangle abc down to a thin triangle with common base edge
ab. The obtuse case shown in the top left split into non-obtuse cases by cutting
along the perpendicular aa′. Then the algorithm repeatedly halves the height
until it is possible to repeatedly halve the angles, until the first triangle can be
absorbed into the second triangle.

Now suppose that the base angles are non-obtuse. Let c′ denote the orthogo-
nal projection of c onto ab. Fold parallel to ab to bring c onto c′. Repeatedly fold
along a chord parallel to ab to bring the previous fold onto c′, until the height
of the resulting trapezoid is at most ε. This process terminates in O(logdh/εe)
folds, where h denotes the height of the original triangle.

Having attained the height bound, it remains to attain the angle bounds. Fold
alternately along the angular bisector at a and along the angular bisector at b,
until the angles are at most ε. Because the angles at a and b are non-obtuse, each
such pair of folds does not move material outside the original trapezoid, provided
ε was sufficiently small. (If the fold would go outside the trapezoid because the
height is too large, we retroactively reduce ε for the height reduction step.) Thus
the fold preserves that the piece of paper is a trapezoid, possibly degenerating
to a triangle (in which case the folds decrease the height in addition to angles).
This process terminates in O(logdθ/εe) folds, where θ is the maximum original
angle. 2

Lemma 4. A given simple polygon of paper with specified base edge can be folded
down to a trapezoid with the same base whose height and base angles are each
at most a specified bound ε > 0. The folding does not disturb the base edge,
never places material outside the original polygon, and consists of a sequence of
all-layers simple folds assuming that all nonbase edges of the polygon are on the
paper boundary.

The proof of this lemma uses similar ideas to [5, Lem. 1], [6, Lem. 11.6.1].

Proof. Triangulate the polygon (without Steiner points). Every polygon triangu-
lation has at least two ears (triangles with two boundary edges), so has at least
one ear T that is not the triangle incident to the base edge. Apply Lemma 3 to T ,
considering its one nonboundary edge e as its base. Now fold the resulting trape-
zoid along e. By setting ε smaller than all angles and orthogonal distances in the
original triangulation, this trapezoid will fold within the other triangle sharing
edge e. Thus we obtain a triangulation with one fewer triangle. By induction,
we reduce to the base case that the polygon is a triangle, which is handled by
Lemma 3. 2

Lemma 5. A given simple polygon of paper, with a specified reflex chain R,
can be folded to form the region between R and a convex chain C with the same
endpoints, such that every point of C is within distance ε of a point on R and
the shared endpoints of R and C form an angle of at most ε, for a specified
bound ε > 0. The folding does not disturb the reflex chain, never places material
outside the original polygon, and consists of a sequence of all-layers simple folds
assuming that all edges of the polygon not on R are on the paper boundary.

Proof. Let r1, r2, . . . , rn denote the sequence of edges along chain R. Let e1
denote the extension of r1 in both directions until it hits the boundary of the
polygon of paper P , which is a portion of a line of support of R. Apply Lemma 4
to the portion of P on the side of e1 not containing R, with e1 as the specified
base edge. Repeat this process for r2, r3, . . . , rn: extend ri to form ei, and apply
Lemma 4 to the side of P opposite R. The resulting piece of paper is a union of
trapezoids output by Lemma 4, which implies all the desired properties. 2

5.3 Feasible Folds are Safe

This section demonstrates that, after performing any feasible fold, we can pre-
serve the convexity of the piece of paper by folding away any extra, as shown in
Fig. 6. It then concludes with the proof of Lemma 1.

Lemma 6. Let (G,P) be a passage with P convex, and suppose (G,P) →
(G′, P ′). Then there is a convex piece of paper P ′′ ⊂ P for which (G′, P ′) →∗
(G′, P ′′) and (G′, P ′′) is a passage.

(a) (G, P) (b) (G′, P´) (c) (G′, P″)

Fig. 6: (a) (G,P) has a convex piece of paper P , but one fold leads to (b) (G′, P ′)
with nonconvex paper P ′ that is partly exterior to P . The shaded area P ′ − P
can be folded away to produce (c) (G′, P ′′) with P ′′ convex and contained in P .

Proof. Let ` be the fold line realizing (G,P)→ (G′, P ′). By Lemma 2, we know
that G′ ⊆ G and that (G′, P ′) is a passage. Because P is convex, line ` divides P
into two convex pieces, say P1 and P2. Because G′ lies wholly on one side of `, and
G′ ⊆ G ⊂ P , we must have G′ wholly contained in either P1 or P2. Let P ′′ denote
the Pi containing G′, and let P0 be the other (P3−i). Thus G′ = G∩P ′′. Because
(G′, P ′) is a passage, G′ cannot touch the boundary of P ′′ except possibly at
its endpoints. Because (G,P) is a passage, G′ ⊆ G cannot have an endpoint
interior to the reflection R of P0 through `, for such an endpoint would reflect
to an endpoint of G interior to P0 ⊂ P . Therefore (the endpoints of) G′ cannot
touch the boundary of P ′′ interior to R.

Now we apply Lemma 5 to each connected component of P ′ \ P ′′, with the
reflex chain corresponding to the shared boundary with P ′′, and a sufficiently
small ε. Then we repeatedly fold along edges of the reflex chains, to place the
narrow bands from Lemma 5 inside P ′′. Because the angles at the ends of the
reflex chains are less than ε, these foldings will not hit G′ even if G′ touches
the endpoints of the chain. (As argued above, G′ cannot touch the interior of a
chain.) The convergence of the foldings in a finite number of folds is nontrivial
if there are acute angles along the reflex chain, because one fold may “pollute”
the adjacent part of the band. Fortunately, this argument is essentially identical
to an existing argument for the second half of the hide gadget [4, Theorem 2].

Therefore we obtain a sequence of all-layers simple folds from (G′, P ′) into
(G′, P ′′). By construction, P ′′ is convex and P ′′ ⊂ P , as desired. 2

Proof (of Lemma 1). If (G′, P ′) is simple-fold-and-cuttable and (G,P)→ (G′, P ′),
then preceding the sequence of folds to cut (G′, P ′) by the fold (G,P)→ (G′, P ′)
yields a sequence of folds to cut (G,P), so (G,P) is simple-fold-and-cuttable.

Conversely, if (G,P) is a simple-fold-and-cuttable passage and (G,P) →
(G′, P ′), then Lemma 6 shows that there is a convex piece of paper P ′′ ⊂ P for
which (G′, P ′) →∗ (G′, P ′′) and (G′, P ′′) is a passage. Lemma 2 further shows
that G′ = G ∩ P ′. Because G′ ⊂ P ′′ ⊂ P ′, we have G′ = G ∩ P ′′. This means
that by considering (G′, P ′′) as a subset of the graffito (G,P), and applying
the sequence of folds needed to cut (G,P), we will have folded (G′, P ′′) into a
cuttable diagram as well. Thus, preceding this sequence of folds with the sequence
(G′, P ′)→∗ (G′, P ′′) gives a sequence to fold and cut (G′, P ′).

Finally, if (G,P) is a simple-fold-and-cuttable graffito with margin, where
G a simple polygon, and (G,P)→ (G′, P ′), then we follow a similar argument.
Because the fold is a line of symmetry, we know that G′ = G∩P ′. By the margin
property and symmetry, G′ must be contained in the interior of P ∩ P ′, except
along the fold line segment `. Therefore we can reduce P ′ to P ′′ = P ∩P ′ simply
by applying Lemma 4 to each connected component of P ′ \ P , then folding the
small triangles along their bases to absorb them into P ′′. Thus, as before, we
obtain (G′, P ′) →∗ (G′, P ′′) where (G′, P ′′) can be folded in the same ways as
(G,P). 2

5.4 Approaching the Convex Hull (Step 1)

Because of the invariant that P contains the convex hull of P (the fourth property
of passage), any feasible fold that does not intersect G also cannot intersect the
convex hull of G, even on its boundary. Thus such folds must in fact be at least
some infinitesimal distance away from the hull, which is our ε. Therefore such
folds can never reduce P below an ε-enlarged hull of G, for some ε > 0. It
remains to show that we can actually achieve the ε-enlarged hull of G, for any
desired ε > 0.

Lemma 7. Any passage (G,P) can be simply folded to the passage (G,P ′) where
P ′ is the ε-enlarged hull of G, for any specified ε > 0 sufficiently small that
P ′ ⊆ P .

Proof. The polygonal line G (plus short extensions at limit endpoints) divides
the ε-enlarged hull P ′, as well as the piece of paper P , into two halves. We
process each half separately, applying Lemma 5 to each connected component of
P \P ′, where the reflex chain is the shared boundary with P ′. Now we repeatedly
fold along the line extending each of these shared boundary edges, to place the
narrow bands within P ′. Because of the small distance between convex and reflex
chains, these foldings will not cause paper to fold atop edges of G; and because
of the small end angles, these foldings will not cause paper to fold atop endpoints
of G. As in the proof of Lemma 6, this process is similar to the second half of
the hide gadget [4, Theorem 2] and converges after finitely many folds. 2

5.5 Approaching Limit Endpoints (Step 3)

Lemma 8. Any passage (G,P) can be simply folded to reduce the end edges of
G down to ε larger than the limits computed in Step 3.

Proof. The proof requires casework involving analysis of various configurations,
so we begin by proving the lemma in two easy but general situations that will
allow us to quickly dispose of several configurations.

First we show that, if the dot product of the end edges (viewed as vectors
pointing in the directions of G’s endpoints) is nonpositive, then our limit compu-
tation is correct. In this case, the foldability of the two end edges is independent
in the sense that the shortening of one end edge does not affect the foldability
of the other. This independence holds because the projection of one end edge e1
onto the other edge e2 yields a segment of e2 whose endpoint closest to the edge
is the projection of that point of e1 lying farthest from the edge. Thus no short-
ening of e1 will improve that bound on foldability of e2 given by the projection.
Having established independence of the end edges, the same argument applies
to each end edge.

Next, we show

(∗) If our limit computation correctly determines that one end edge cannot fold
at all, then it returns the correct answer for the other end edge e.

Indeed, in this case our algorithm projects all edges other than e onto the line
through e, giving a clear upper bound on end-edge-only foldability, and we can
fold arbitrarily close to this bound by successively halving the paper beyond
it. Note that the halving technique ensures that no paper ever folds past the
perpendicular to e at the bound, so these folds are indeed valid: neither the
paper being folded away nor the paper being folded onto can contain any points
of G other than those on e.

We are left to consider cases in which the end edge vectors form an acute
angle with each other. We split into cases based on the locations of the endpoints
of G relative to the intersection x of the lines through the end edges, with one
additional case for parallel end edges. For convenience, assume the diagram is
oriented such that the angle bisector of the end edges is vertical; see Fig. 7.

Case 1: Both endpoints below x. (Note that it is possible that one of the end edges
could start above x—unlike in the diagram—but the argument works whether
or not this happens.) It is clear that the limit points our algorithm identifies
are upper bounds on foldability, so we are left to prove that these limits are
attainable. The argument has three main parts:

(a) For each end edge, draw its perpendicular through its limit point; call these
perpendiculars limit lines. Then all non-end edges are above both limit lines
(by definition), and each limit line intersects the opposite end edge either
at its limit point or at a point farther along the end edge vector. The latter
property follows from the assumption that the end edge vectors are diverging
from x with a little geometric reasoning; see Fig. 3.

x x x

Case 1:

Both endpoints below x

Case 2:

One endpoint above x

Case 3:

Both endpoints above x

Case 4:

Parallel end edges

Fig. 7: Illustrations for the proof of Lemma 8.

(b) Ignoring the region above the limit lines for the moment (which as we saw
contains all non-end edges), alternately folding the end edges (as in Fig. 1)
reduces the endpoints toward x in a geometric series. In particular, it is pos-
sible to reach the limit points after a finite number of folds and (importantly)
without needing to reduce either end edge beyond its limit point, using the
property in (a) about limit line intersection.

(c) Although the folds in the geometric progression in (b) might not actually be
feasible because of conflicts with non-end edges, we can overcome this issue
by replacing each fold with a series of successive-halving folds that never
touch the region above the limit lines.

Case 2: One endpoint above x. First, the tail of the lower end edge must be
below x (as depicted) by convexity, because the head of the upper end edge is at
the boundary of the paper. It follows that the projection of the non-end edges
onto the upper end edge will completely cover the upper end edge, allowing our
algorithm to deduce that the upper end edge is not foldable at all. Thus, we are
in situation (∗) which we have already solved.

Case 3: Both endpoints above x. This case our algorithm treats separately, claim-
ing that the end edge farther from x does not fold at all. We need to show that
this determination is correct, after which the correctness of the limit computa-
tion for the other end edge follows by situation (∗). In fact, neither end edge
can fold past the distance from the left (short) end edge to x: doing so would
require the opposite edge to have already folded beyond that point (because the
end edge vectors are angled toward each other), a contradiction.

Case 4: Parallel end edges. This case is essentially one-dimensional, and the
argument used for situation (∗) applies. 2

6 Convex Polygons

We begin by introducing one piece of terminology that will be of use in proving
Theorem 2. Let (G,P) be a passage with end edges e1 = v1w1 and e2 = v2w2

such that v1 and v2 are the endpoints of G. We say that (G,P) is half-convex if
the union of G with segment v1v2 is a convex polygon and the total turn angle
of the chain of edges from e1 to e2 is at most 180◦.

Proof (of Theorem 2). As explained in Section 4, a convex polygon with no line
of symmetry does not admit an initial fold; thus, it remains to show that a
convex polygon with a line of symmetry is simple-fold-and-cuttable.

Begin by folding along any line of symmetry of the polygon, leaving a half-
convex passage (G,P). Note that half-convexity implies that (using the notation
above) the extensions of e1 and e2 backward through w1 and w2 meet at a point
x; in the case that e1 and e2 are parallel, x is understood to be a point at infinity.
Also note that all points of G lie within the (non-reflex) angle A between rays
xv1 and xv2.

For convenience, orient the paper such that the angle bisector of A points
vertically downward. Assume without loss of generality that w1 is further down
than w2. We will show that e1 and e2 can be folded small enough that vertex-
folding through w1 is feasible. By making this fold, we will be left with a passage
with one fewer edge, and it is easy to see that this passage is still half-convex. By
induction on the number of edges, we may then conclude that any half-convex
passage is simple-fold-and-cuttable.

We first claim that the limit point on e1 computed in Section 4.2 is w1: that
is, neither the projection of all non-end edges onto e1, nor their projection onto
e2 followed by e1, covers w1. To see this, simply observe that these projections
can only move points inside angle A upward. Because w1 is (by assumption) the
furthest down of all points on non-end edges and G lies inside angle A, the claim
follows.

Next, we claim that the limit point u2 on e2 is either w2 or the projection of
w1 onto e2 (if this projection lies within e2). Indeed, the same argument as above
implies that u2 is the lower endpoint of the projection of the non-end edges onto
e2 (i.e., we need not bother projecting onto e1 and back onto e2), and since the
chain of non-end edges lies within triangle xw1w2 by convexity, it follows that
this lower endpoint must be the result of projecting either w1 or (trivially) w2.

Now Lemma 8 shows that we can feasibly fold (G,P) to make e1 arbitrarily
small and reduce e2 arbitrarily close to u2. In particular, we can fold e1 to be
shorter than its adjacent edge. Since the angle between e1 and its adjacent edge
is strictly less than 180◦, the angle bisector, if it hits G at all, must hit e2 below
u2 by some discrete amount. So by folding e2 close enough to u2, we can feasibly
fold along the angle bisector through w1. 2

7 Conclusion

Perhaps the most interesting open question is to characterize simple-fold-and-
cuttable graffiti (G,P) beyond when G is a polygon. Fig. 8 shows that, in this
case, not every feasible fold is safe.

Fig. 8: Allowing a degree-4 vertex, the top fold leads to an unfoldable graffito,
while the bottom folds lead to a simple-fold-and-cuttable graffito.

We conjecture that our algorithm works if we relax the margin constraint
to allow graffiti (G,P) where G is a polygon whose vertices might lie on the
boundary of P (but we still forbid edges of G from lying along P). This situation
naturally leads to a relaxed notion of passages where the polygonal line’s vertices
may lie on the boundary of P . Our greedy algorithm is in fact incorrect for such
generalized passages; see Fig. 9. We conjecture that such counterexamples cannot
arise from polygons G.

References

1. Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Martin L. Demaine, Joseph
S. B. Mitchell, Saurabh Sethia, and Steven S. Skiena. When can you fold a map?
Computational Geometry: Theory and Applications, 29(1):23–46, September 2004.

2. Marshall Bern, Erik Demaine, David Eppstein, and Barry Hayes. A disk-packing
algorithm for an origami magic trick. In Origami3: Proceedings of the 3rd Interna-
tional Meeting of Origami Science, Math, and Education, pages 17–28, Monterey,
California, March 2001. Improvement of version appearing in Proceedings of the
International Conference on Fun with Algorithms, Isola d’Elba, Italy, June 1998,
pages 32–42.

3. Erik D. Demaine, Martin L. Demaine, and Anna Lubiw. Folding and cutting paper.
In J. Akiyama, M. Kano, and M. Urabe, editors, Revised Papers from the Japan
Conference on Discrete and Computational Geometry, volume 1763 of Lecture Notes
in Computer Science, pages 104–117, Tokyo, Japan, December 1998.

4. Erik D. Demaine, Martin L. Demaine, and Joseph S. B. Mitchell. Folding flat sil-
houettes and wrapping polyhedral packages: New results in computational origami.
Computational Geometry: Theory and Applications, 16(1):3–21, 2000.

Fig. 9: Our greedy algorithm fails for the “almost passage” on the left: the top
fold leads to an impossible-to-fold degree-3 vertex, while the bottom folds result
in a cuttable graffito.

5. Erik D. Demaine, Satyan L. Devadoss, Joseph S. B. Mitchell, and Joseph O’Rourke.
Continuous foldability of polygonal paper. In Proceedings of the 16th Canadian
Conference on Computational Geometry, pages 64–67, Montréal, Canada, August
2004.

6. Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge University Press, July 2007.

7. Avraham A. Melkman. On-line construction of the convex hull of a simple polyline.
Information Processing Letters, 25(1):11–12, April 1987.

8. Jan D. Wolter, Tony C. Woo, and Richard A. Volz. Optimal algorithms for sym-
metry detection in two and three dimensions. The Visual Computer, 1(1):37–48,
1985.

	Making Polygons by Simple Folds and One Straight Cut
	Erik D. Demaine 1, Martin L. Demaine 1, Andrea Hawksley 1, Hiro Ito 1, Po-Ru Loh 1, Shelly Manber 1, Omari Stephens

