
Identifying Frequent Items in Sliding Windows over
On-Line Packet Streams∗

(Extended Abstract)

Lukasz Golab
School of Comp. Sci.
University of Waterloo

lgolab@uwaterloo.ca

David DeHaan
School of Comp. Sci.
University of Waterloo

dedehaan@uwaterloo.ca

Erik D. Demaine
Lab. for Comp. Sci.

M.I.T.

edemaine@mit.edu

Alejandro López-Ortiz
School of Comp. Sci.
University of Waterloo

alopez-o@uwaterloo.ca

J. Ian Munro
School of Comp. Sci.
University of Waterloo

imunro@uwaterloo.ca

ABSTRACT
Internet traffic patterns are believed to obey the power law,
implying that most of the bandwidth is consumed by a small
set of heavy users. Hence, queries that return a list of fre-
quently occurring items are important in the analysis of real-
time Internet packet streams. While several results exist
for computing frequent item queries using limited memory
in the infinite stream model, in this paper we consider the
limited-memory sliding window model. This model main-
tains the last N items that have arrived at any given time
and forbids the storage of the entire window in memory.
We present a deterministic algorithm for identifying fre-
quent items in sliding windows defined over real-time packet
streams. The algorithm uses limited memory, requires con-
stant processing time per packet (amortized), makes only
one pass over the data, and is shown to work well when
tested on TCP traffic logs.

Categories and Subject Descriptors
C.2.3 [Communication Networks]: Network Operations—
Network monitoring

General Terms
Algorithms

∗This research is partially supported by the Natural Sciences
and Engineering Research Council of Canada, and by the
Nippon Telegraph and Telephone Corporation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’03, October 27–29, 2003, Miami Beach, Florida, USA.
Copyright 2003 ACM 1-58113-773-7/03/0010 ...$5.00.

Keywords
Internet traffic monitoring, on-line stream analysis, sliding
windows, frequent item queries

1. INTRODUCTION
On-line data streams possess interesting computational

characteristics, such as unknown or unbounded length, pos-
sibly very fast arrival rate, inability to backtrack over previ-
ously arrived items (only one sequential pass over the data
is permitted), and a lack of system control over the order
in which the data arrive [10]. Real-time analysis of net-
work traffic has been one of the primary applications of data
stream management systems; examples include Gigascope
[4], STREAM [1], and Tribeca [15]. A particular problem
of interest—motivated by traffic engineering, routing system
analysis, customer billing, and detection of anomalies such
as denial-of-service attacks— concerns statistical analysis of
data streams with a focus on newly arrived data and fre-
quently appearing packet types. For instance, an ISP may
be interested in monitoring streams of IP packets originat-
ing from its clients and identifying the users who consume
the most bandwidth during a given time interval; see [6, 7]
for additional motivating examples. These types of queries,
in which the objective is to return a list of the most frequent
items (called top-k queries or hot list queries) or items that
occur above a given frequency (called threshold queries), are
generally known as frequent item queries. However, to make
such analysis meaningful, bandwidth usage statistics should
be kept for only a limited amount of time—for example, one
hour or a single billing period—before being replaced with
new measurements. Failure to remove stale data leads to
statistics aggregated over the entire lifetime of the stream,
which are unsuitable for identifying recent usage trends.

A solution for removing stale data is to periodically reset
all statistics. This gives rise to the landmark window model,
in which a time point (called the landmark) is chosen and
statistics are only kept for that part of a stream which falls
between the landmark and the current time. A major disad-
vantage of this model is that the size of the window varies—

the window begins with size zero and grows until the next
occurrence of the landmark, at which point it is reset to size
zero. In contrast, the sliding window model expires old items
as new items arrive. Two common types of sliding windows
are count-based windows, which maintain the last N pack-
ets seen at all times and time-based windows, which include
only those items which have arrived in the last t time units.

If the entire window fits in main memory, answering thresh-
old queries over sliding windows is simple: we maintain
frequency counts of each distinct item in the window and
update the counters as new items arrive and old items ex-
pire. Unfortunately, Internet traffic on a high-speed link
arrives so fast that useful sliding windows may be too large
to fit in main memory (and the system cannot keep up with
the stream if the window is stored on disk). In this case,
the window must somehow be summarized and an answer
must be approximated on the basis of the available sum-
mary information. One solution, initially proposed by Zhu
and Shasha in [16] and also used in this work, is to divide the
sliding window into sub-windows, only store a summary of
each sub-window, and re-evaluate the query when the most
recent sub-window is full. This reduces space usage, but
induces a “jumping window” instead of a gradually sliding
window, with the jump size equal to the sub-window size.

1.1 Our Contributions
We are interested in identifying frequent items (occurring

with a frequency that exceeds a given threshold) in slid-
ing windows over on-line data streams and estimating their
true frequencies, while using as little space as possible and
making only one pass over the data. We present a simple de-
terministic algorithm, Frequent, that identifies frequently
occurring items in sliding windows and estimates their fre-
quencies. Algorithm Frequent requires constant process-
ing time per packet (amortized) and is shown to work well
when tested on TCP connections logs.

1.2 Roadmap
The remainder of this paper is organized as follows: Sec-

tion 2 presents relevant previous work, Section 3 introduces
algorithm Frequent, Section 4 contains experimental re-
sults, and Section 5 concludes the paper with suggestions
for future work.

2. PREVIOUS WORK

2.1 Frequent Item Algorithms
for Infinite Streams

Frequent item algorithms in the infinite stream model em-
ploy sampling, counting, and/or hashing to generate approx-
imate answers using limited space. The main difficulty lies in
finding a small set of potentially frequent items to monitor
and detecting unpopular items that suddenly become fre-
quent. In this context, approximation may mean a number
of things: an algorithm may either return all of the frequent
item types (and some false positives), some frequent item
types (and some false negatives), identities of the frequent
items but no frequency counts, or identities and approxi-
mate counts of the frequent items. Note that the terms
packet types, item types, and item categories are used inter-
changeably throughout the paper.

A naive counting method for answering threshold queries
examines all items as they arrive and maintains a counter for

each item type. This method takes Ω(n) space, where n is
the number of packets seen so far—consider a stream with
n − 1 unique packet types and one of the types occurring
twice. Random sampling reduces space usage, but may re-
sult in a large approximation error, especially in the presence
of bursty TCP/IP traffic. Three hybrid counting-sampling
algorithms have been proposed to address this trade-off. Es-
tan and Varghese give an algorithm in [7] that uses sam-
pling only to select whether an item is to be examined more
thoroughly; once an item is selected, all of its occurrences
are counted (this idea also appears in Gibbons and Matias
[9]). Manku and Motwani give a similar algorithm that also
decreases the sampling rate with time in order to bound
memory usage [12]. The algorithm in Demaine et al. [6]
finds items occurring above a relative frequency of 1/

√
nm

with high probability, where n is the number of incoming
items observed and m is the number of available counters.
This algorithm divides the stream into a collection of rounds,
and for each round counts the occurrences of m/2 randomly
sampled categories. At the end of each round, the m/2 win-
ners from the current round are compared with m/2 winners
stored from previous rounds and if the count for any cur-
rent winner is larger than the count for a stored category
(from any of the previous rounds), the stored list is updated
accordingly.

Demaine et al. and Manku and Motwani also give counting-
only frequent item algorithms. The former uses only m
counters and deterministically identifies all categories hav-
ing a relative frequency above 1/(m + 1), but may return
false positives and therefore requires a re-scan of the data
(forbidden in the on-line stream model) to determine the
exact set of frequent items. The latter maintains a counter
for each distinct item seen, but periodically deletes counters
whose average frequencies since counter creation time fall
below a fixed threshold. To ensure that frequent items are
not missed by repeatedly deleting and re-starting counters,
each frequency estimate includes an error term that bounds
the number of times that the particular item could have
occurred up to now.

Fang et al. present various hash-based frequent item algo-
rithms in [8], but each requires at least two passes over the
data. The one-pass sampled counting algorithm by Estan
and Varghese may be augmented with hashing as follows.
Instead of sampling to decide whether to keep a counter for
an item type, we simultaneously hash each item’s key to d
hash tables and add a new counter only if all d buckets to
which a particular element hashes are above some thresh-
old (and if the element does not already have a counter).
This reduces the number of unnecessary counters that keep
track of infrequent packet types. A similar technique is used
by Charikar et al. in [2] in conjunction with hash functions
that map each key to the set {−1, 1}. Finally, Cormode
and Muthukrishnan give a randomized algorithm for find-
ing frequent items in a continually changing database (via
arbitrary insertions and deletions) using hashing and group-
ing of items into subsets [3].

2.2 Sliding Window Algorithms
Many infinite stream algorithms do not have obvious coun-

terparts in the sliding window model. For example, one
counter suffices to maintain the minimum element in an in-
finite stream, but keeping track of the minimum element in
a sliding window of size N takes Ω(N) space—consider an

increasing sequence of values, in which the oldest item in
any window is the minimum and must be replaced when-
ever the window moves forward. The fundamental problem
is that as new items arrive, old items must be simultane-
ously evicted from the window, meaning that we need to
store some information about the order of the packets in
the window.

Zhu and Shasha introduce Basic Windows to incremen-
tally compute simple windowed aggregates in [16]. The win-
dow is divided into equally-sized Basic Windows and only a
synopsis and a timestamp are stored for each Basic Window.
When the timestamp of the oldest Basic Window expires,
that window is dropped and a fresh Basic Window is added.
This method does not require the storage of the entire slid-
ing window, but results are refreshed only after the stream
fills the current Basic Window. If the available memory is
small, then the number of synopses that may be stored is
small and hence the refresh interval is large.

Exponential Histograms (EH) have been introduced by
Datar et al. [5] and recently expanded in [14] to provide ap-
proximate answers to simple window aggregates at all times.
The idea is to build Basic Windows with various sizes and
maintain a bound on the error caused by counting those el-
ements in the oldest Basic Window which may have already
expired. The algorithm guarantees an error of at most ε
while using O(1

ε
log2 N) space.

3. MOTIVATION AND ALGORITHM FOR
FINDING FREQUENT ITEMS IN SLID-
ING WINDOWS

3.1 Motivation
The frequent item algorithms for infinite streams may be

extended to the sliding window model using a Basic Win-
dow strategy. The counters used in the counting methods
could be split and a timestamp assigned to each sub-counter;
this essentially reduces to the Basic Window method with
item counts stored in the synopses. Similarly, hash tables
could be split in the same way, resulting in a Basic Window
approach with hash tables stored in the synopses. Unfortu-
nately, both the Basic Window approach and Exponential
Histograms do not directly apply to the frequent item prob-
lem in sliding windows. Fundamentally, this is because these
techniques are suitable for distributive and algebraic aggre-
gates only [11]. That is, the aggregate must be computable
either by partially pre-aggregating each Basic Window and
combining the partial results to return the final answer (e.g.
the windowed sum can be computed by adding up sums
of the Basic Windows), or by storing some other constant-
size Basic Window synopses that can be merged to obtain
the final answer (e.g. the windowed average can be com-
puted by storing partial sums and item counts in each Basic
Window and dividing the cumulative sum by the cumula-
tive count). However, frequent item queries are classified as
holistic aggregates, which require synopses whose sizes are
proportional to the sizes of the Basic Windows.

Answering frequent item queries using small-size Basic
Window synopses is difficult because there is no obvious rule
for merging the partial information in order to obtain the fi-
nal answer. For instance, if each Basic Window stores counts
of its top k categories, we cannot say that any item appear-
ing in any of the top-k synopses is one of the k most frequent

types in the sliding window—a bursty packet type that dom-
inates one Basic Window may not appear in any other Basic
Windows at all. We also cannot say that any frequent item
must have appeared in at least one top-k synopsis—if k is
small, say k = 3, we would ignore a frequent item type
that consistently ranks fourth in each Basic Window and
therefore never appears on any of the top-k synopses. For-
tunately, we will show empirically that these problems are
far less serious if the sliding window conforms to a power-
law-like distribution, in which case we expect several very
frequent categories (e.g. popular source IP addresses or pro-
tocol types) that will be repeatedly be included in nearly
every top-k synopsis.

3.2 Algorithm
We propose the following simple algorithm, Frequent,

that employs the Basic Window approach (i.e. the jumping
window model) and stores a top-k synopsis in each Basic
Window. We fix an integer k and for each Basic Window,
maintain a list of the k most frequent items in this window.
We assume that a single Basic Window fits in main memory,
within which we may count item frequencies exactly. Let δi

be the frequency of the kth most frequent item in the ith
Basic Window. Then δ =

�
i
δi is the upper limit on the

frequency of an item type that does not appear on any of
the top-k lists. Now, we sum the reported frequencies for
each item present in at least one top-k synopsis and if there
exists a category whose reported frequency exceeds δ, we are
certain that this category has a true frequency of at least
δ. The pseudocode is given below, assuming that N is the
sliding window size, b is the number of elements per Basic
Window, and N/b is the total number of Basic Windows.
An updated answer is generated whenever the window slides
forward by b packets.

Algorithm Frequent

Repeat:
1. For each element e in the next b elements:

If a local counter exists for the type of element e:
Increment the local counter.

Otherwise:
Create a new local counter for this element type
and set it equal to 1.

2. Add a summary S containing identities and counts
of the k most frequent items to the back of queue Q.
3. Delete all local counters.
4. For each type named in S:

If a global counter exists for this type:
Add to it the count recorded in S.

Otherwise:
Create a new global counter for this element type
and set it equal to the count recorded in S.

5. Add the count of the kth largest type in S to δ.
6. If sizeOf(Q) > N/b:

(a) Remove the summary S′ from the front of Q and
subtract the count of the kth largest type in S′ from δ.
(b) For all element types named in S′:

Subtract from their global counters the counts
recorded in S′.
If a counter is decremented to zero:

Delete it.
(c) Output the identity and value of each global
counter > δ.

3.3 Analysis
Note that as shown above, algorithm Frequent assumes

that all Basic Windows have the same number of items, as
is usually the case in count-based windows. This assump-
tion, however, is not necessary to ensure the algorithm’s
correctness—we may replace line 6 with another condition
for emptying the queue, say every t time units. Therefore,
algorithm Frequent may be used with time-based windows
(that may have uniformly sized Basic Windows in terms of
time, but not necessarily in terms of tuple count) without
any modifications. In the remainder of this section, we will
maintain the assumption of equal item counts in Basic Win-
dows to simplify the analysis.

Algorithm Frequent accepts three parameters: N , b,
and k1. The choice of b is governed by the latency require-
ments of the application: choosing a small value of b in-
creases the frequency with which new results are generated.
However, the amount of available memory dictates the max-
imum number of Basic Windows and the synopsis size k.

The space requirement of algorithm Frequent consists
of two parts: the working space needed to create a sum-
mary for the current Basic Window and the storage space
needed for the top-k synopses. Let d be the number of dis-
tinct item types in a Basic Window (the value of d may be
different for each Basic Window, but we ignore this point
to simplify the analysis) and D be the number of distinct
values in the sliding window. In the worst case, the work-
ing space requires d local counters of size log b. For storage,
there are N/b summaries, each requiring k counters of size
at most log b. There are also at most kN/b global counters
of size at most log N . This gives a total worst-case space
bound of O(d log b + kN

b
(log b + log N)). The time complex-

ity of algorithm Frequent is O(min(k, b)+ b) for each pass
through the outer loop. Since each pass consumes b arriving
elements, this gives O(1) amortized time per element.

Algorithm Frequent may return false negatives. Con-
sider an item that appears on only a few top-k lists, but
summing up its frequency from these top-k lists does not
exceed δ—however, this item may be sufficiently frequent
in other Basic Windows (but not frequent enough to regis-
ter on the top-k lists of these other windows) that its true
frequency count exceeds δ. The obvious solution for reduc-
ing the number of false negatives is to increase k, but this
also increases space usage. Alternatively, decreasing b in-
creases the number of Basic Windows, which may also help
eliminate false negatives.

Another possible downside of algorithm Frequent is that
if k is small, then δ may be very large and the algorithm
will not report any frequent flows. On the other hand, if k
is large and each synopsis contains items of a different type
(i.e. there are very few repeated top-k “winners”), the al-
gorithm may require a great deal of storage space, perhaps
as much as the size of the sliding window. Notably, when
b is only slightly larger than k, there may be fewer than
k distinct items in any Basic Window. In this case, algo-
rithm Frequent will track the exact frequencies of most (if
not all) of the distinct packet types, essentially producing
a compressed representation of the sliding window (or more
precisely, the jumping window) that stores item frequencies
in each Basic Window.

1Note that N and b are specified in units of time in time-
based windows

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup
We have tested algorithm Frequent on count-based win-

dows over TCP traffic data obtained from the Internet Traf-
fic Archive (ita.ee.lbl.gov). We used a trace that contains
all wide-area TCP connections between the Lawrence Berke-
ley Laboratory and the rest of the world between September
16, 1993 and October 15, 1993 [13]. The trace contains 1647
distinct source IP addresses, which we treat as distinct item
types. We set N = 100000 and experiment with three values
of b: b = 20 (5000 Basic Windows in total), b = 100 (1000
Basic Windows in total), and b = 500 (200 Basic Windows in
total). The size of the synopses, k, is varied from one to ten.
In each experiment, we randomly choose one hundred start-
ing points for sliding windows within the trace and execute
our algorithm over those windows. We also run a brute-force
algorithm to calculate the true item type frequencies. We
have measured the average threshold δ, the average number
of over-threshold flows reported, accuracy, and space usage
over one hundred trials, as shown in Figure 1.

4.2 Accuracy
Recall that algorithm Frequent identifies a category as

being over the threshold δ if this category’s frequency count
recorded in the top-k synopses exceeds δ. As k increases, the
frequency of the kth most frequent item decreases and the
overall threshold δ decreases, as seen in Figure 1 (a). Fur-
thermore, increasing the number of synopses by decreasing
b increases δ as smaller Basic Windows capture burstiness
on a finer scale. Consequently, as k increases, the number
of packet types that exceed the threshold increases, as seen
in Figures 1 (b) and (c). The former plots the number of
over-threshold IP addresses, while the latter shows the num-
ber of IP addresses that were identified by our algorithm as
being over the threshold. For example, when k = 5, the
threshold frequency is roughly five percent (Figure 1 (a))
and there are between three and four source IP addresses
whose frequencies exceed this threshold (Figure 1 (b)).

It can be seen in Figures 1 (b) and (c) that algorithm Fre-

quent does not identify all the packet types that exceed the
threshold (there may be false negatives, but recall that there
are never any false positives). In Figure 1 (d), we show the
percentage of over-threshold IP addresses that were identi-
fied by algorithm Frequent. The general trend is that for
k ≥ 3, at least 80% of the over-threshold IP addresses are
identified. Increasing the number of Basic Windows (i.e. de-
creasing the Basic Window size b) also improves the chances
of identifying all of the above-threshold packet types. For
instance, if k > 7 and b = 20, false negatives occur very
rarely.

4.3 Space Usage
Figure 1 (e) shows the space usage of algorithm Fre-

quent in terms of the number of attribute-value, frequency-
count pairs that need to be stored. Recall that the sliding
window size in our experiments is 100000, which may be con-
sidered as a rough estimate for the space usage of a naive
technique that stores the entire window. The space usage
of our algorithm is significantly smaller, especially when b is
large and/or k is small. Because a top-k synopsis must be
stored for each Basic Window, the number of Basic Windows
has the greatest effect on the space requirements.

(a) (b)

(c) (d)

(e) (f)

Figure 1: Analysis of frequent-item reporting capabilities, accuracy, and space usage of algorithm Frequent.
Part (a) shows the average value of the threshold δ as a function of k, part (b) shows the number of packet
types whose frequencies exceed the threshold as a function of k, and part (c) graphs the number of packet
types reported by our algorithm as exceeding the threshold as a function of k. Furthermore, part (d) shows
the percentage of over-threshold packets that were identified as a function of k, part (e) plots the space usage
as a function of k, and part (f) shows the relative error in the frequency estimates of over-threshold items
returned by our algorithm.

4.4 Precision
Recall from Figure 1 (d) that algorithm Frequent may

report false negatives. We have discovered that unreported
frequent types typically have frequencies that only slightly
exceed the threshold, meaning that the most frequent types
are always reported. Furthermore, the reported frequency
estimates were in many cases very close to the actual fre-
quencies, meaning that the reported frequent IP addresses
were arranged in the correct order (though item types with
similar frequencies were often ordered incorrectly). To quan-
tify this statement, we have plotted in Figure 1 (f) the aver-
age relative error (i.e. the difference between the measured
frequency and the actual frequency divided by the actual
frequency) in the frequency estimation of the over-threshold
IP addresses for ten values of k and three values of b. The
relative error decreases as k increases and as b decreases. For
example, when b = 20 and k ≥ 7, the average relative error
is below two percent. Therefore, the reported IP addresses
are nearly always ordered correctly, unless there are two IP
addresses with frequencies within two percent of each other,
and only those IP addresses which exceed the threshold by
less than two percent may remain unreported.

4.5 Lessons Learned
Algorithm Frequent works well as an identifier of fre-

quent items and, to some extent, their approximate frequen-
cies, when used on Internet traffic streams. As expected,
increasing the size of the top-k synopses increases the num-
ber of frequent flows reported, decreases the number of false
negatives, and improves the accuracy of the frequency esti-
mates. Increasing the number of Basic Windows reduces the
refresh delay, decreases the proportion of false negatives and
increases the accuracy of the frequency estimates. However,
space usage grows significantly when either k increases or b
decreases.

5. CONCLUSIONS
We presented an algorithm for detecting frequent items in

sliding windows defined over packet streams. Our algorithm
uses limited memory (less than the size of the window) and
works in the jumping window model. It performs well with
bursty TCP/IP streams containing a small set of popular
item types.

Future work includes theoretical analysis of algorithm Fre-

quent in order to provide bounds on the probability of
false negatives and the relative error in frequency estima-
tion, given a fixed amount of memory and the allowed an-
swer reporting latency. For instance, if the underlying data
conform to a power law distribution, we suspect a correla-
tion between k (the size of the synopses required to guar-
antee some error bound) and the power law coefficient. An-
other possible improvement concerns translating our results
to the gradually sliding window model, where query results
are refreshed upon arrival of each new packet. This may be
done either by bounding the error in our algorithm due to
under-counting the newest Basic Window and over-counting
the oldest Basic Window that has partially expired, or per-
haps by exploiting the Exponential Histogram approach and
its recent extensions in order to extract frequently occur-
ring values. Finally, this work may also be considered as a
first step towards solving the more general problem of re-
constructing a probability distribution of a random variable
given only an indication of its extreme-case behaviour.

6. REFERENCES

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data streams. Proc.
21st ACM SIGACT-SIGMOD-SIGART Symp.
Principles of Database Systems, pages 1–16, 2002.

[2] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. Proc. 29th Int.
Colloquium on Automata, Languages and
Programming, pages 693–703, 2002.

[3] G. Cormode and S. Muthukrishnan. What’s hot and
what’s not: Tracking most frequent items dynamically.
Proc. 22nd ACM SIGACT-SIGMOD-SIGART Symp.
Principles of Database Systems, pages 296–306, 2003.

[4] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and
O. Spatscheck. Gigascope: High performance network
monitoring with an sql interface. Proc. ACM SIGMOD
Int. Conf. on Management of Data, page 623, 2002.

[5] M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows.
Proc. 13th SIAM-ACM Symp. on Discrete Algorithms,
pages 635–644, 2002.

[6] E. Demaine, A. Lopez-Ortiz, and J. I. Munro.
Frequency estimation of internet packet streams with
limited space. Proc. European Symposium on
Algorithms, pages 348–360, 2002.

[7] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. Proc. ACM SIGCOMM
Internet Measurement Workshop, pages 75–80, 2001.

[8] M. Fang, N. Shivakumar, H. Garcia-Molina,
R. Motwani, and J. Ullman. Computing iceberg
queries efficiently. Proc. 24th Int. Conf. on Very Large
Data Bases, pages 299–310, 1998.

[9] P. Gibbons and Y. Matias. New sampling-based
summary statistics for improving approximate query
answers. Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 331–342, 1998.

[10] L. Golab and M. T. Özsu. Issues in data stream
management. ACM SIGMOD Record, 32(2):5–14,
Jun. 2003.

[11] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-total. Proc.
12th Int. Conf. on Data Engineering, pages 152–159,
1996.

[12] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. Proc. 28th Int. Conf. on
Very Large Data Bases, pages 346–357, 2002.

[13] V. Paxson and S. Floyd. Wide-area traffic: The failure
of poisson modeling. IEEE/ACM Trans. on
Networking, 3(3):226–244, Jun. 1995.

[14] L. Qiao, D. Agrawal, and A. El Abbadi. Supporting
sliding window queries for continuous data streams.
Proc. 15th Int. Conf. on Scientific and Statistical
Database Management, 2003, to appear.

[15] M. Sullivan and A. Heybey. Tribeca: A system for
managing large databases of network traffic. Proc.
USENIX Annual Technical Conf., 1998.

[16] Y. Zhu and D. Shasha. StatStream: Statistical
monitoring of thousands of data streams in real time.
Proc. 28th Int. Conf. on Very Large Data Bases,
pages 358–369, 2002.

