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Abstract

We study wrappings of smooth (convex) surfaces by a flat piece of paper or foil. Such wrap-
pings differ from standard mathematical origami because they require infinitely many infinites-
imally small folds (“crumpling”) in order to transform the flat sheet into a surface of nonzero
curvature. Our goal is to find shapes that wrap a given surface, have small area and small
perimeter (for efficient material usage), and tile the plane (for efficient mass production). Our
results focus on the case of wrapping a sphere. We characterize the smallest square that wraps
the unit sphere, show that a 0.1% smaller equilateral triangle suffices, and find a 20% smaller
shape contained in the equilateral triangle that still tiles the plane and has small perimeter.
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1 Introduction

Traditional mathematical origami [DD01, DDMO04, DO07, Hul01] considers folding a flat polygon
of paper along a finite collection of creases into a flat or three-dimensional origami. The resulting
surface necessarily has zero (intrinsic) Gaussian curvature at every point—that is, every point of
paper has a neighborhood that is isometric to a disk—because such folding preserves the intrinsic
metric of the paper. If we imagine coalescing overlapping layers of paper, then the origami can
have vertices of nonzero curvature at crease vertices, but only finitely many. (A simple example
of this possibility is folding an origami box.) The remaining points of zero curvature need not
be (extrinsically) flat—they can curve along ruled surfaces—and even the creases themselves can
curve [DO07, chapter 20]. But it is impossible, for example, to fold a sphere, where every point
has nonzero curvature.

This paper studies a kind of folding that does not preserve the intrinsic metric and can change
the Gaussian curvature at all points. In particular, it becomes possible to fold a sphere from a
square. This type of folding is perhaps best described physically as wrapping with foil. Indeed,
our original motivation for this type of folding (detailed below) is the wrapping of spherical con-
fectioneries by foil. Confectioners foil is relatively easy to “crinkle”, i.e., infinitesimally wrinkle or
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crumple around the desired surface. Crinkling enables the effective formation of positive curvature
throughout the wrapping.

We model the intuitive notion of crinkling with the mathematical notion of a contractive map-
ping. We still prevent the material from stretching, but allow it to shrink arbitrarily; in other words,
the intrinsic metric can be contracted but not expanded by the wrapping. A theorem of Burago
and Zalgaller [BZ96] justifies this definition: it shows, roughly, that such a contractive wrapping
of a smooth surface can be approximated arbitrarily closely (in an extrinsic sense) by infinitesimal
wiggling of a metric-preserving folding. We formalize these notions and connections in Section 2.
This model opens up the study of wrapping a smooth convex surface by a flat shape.

We consider three objectives in such wrappings: minimizing area, minimizing perimeter, and
the shape tiling the plane. Minimizing area naturally minimizes the material usage. Minimizing
perimeter results in a minimum amount of cutting from a sheet of material. Minimizing perimeter
is also good if we take the Minkowski sum of the shape with an ε-radius disk, which increases the
area by roughly ε times the perimeter for small ε. This provides a simple approach for ensuring an
ε overlap where the boundary of the shape meets itself (which the crinkling then locks together).
Minimizing perimeter relative to area also encourages a relatively fat shape; a large enclosed disk
also enables the accurate presentation of an image on the wrapping. Finally, the shape tiling the
plane enables efficient use of large sheets of material when the wrapping is mass-produced.

Minimization of both area and perimeter, with or without the tiling constraint, is a bicriterion
optimization problem. An ideal solution is a full characterization of the Pareto curve, that is,
the minimum area possible for each perimeter and vice versa. Just minimizing the area is not
interesting: starting from an arbitrarily thin rectangular strip, it is possible to wrap any surface
using material arbitrarily close to the surface area, by a modification of the method in [DDM00].
Minimizing perimeter alone remains an interesting open problem, however.

In this paper, we focus on wrappings of the simplest smooth convex surface, the unit sphere.
We study some of the most natural wrappings based on the idea of “petals”, and analyze their
performance. Figure 1 plots the performance of some of these wrappings in the area–perimeter
plane; the lower envelope is our best approximation of the Pareto curve. Our results in particular
characterize the smallest square that wraps the unit sphere, and reveal a wrapping equilateral
triangle of smaller area than this square. These shapes are of particular interest because they tile
the plane and are simple. We also discover several more sophisticated wrappings that are better in
some of the metrics.

Motivation. The Mozartkugel (“Mozart sphere”) [Wika, Wikb] is a famous fine Austrian con-
fectionery: a sphere with marzipan in its core, encased in nougat or praline cream, and coated
with dark chocolate. It was invented in 1890 by Paul Fürst in Salzburg (where Wolfgang Amadeus
Mozart was born), six years after he founded his confectionery company, Fürst. Fürst (the com-
pany) still to this day makes Mozartkugeln by hand, about 1.4 million per year, under the name
“Original Salzburger Mozartkugel” [Für]. At the 1905 Paris Exhibition, Paul Fürst received a gold
medal for the Mozartkugel.

Many other companies now make similar Mozartkugeln, but Mirabell is the market leader with
their “Echte (Genuine) Salzburger Mozartkugeln” [Mir]. Mirabell has made over 1.5 billion, about
90 million per year, originally by hand but now by industrial methods. Mirabell claims their
product to be the only Mozartkugel that is perfectly spherical. They are also the only Mozartkugel
to have been taken into outer space, by the first Austrian astronaut Franz Viehböck as a gift to the
Russian cosmonauts on the MIR space station. Despite industrial techniques, each Mozartkugel
still takes about 2.5 hours to make.
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Figure 1: Area–perimeter plot of the families of sphere wrappings we discuss.

Although most of a Mozartkugel is edible, each sphere is individually wrapped in a square of
aluminum foil. To minimize the amount of this wasted, inedible material, it is natural to study the
smallest piece of foil that can wrap a unit sphere. Because the pieces will be cut from a large sheet
of foil, we would also like the unfolded shape to tile the plane. All studied confectionery wrappings
also expand their boundaries slightly, allowing the edges to overlap and thus safely securing the
chocolate even in an approximate folding. Minimizing the perimeter of the shape will approximately
minimize the material wastage from this process.

We begin our exploration with the actual wrappings by Fürst and Mirabell. Our extensive
experiments throughout 2007 have revealed that each company wraps their Mozartkugeln consis-
tently, but the companies differ. Ignoring the slight overlap, Fürst uses a square of side length
π
√

2, while Mirabell uses a π× 2π rectangle. It may seem surprising that these two different wrap-
pings have identical area, but we show that this fact stems from a certain bijection between the
shapes’ underlying “petals”. Fürst’s wrapping, however, is clearly superior in that it has smaller
perimeter. On the other hand, our equilateral-triangle wrapping is simple enough that it might be
considered by either company. Its area savings of 0.1% may prove significant on the many millions
of Mozartkugel consumed each year. Even better, some portions of this shape can be cut away
while still wrapping the sphere and tiling the plane, achieving a 20% savings.1

1In addition to direct savings in material costs for Mozartkugel manufacturers, the reduced material usage also
indirectly cuts down on CO2 emissions, and therefore partially solves the global-warming problem and consequently
the little-reported but equally important chocolate-melting problem.
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2 Wrapping in General

In standard mathematical origami [DDMO04, DO07], a piece of paper P is a two-dimensional
manifold, typically a flat polygon, and a folding f : P → R3 is a noncrossing isometric mapping
of this piece of paper into Euclidean 3-space. The isometric constraint means that the mapping
preserves the intrinsic metric, i.e., the distances as measured by shortest paths on the piece of paper
before and after mapping via the folding.

But there is no isometric folding of a square into a sphere, or any surface with infinitely many
points of nonzero Gaussian curvature. Therefore we define a new, less restrictive type of folding
that allows changing curvature but still prevents stretching of the material.

Definition of wrapping. A wrapping is a noncrossing contractive mapping of a piece of paper
into Euclidean 3-space. The contractive constraint means that every distance either decreases or
stays the same, as measured by shortest paths on the piece of paper before and after mapping via
the folding. Contractive mappings are called short or contracting by Burago and Zalgaller [BZ96]
and submetry maps by Pak [Pak06].2 Here we do not specify the precise noncrossing constraint,
because the details are involved even for isometric foldings [DDMO04, DO07]. For our purposes,
we can use a simple but strong condition that the mapping is one-to-one—an embedding—except
at pairs of points whose shortest-path distance is contracted down to zero.

Why contraction? To match reality, the contractive definition of wrapping effectively assumes
that length contraction can be achieved by continuous infinitesimal crinkling of the material. This
assumption is justified for smooth mappings by the following theorem of Burago and Zalgaller
[BZ96]:

Theorem 1 [BZ96] Every contractive C2-immersion f of a polyhedral metric P (e.g., a polygon)
admits a C0-approximation by isometric piecewise-linear C0-immersions. In other words, for any
ε > 0, there is an isometric piecewise-linear C0-immersion fε of P for which ‖fε(p)−f(p)‖ < ε for
all points p of P . Furthermore, if f is an embedding (one-to-one), then so are the approximations fε.

This theorem says that, if we allow an ε variation of the target shape, then any smooth con-
tractive mapping can in fact be achieved by a regular isometric folding. The embedding clause says
that even our simple noncrossing condition can be preserved: the portion P ′ of the paper P that is
mapped one-to-one remains so, while the remaining points contracted down to P ′ can come along
for the ride.

Wrapping motions. This connection to isometric foldings allows us to apply existing technology
for transforming the folded states given by a wrapping into an entire continuous folding motion
from the piece of paper to the surface—modulo the ε approximation from Theorem 1. Specifically,
we can apply the following result:

Theorem 2 [DDMO04] Every isometric folded state of a simple polygon can be obtained by a
continuous isometric folding motion from the unfolded polygon, while avoiding crossings.

2In fact, Burago and Zalgaller [BZ96] require that every distance shrinks by some factor C < 1. This discrepancy
does not affect our statement of Theorem 1, however: their theorem applies for all C < 1 scalings of the target metric,
and we can take the limit as C → 1. The same argument is implicit in [Pak06].
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We conjecture that the exact image of the contractive mapping can also be obtained by a
continuous contraction (called a shrinking by Pak [Pak06]) while avoiding crossings. One natural
approach is to continuously interpolate the intrinsic metric of the paper, compute the resulting
curvature at every point, and construct a corresponding convex surface (and prove its existence).
We suspect that this approach avoids crossings for the wrappings described in this paper but not
in general.

Stretched paths and wrappings. We can model one family of wrappings by expressing which
distances are preserved isometrically. An optimal wrapping should be isometric along some path,
for otherwise we could uniformly scale up the object and the wrapping function while keeping the
piece of paper fixed and the wrapping contractive. We call a path taut if the wrapping is isometric
along it. A taut wrapping has the property that every point is covered by some taut path. Such a
wrapping can be specified by a set of taut paths on the piece of paper, and their mapping on the
target surface, whose union covers the entire paper and the entire surface. Although not all such
specifications are valid—we need to check that all other paths are contractive—the specification
does uniquely determine a wrapping.

We specify all of our wrappings in this way, under the belief that taut wrappings are generally
the most efficient. It would be interesting to formalize this belief, say, for all wrappings on the
area–perimeter Pareto curve. We also conjecture that such a wrapping is described by a tree of
taut curves: that the space of taut curves is locally one-dimensional, connected, and acyclic.

Convex chains. A useful lemma for proving that sphere wrappings are contractive is the follow-
ing:

Lemma 3 [ACC+08] Given a open chain on a sphere that is convex together with the closing edge,
if we embed the chain into the plane with matching edge lengths and angles, then the closing edge
increases in length.

Here the edges of the chain represent a chain of taut paths in the wrapping, whose lengths and
angles are preserved between the unfolded piece of paper in the plane and the folding on the sphere.
The lemma tells us that the shortest-path (closing) distance contracts when mapped to the sphere.

Source wrapping. A special case of taut wrapping is when the taut paths consist of the shortest
paths from one point x to every other point y. We call this a source wrapping by analogy to source
unfoldings of polyhedra [MMP87, DO07]. Equivalently, a source wrapping is a taut wrapping in
which the taut paths form a star, i.e., a tree of depth 1. In this case, we are rolling geodesics in
the piece of paper onto geodesics of the target surface. The reverse of this situation corresponds
to continuous unfoldings of smooth polyhedra as considered by Benbernou, Cahn, and O’Rourke
[BCO04]. Although perhaps the most natural kind of wrapping, this special case is too restrictive
for our purposes: it essentially forces the sphere to be wrapped by a disk of radius π in order for the
geodesics from x to reach around to the pole opposite x. The source folding is indeed a wrapping
by Lemma 3 because every two points are connected by a (convex) chain of two taut paths. The
wrapping has area π3 and perimeter 2π2, as shown by the topmost point in Figure 1. As we will see,
this wrapping is not on the Pareto curve, and in particular the area can be substantially improved.

A simple variation of the source wrapping uses two antipodal sources, connected by a taut path,
with every other point connected by a taut path to the nearest source. The corresponding unfolding
is then two disks of radius π/2 attached at one point. The wrapping has area π3/2 and perimeter
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2π2, i.e., the same perimeter and half the area of the source unfolding. This wrapping is called the
two-source wrapping in Figure 1.

Strip wrapping. If we start with an arbitrarily long and narrow rectangle, we can wrap a unit
sphere using paper area arbitrarily close to the surface area 4π. We take an arbitrarily close
(in surface area) polyhedral approximation circumscribing the sphere, and wrap the polyhedron
using standard origami techniques of [DDM00]. Then we centrally project that wrapping onto the
circumscribed sphere. This projection is a contractive mapping because tanα ≥ α for 0 ≤ α < π/2.
The rectangle of paper even tiles the plane. The perimeter, however, increases drastically as the
area approaches optimality. It remains open to compute the exact area–perimeter trade-off achieved
by this method. In Figure 1 we simply show the limit point of 4π area and infinite perimeter. This
point is on the Pareto curve.

3 Petal Wrapping

Our first family of nontrivial sphere wrappings are the k-petal wrappings. To define them, we
construct a depth-2 tree of taut paths that cover all points on the sphere; refer to Figure 2. First
we construct k taut paths p1, p2, . . . , pk along great circular arcs from the south pole to the north
pole (meridians), dividing the 2π angle around each pole into k equal parts of 2π/k. To each path
pi we assign an orange peel with apex angles 2π/k, centered on the path pi and bounded by the
great-circle angular bisectors between pi−1 and pi and between pi and pi+1. In other words, these
orange peels form the Voronoi diagram of sites p1, p2, . . . , pk on the sphere. These orange peels
partition the surface of the sphere into k equal pieces.

Figure 2: The taut paths p1, p2, . . . , pk are bold meridians; the boundaries of the orange peels are
thin meridians. In this example, k = 6.

Then we construct a continuum of taut paths to cover each orange peel. Specifically, for every
point q along each path pi, we construct two taut paths emanating from q, proceeding along
geodesics perpendicular to pi in both directions, and stopping at the boundary of pi’s orange peel.

These taut paths cover every point of the sphere (covering boundary points twice). It remains
to find a suitable piece of paper that wraps according to these taut paths. The main challenge is to
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unfold the half of an orange peel left of a path pi. Then we can easily glue the two halves together
along the (straight) unfolded path pi, resulting in what we call a petal, and finally join these petals
at the unfolded south pole. The resulting shape is the k-petal wrapping.

To unroll half of a petal, we parameterize as shown in Figure 3. Here B = π/k is the half-petal
angle; c ∈ [0, π] is a given amount that we traverse along the center path pi starting at the south-
pole endpoint; A = π/2 specifies that we turn perpendicular from that point; and b is the distance
that we travel in that direction. Our goal is to determine b in terms of c.

B

A

C

b

c

a

Figure 3: Half of a petal, labeled in preparation for spherical trigonometry.

By the spherical law of cosines,

cos C = − cos A cos B + sinA sinB cos c.

Now cos A = cos(π/2) = 0 and sinA = sin(π/2) = 1, so this equation simplifies to cos C =
sinB cos c. Hence, sin C =

√
1− sin2 B cos2 c. By the spherical law of sines,

sinB

sin b
=

sinC

sin c
.

Substituting sinC =
√

1− sin2 B cos2 c, we obtain

sinB

sin b
=

√
1− sin2 B cos2 c

sin c
,

i.e.,

sin b =
sinB sin c√

1− sin2 B cos2 c
.

Using the fact that tan2 b = 1/(1/ sin2 b − 1), we obtain that tan b = (sin B sin c)/ cos B. Taking
arctan of both sides, we determine the value of b in terms of the parameter c and the known quantity
B = π/k:

b = b(c) = arctan
(

sin c tan(π/k)
)
.
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To summarize, one half of a petal is given by the curve {(c, b(c)) | 0 ≤ c ≤ π}. The area of
the k-petal wrapping is thus given by the integral

∫ π
c=0 b(c) dc, multiplied by the number 2k of half

petals. The perimeter is given by the arc-length integral
∫ π

c=0

√
1 +

(
db(c)
dc

)2
dc, again multiplied

by 2k. We are not aware of a closed-form solution for either integral. Also, the second derivative of
b(c) is always negative, except at c = 0 and c = π where it is zero, proving that the petal is convex.

Figure 4 shows the resulting petal wrappings for k = 3, 4, 5, 6. It remains to show that these
are actually wrappings, i.e., contractive. First, any two points within the same half of a petal are
connected by a convex (90◦) chain of taut paths, where the middle path is along one of the paths pi.
Thus, by Lemma 3, their distance contracts when mapped to the sphere. Now consider any two
points q and q′ in different half petals. Their shortest path on the piece of paper visits two half
petals (either within the same petal or between two petals). Decompose the shortest path at the
transition point t between the two half petals. By the previous argument, each of the two paths
q t and t q′ contracts when mapped to the sphere. By the triangle inequality, the distance between
q and q′ on the sphere is at most the sum of the distances between q and t and between t and q′

on the sphere, each of which is contracted relative to the corresponding distances measured on the
piece of paper, which sum to exactly the distance between q and q′ in the piece of paper. Thus the
wrapping is contractive.

The bottom curve in Figure 1 plots the performance of the petal wrappings. To our knowledge,
all of these points may be on the Pareto curve. In the limit k → ∞, we obtain the same 4π area
and infinite perimeter of the strip wrapping.

We can also compute the area and perimeter of the convex hull of the k-petal wrapping, for
k > 3, which is a regular k-gon. (The special case k = 3 is considered later.) The circumcircle of
the regular polygon has radius π, so the area is 1

2kπ2 sin(2π/k) and the perimeter is 2kπ sin(π/k).
The left curve in Figure 1 plots the performance of these wrappings. None of these points lie on
the Pareto curve: they are all dominated by the k = 3 case considered later, In the limit k → ∞,
we obtain the circular source unfolding at the top of the plot.

The convex hull of the k-petal wrapping is also a wrapping by a similar contractiveness argu-
ment. Now we decompose the shortest path between two points on the piece of paper into possibly
several subpaths, namely, maximal paths that are within a single half petal or exterior to all petals.
The former type has already been handled. It remains to consider two points q and q′ on the
boundary of two facing half petals. Assume by possible relabeling that q is farther than q′ from the
center of the wrapping (the base of both petals). Point q′ contracts against a corresponding point
q̃ on q’s petal. Because the angle q′ q̃ q is obtuse, the hypotenuse q q′ is longer than the length q q̃.
The points q and q̃ are in a common half petal, so contract when mapped to the sphere. Thus so
do q and q′.

4 Comb Wrapping

Our second family of nontrivial sphere wrappings are the k-comb wrappings. To define them, we
construct a depth-3 tree of taut paths that cover all points on the sphere. We start with a backbone
path taut around the equator. Then we add k taut paths extending up and k taut paths extending
down perpendicularly from the equator to the north and south poles, respectively. Finally, every
other point on the sphere connects perpendicularly to one of these paths along a taut path.

Interestingly, these wrappings are almost identical to k-petal wrappings: the piece of paper for
the k-comb wrapping can be constructed by gluing k vertical petals side by side, joining at their
middles. Figure 5 shows the examples k = 3, 4, 5, 6. As a consequence, both the area and the
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(a) k = 3 (b) k = 4

(c) k = 5 (d) k = 6

Figure 4: k-petal wrappings.

perimeter of the k-comb wrapping are identical to that of the k-petal wrapping, and thus they are
plotted by the same lower curve in Figure 1.

On the other hand, the convex hull of the k-comb wrapping is quite different: a middle 2π(k−
1)/k×π rectangle with a half petal glued on two of the sides. Thus the area is 2π2(k−1)/k plus the
area of one petal (1/kth the area of the k-petal wrapping), and the perimeter is 2π + 4π(k − 1)/k
plus the perimeter of one petal. The middle curve in Figure 1 plots the performance of these
wrappings. None of these wrappings are on the Pareto curve, being dominated by the two-source
wrapping.

The k-comb wrapping and its convex hull are contractive by analogous arguments to the k-petal
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(a) k = 3 (b) k = 4

(c) k = 5 (d) k = 6

Figure 5: k-comb wrappings.

wrappings.
The comb wrappings in Figure 5 look similar to the classic map projections known in cartogra-

phy as interrupted sinusoidal projections. The difference is that the map projection unfolds along
latitudinal lines, while we unfold along great circular arcs.

5 Mozartkugel Wrapping

The angle at the tip (or base) of a half petal is intuitively π/k, because that is the corresponding
angle on the sphere. This fact can be verified by taking the derivative db(c)

dc at c = 0. For k = 4,
the derivative is 1 which implies a half angle of π/4. Because the petals are convex, the convex hull
of the petal wrapping for k = 4 is exactly the square of diagonal 2π; see Figure 4(b). This square
has area 2π2 and perimeter 8π/

√
2 ≈ 5.656854π. The second point from the left of Figure 1 plots

the performance of this wrapping. This square wrapping is precisely that used by Fürst’s Original
Salzburger Mozartkugel [Für] (except that in practice it is expanded a bit to ensure overlap).

No smaller square could wrap the unit sphere because the length of the path connecting the
center of the square to the point mapped to the antipodal point must have length at least π. Thus
we obtain the smallest square that wraps the unit sphere. This optimality result mirrors one of
the few optimal wrapping results from the isometric folding literature, namely, the smallest square
that wraps the unit cube [CJL01].

On the other hand, consider the smallest rectangle enclosing the k-comb wrapping for any k.
The backbone reaches around the equator, so has length 2π. The perpendicular paths connect the
north and south poles, so have total extent π. Therefore the rectangle is π × 2π, which has the
same area 2π2; see Figure 5(b). The perimeter is somewhat larger, 6π. This wrapping can be seen
in Figure 1 as the limit of the convex hulls of the comb wrappings. Mirabell’s Echte Salzburger

10



Mozartkugeln [Mir] uses precisely the 4-comb wrapping expanded out to this containing rectangle
(and expanded a bit further to ensure overlap).

Note that neither of the two Mozartkugel wrappings are on the Pareto curve, illustrating the
wastefulness of our industrial society.

6 Triangle Wrapping

For k = 3, the angle at the tip of the petals can be computed similarly to obtain 2π/3, which
is natural as the three petals meet at the north pole, their angles summing to 2π. However, the
convex hull of the 3-petal wrapping is not a triangle. We compute its smallest enclosing equilateral
triangle. Each supporting line of the triangle must be tangent to two of the petals. The tangent
point on the petal can be computed by finding the point (c, b) on its boundary that maximizes the
direction (− cos(π/3), sin(π/3)). Plugging this into the formula for b = b(c), we obtain

c = arccos
(√

57
6 − 1

2

)
≈ 0.7100861,

b = arcsin
√√

57−5√√
57−3

≈ 0.8459698.

Thus the supporting line is at a distance

h = π
2 −

1
2 arccos

(√
57
6 − 1

2

)
+

√
3

2 arcsin
√√

57−5√√
57−3

≈ 0.6201901 π

from the center. The equilateral triangle has an inscribed disk of radius h. The area is therefore
3h2 tan(π/3) ≈ 1.998626 π2, about 0.1% less than the 2π2 area of the smallest wrapping square.
The side length of the triangle is s = 2h tan(π/3) ≈ 2.148401 π, so the perimeter is 3s ≈ 6.445204 π.
The triangle point in Figure 1 plots the performance of this wrapping.

Using this triangle, we can also compute the area and perimeter of the convex hull of the 3-petal
wrapping. The area of the hull is the area of the equilateral triangle, minus the area of the three
small equilateral triangles bounded by two tangency points and a corner of the large triangle, plus
the area of the six partial half petals contained in those small triangles. The small triangles have
side length 2b, so each has area 1

4(2b)2
√

3 = b2
√

3 ≈ 1.239568. Each partial half petal has area∫ c
ĉ=0 b(ĉ) dĉ ≈ 0.03597917 π2.3 The hull area is thus ≈ 1.837717 π2. Similarly, the perimeter of the

hull is the perimeter of the large triangle, minus two sides of each of the three small triangles, plus
the perimeter of the six partial half petals. The perimeter of each partial half petal is ≈ 0.3560733 π,
so the hull perimeter is ≈ 5.350277 π. The leftmost point in Figure 1 plots the performance of this
wrapping. This is the smallest perimeter we have seen for a shape that wraps the unit sphere, and
one of the only two (together with the two-source unfolding) that dominates the triangle wrapping.

7 Tiling

Instead of expanding the petal wrappings to tilable regular polygons, we can pack the petal wrap-
pings directly and expand them just to fill the extra space. Figure 6 shows what we believe to be
the best tiling from the k-petal wrapping. The area of the resulting tile shape is ≈ 1.603304 π2, a
substantial improvement over the equilateral triangle of area ≈ 1.998626 π2. In the center, we show
how the tile leaves room for a large inscribed disk for a confectionery logo.

3This approximation was computed using Maple at 50 digits of precision.

11



Figure 6: Packing the 3-petal wrapping.

Starting from the comb wrapping, we obtain even better tilings, as shown in Figure 7. As
k → ∞, the area usage approaches 4π2/3 ≈ 4.188790 π, less than 5% larger than the optimal 4 π.
Of course, these wrappings have increasingly large perimeter.

8 Conclusion

This paper initiates a new research direction in the area of computational confectionery. We leave
as open problems the study of wrapping other geometric confectioneries, or further improving our
wrappings of the Mozartkugel. What is the complete shape of the Pareto curve? What is the shape
of minimum perimeter that can wrap a unit sphere? What if the shape must tile the plane? What

12



(a) k = 3 (b) k = 4

(c) k = 5 (d) k = 6

Figure 7: Packing the k-comb wrapping.

about smooth surfaces other than the sphere?
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