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Abstract

We study wrappings of the unit sphere by a piece
of paper (or, perhaps more accurately, a piece of
foil). Such wrappings differ from standard origami
because they require infinitely many infinitesimally
small “folds” in order to transform the flat sheet into
a positive-curvature sphere. Our goal is to find shapes
that have small area even when expanded to shapes
that tile the plane. We characterize the smallest
square that wraps the unit sphere, show that a 0.1%
smaller equilateral triangle suffices, and find a 20%
smaller shape that still tiles the plane.
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1 Introduction

The Mozartkugel (“Mozart sphere”) [9, 8] is a famous
fine Austrian confectionery: a sphere with marzipan
in its core, encased in nougat or praline cream, and
coated with dark chocolate. It was invented in 1890
by Paul Fürst in Salzburg (where Wolfgang Amadeus
Mozart was born), six years after he founded his con-
fectionery company, Fürst. Fürst (the company) still
to this day makes Mozartkugeln by hand, about 1.4
million per year, under the name “Original Salzburger
Mozartkugel” [6]. At the 1905 Paris Exhibition, Paul
Fürst received a gold medal for the Mozartkugel.

Many other companies now make similar
Mozartkugeln, but Mirabell is the market leader with
their “Echte (Genuine) Salzburger Mozartkugeln” [7].
Over 1.5 billion have been made, about 90 million
per year, originally by hand but now by industrial
methods, and Mirabell claims their product to be
the only Mozartkugel that is perfectly spherical.
They are also the only Mozartkugel to be taken into
outer space, by the first Austrian astronaut Franz
Viehböck as a gift to the Russian cosmonauts on the
MIR space station. Despite industrial techniques,
each Mozartkugel still takes about 2.5 hours to make.

Although most of a Mozartkugel is edible, each
sphere is individually wrapped in a square of alu-
minum foil. To minimize the amount of this wasted,
inedible material, it is natural to study the smallest
piece of foil that can wrap a unit sphere. Because the
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pieces will be cut from a large sheet of foil, we would
also like the unfolded shape to tile the plane.

We formalize this practical problem in the next sec-
tion; the main difficulty is to allow a continuum of
infinitesimal folds to curve the paper, a feature not
normally modeled by mathematical origami. We then
study wrappings by squares and equilateral triangles,
and show that the latter leads to a small (0.1%) sav-
ings, which may prove significant on the many mil-
lions of Mozartkugel consumed each year. Even bet-
ter, if we allow wrapping by arbitrary shapes that
tile the plane, we show how to achieve a 20% sav-
ings. In addition to direct savings in material costs
for Mozartkugel manufacturers, the reduced material
usage also indirectly cuts down on CO2 emissions, and
therefore partially solves the global-warming problem
and consequently the little-reported but equally im-
portant chocolate-melting problem.

2 Wrapping Problem

In standard mathematical origami [4, 5], a piece of
paper is a two-dimensional manifold (usually flat),
and a folding is an isometric mapping of this piece of
paper into Euclidean 3-space. Here isometric means
that distances are preserved, as measured by shortest
paths on the piece of paper before and after mapping
via the folding.

But there is no isometric folding of a square into a
sphere: isometric folding preserves curvature. There-
fore we define a new, less restrictive type of fold-
ing that allows changing curvature but still prevents
stretching of the material. Namely, a wrapping is a
continuous contractive mapping of a piece of paper
into Euclidean 3-space. Here contractive means that
every distance either decreases or stays the same, as
measured by shortest paths on the piece of paper be-
fore and after mapping via the folding. This definition
effectively assumes that the length contraction can be
achieved by continuous infinitesimal pleating.

We can model one family of wrappings by express-
ing which distances are preserved isometrically. An
optimal wrapping should be isometric along some
path, for otherwise we could uniformly scale the en-
tire wrapping and make a larger object. We call a
path stretched if the wrapping is isometric along it. A
stretched wrapping has the property that every point
is covered by some stretched path. Such a wrapping
can be specified by a set of stretched paths whose
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union covers the entire piece of paper. Although not
all such specifications are valid—we need to check that
all other paths are contractive—the specification does
uniquely determine a wrapping. We specify all of our
wrappings in this way, under the belief that stretched
wrappings are generally the most efficient.

A special case of stretched wrapping is when the
stretched paths consist of the shortest paths from one
point x to every other point y. In this case, we are
rolling geodesics in the piece of paper onto geodesics
of the target surface. This situation corresponds to
continuous unfoldings of smooth polyhedra as con-
sidered by Benbernou, Cahn, and O’Rourke [1]. Al-
though perhaps the most natural kind of wrapping,
this special case is too restrictive for our purposes,
as it essentially forces the sphere to be wrapped by a
disk of radius π, for those geodesics to reach around
to the pole opposite x. We will show how to wrap
with far less paper than this disk of area π3.

Note that, if we start with an arbitrarily long and
narrow rectangle, we can wrap the sphere using pa-
per area arbitrarily close to the surface area 4π of
the sphere [3]. This wrapping is not very practical,
however; in particular, it makes it difficult to make a
nondistorted logo on the surface of the sphere.

The only other known optimal wrapping result
(where no contraction is necessary) is wrapping a unit
cube with a square [2].

3 Petal Wrapping

Our wrappings are based on the following k-petal
wrapping. On the sphere we first construct k stretched
paths p1, p2, . . . , pk from the south pole to the north
pole, dividing the 2π angle around each pole into k
equal parts of 2π/k. To each path pi we assign an
“orange peel” with apex angles 2π/k, centered on
the path pi and bounded by the Voronoi diagram of
pi−1, pi, pi+1. These orange peels partition the surface
of the sphere into k equal pieces.

Then we construct a continuum of stretched paths
to cover each orange peel. Specifically, for every point
q along each path pi, we construct two stretched paths
emanating from q, proceeding along geodesics perpen-
dicular to pi in both directions, and stopping at the
boundary of pi’s orange peel.

These stretched paths cover every point of the
sphere (covering boundary points twice). It remains
to find a suitable piece of paper that wraps accord-
ing to these stretched paths. The main challenge is
to unfold the half of an orange peel left of a path pi.
Then we can easily glue the two halves together along
the (straight) unfolded path pi, and finally join the
resulting petals at the unfolded south pole.

To unroll half of a petal, we parameterize as shown
in Figure 1. Here B = π/k is the half-petal angle;
c is a given amount that we traverse along the center

path pi starting at the south-pole endpoint; A = π/2
specifies that we turn perpendicular from that point;
and b is the distance that we travel in that direction.
Our goal is to determine b in terms of c.
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Figure 1: Half of a petal, labeled in preparation for
spherical trigonometry.

By the spherical law of cosines,

cos C = − cos A cos B + sinA sinB cos c.

Now cos A = cos(π/2) = 0 and sinA = sin(π/2) =
1, so this equation simplifies to cos C = sinB cos c.
Hence, sinC =

√
1− sin2 B cos2 c. By the spherical

law of sines,
sinB

sin b
=

sinC

sin c
.

Substituting sinC =
√

1− sin2 B cos2 c, we obtain

sinB

sin b
=

√
1− sin2 B cos2 c

sin c
,

i.e.,

sin b =
sinB sin c√

1− sin2 B cos2 c
.

Taking arccos of both sides, we determine the value of
b in terms of the parameter c and the known quantity
B = π/k.

Figure 2 shows two examples of the resulting petal
unfolding, with k = 3 and k = 4.

4 Square Wrapping

The angle at the tip of the petals can be computed
by taking the derivative ∂b/∂c at c = 0. For k =
4, this derivative is 1 which implies a half angle of
π/4. Because the petals are convex, the convex hull
of the petal unfolding for k = 4 is exactly the square
of diagonal 2π. No smaller square could wrap the
unit sphere because the length of the path connecting
the center of the square to the point mapped to the
antipodal point must have length at least π. This
square has area 2π2.

Note that the same area is attainable by a rectan-
gle of dimensions 2π×π: draw one path p around the
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(a) k = 3

(b) k = 4

Figure 2: Petal unfoldings.

equator of the sphere and cover the sphere by a contin-
uum of stretched paths perpendicular to p emanating
from every point of p until the north and the south
pole of the sphere. The same rectangle is also exactly
a 2-petal unfolding. Interestingly, the area of this
rectangle wrapping is also 2π. The Echte Salzburger
Mozartkugel is wrapped by Mirabell using the same
rectangle (expanded a bit to ensure overlap) but with
a slightly different folding.

5 Triangle Wrapping

For k = 3, the angle at the tip of the petals can be
computed similarly to obtain 2π/3, which is natural

as the three petals meet at the north pole, their an-
gles summing to 2π. However, the convex hull of the
3-petal unfolding is not a triangle. We compute its
smallest enclosing equilateral triangle. The support-
ing lines of the triangle will be each tangent to two
of the petals. The tangent point on the petal can be
computed by finding the point (c, b) on its boundary
that maximizes the direction (− cos(π/3), sin(π/3)).
Plugging this into the previous equations, we obtain

c = arccos
(√

57
6 − 1

2

)
≈ 0.710086.

This implies that the supporting line is at a distance

π
2 −

1
2 arccos

(√
57
6 − 1

2

)
+

√
3

2 arcsin
(√√

57−5√√
57−3

)
≈ 0.620190π

from the center. The area of the inscribing equilat-
eral triangle is therefore 3h2 tan(π/6) ≈ 1.998626 π2,
about 0.1% less than the 2π2 area of the smallest
wrapping square.

6 Tiling

Instead of expanding the petal unfoldings to tilable
regular polygons, we can pack the petal unfoldings
directly and expand them just to fill the extra space.
Figure 3 shows an even better tiling resulting from
the 3-petal unfolding. A quick computation shows
that only about 1.6 π2 area of paper is required for
each wrapping, a substantial improvement.

Figure 3: Packing the 3-petal unfolding.
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7 Conclusion

This paper initiates a new research direction in the
area of computational confectionery. We leave as open
problems the study of wrapping other geometric con-
fectioneries, or further improving our wrappings of the
Mozartkugel. In particular, what is the optimal con-
vex shape that can wrap a unit sphere? What is the
optimal shape that also tiles the plane? What about
smooth surfaces other than the sphere?
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