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Abstract. We introduce the problem of staged self-assembly of one-
dimensional nanostructures, which becomes interesting when the ele-
ments are labeled (e.g., representing functional units that must be placed
at specific locations). In a restricted model in which each operation has
a single terminal assembly, we prove that assembling a given string of
labels with the fewest stages is equivalent, up to constant factors, to
compressing the string to be uniquely derived from the smallest possible
context-free grammar (a well-studied O(logn)-approximable problem).
Without this restriction, we show that the optimal assembly can be sub-
stantially smaller than the optimal context-free grammar, by a factor of
£2(y/n/logn) even for binary strings of length n. Fortunately, we can
bound this separation in model power by a quadratic function in the
number of distinct glues or tiles allowed in the assembly, which is typi-
cally small in practice.

Keywords: context-free grammar, Wang tile, DNA computing, com-
plexity

1 Introduction

Self-assembly is the study of how small particles (typically at the nanoscale,
where electrostatic forces overwhelm gravity) interact with each other to con-
glomerate into larger objects. In theoretical computer science, the standard
model is the tile assembly model [I0] in which the system begins with infinitely
many copies of certain square tiles, each with specified glues on the four sides,
and tiles translate nondeterministically in the plane until they attach to each
other at matching glues. This model effectively enables performing computation,
but out of simple geometric parts, and at the cost of physical space resulting
from the assembly.

The most studied problem in the tile assembly model is to determine the
number of distinct tile types required to assemble a given shape (made out of
unit squares). An obvious upper bound is the area of the shape, but in many cases
fewer tiles suffice, by building computation into the construction. For example,
an n X n square requires @(logn/loglogn) distinct tile types (and glues), by
embedding a base-logn counter, while an n x 1 rectangle requires ©@(n) tile
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types. The most general result is that any shape, scaled by a sufficiently large
factor, can be constructed from O(K/log K) tile types (and glues), where K
is the Kolmogorov complexity of the shape [9]. Unfortunately, the scale factor
is polynomial in the running time of the Turing machine generating the shape,
which is at least the area of the shape. So this result does not directly address
the tile complexity of a specific shape, though it suggests that it is difficult to
characterize.

An alternate approach is offered by staged self-assembly [2] in which the sys-
tem’s tile set can change in a sequence of stages, in particular by an experimenter
mixing two systems together. In this model, it is possible to make any shape us-
ing a constant number of tile types (and glues); as a result, the main objectives
are to minimize both the number of mix operations (work for the experimenter)
and the number of stages that must be executed sequentially (makespan or wait
time). For example, both an n x n square and an n x 1 rectangle can be assem-
bled using O(1) tiles and glues and O(logn) mixes and stages. Again we lack a
general characterization of the number of mixes and stages required for a desired
2D shape.

Our personal communication with bioengineers suggests that the staged as-
sembly model is natural and practical, essentially exposing the experimenter’s
ability to perform actions as part of a computation/assembly. Furthermore, the
results are more practical, as it is difficult in practice to design many different
glues that attract only in pairs, without any attraction between unpaired glues.
Assembling a 1000 x 1 rectangle would be impractical without staging (requiring
1000 tile types and 999 distinct glues), but is extremely practical with staging
(requiring only 6 tile types, 3 distinct glues and 10 stages).

In this paper, we aim to characterize the resources required to staged-assemble
a one-dimensional object. Just making a 1 xn rectangular shape is trivial, so this
direction has so far been overlooked. But in practice, experimenters often want
to build an object that not only takes on a desired shape but also carries out a
desired functionality. A typical example is to arrange nanodots or bioagents in
a particular pattern within a shapeE| We model this problem as constructing a
labeled shape, where each unit square has a label within a fixed alphabet, and
each tile type used to build the shape also has a label, which must match in
construction. Thus the input to the problem is a string of labels, and the goal
is to find a staged assembly with few glues, mixes, and stages. In fact we show
that four glues and O(logn) stages always suffice, so a single objective remains:
minimize the mixes.

The problem of computing a minimal tile assembly system that produces
a labeled shape has been studied previously. Heuristic approaches have been
developed to find the smallest tile set that uniquely assembles an input labeled
shape [6l4], and the problem of finding a minimum-size tile set has been shown
to be NP-hard [6].

We successfully characterize the number of mixes required to staged-assemble
a string in two natural situations. In the first setting (Section , we restrict

3 Personal communication with Hyunmin Yi, 2008-2010.
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mixing operations to produce a single terminal assembly for use in the next mix.
This restriction seems to be common to all previous staged-assembly algorithms
[2], but we do not know it to be practically motivated. In the second setting
(Section7 we allow multiple “parallel assemblies” resulting from a mix (a new
though natural idea), and consider the more natural restriction that the number
of glues is constant. In either setting, we show that the minimum number of mixes
is within a constant factor of the smallest context-free grammar that generates
exactly the given string. The latter problem is well-studied, has a polynomial-
time O(logn)-approximation algorithm based on Lempel-Ziv compression, and
likely has no o(log log n)-approximation [TI5I7I]].

We show that our relations are nearly tight by constructing a family of strings
(Section [5]) showing a separation in power between (unrestricted) staged assem-
bly and context-free grammars. Specifically, an n-bit binary string can be as-
sembled using O(k) glues with O(k) mixes but requires a context-free grammar
of size 2(k?), for a ratio of (k). Our upper bound shows that the worst-case
separation is O(k?). As a function of n (with an unbounded number of glues),
we prove that the ratio is £2(y/n/logn). In practice, small feature sizes make
the number of glues typically small, in which case context-free grammars are
actually a good approximation to optimal staged self-assemblies.

The labeled 1D staged self-assembly model offers a balance of tractability,
being easier than general staged assembly by reducing the dimension to 1, yet
harder (and more practical) by adding labels to the target shape. The connec-
tions we show to context-free-grammar compression illustrate that the problem
is difficult, yet for the case of many glues, still not fully understood. The ap-
proximation algorithm resulting from our study is simple and efficient, having
been implemented in an online web systemﬁ which is currently being considered
for practical use by the Tufts Department of Bioengineering, in a setting where
labeled 1D assemblies are of significant interest.

2 Context-Free Grammars

Definition 1. A context-free grammar (CFG) is defined as a 4-tuple (X, T, S, A)
where X is a set of terminal symbols, I" is a set of non-terminal symbols, S is
a special element of I' called the start symbol and A is a set of productions.

Each production consists of a left-hand side containing a single non-terminal
symbol, and a right-hand side containing a (non-empty) sequence of terminal and
non-terminal symbols. A CFG derives a string by repeated replacement of non-
terminal symbols with strings of terminal and non-terminal symbols according
to the productions in A, beginning with the single symbol S. The language of a
CFG is the set of derivable strings consisting solely of terminal symbols.

Definition 2. The size of a context-free grammar G, denoted |G|, is the total
number of symbols appearing on the right-hand sides of the productions in G.

4 |http:/ /selfdisassembler.appspot.com/
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Note that this definition counts the total number of symbols, so symbols
appearing multiple times contribute to the count multiple times. In this paper
we consider only CFGs that are deterministic (with only one production per
left-hand side) and generate exactly one string.

Definition 3. A restricted context-free grammar (written RCFG) is a CFG
which is deterministic and has a language consisting of a single string.

For an RCFG G deriving a string s, the parse tree of G is the tree created
by beginning with a single node with label S (the start symbol), and adding
children to a leaf node for each production applied. The result is a tree where
each internal node is a non-terminal symbol, each leaf node is a terminal symbol,
and an in-order traversal of the leaves gives the string s.

Definition 4. The smallest grammar problem is the following: given an input
string s, find the smallest RCFG deriving s.

Any RCFG G has exactly one parse tree. Fach internal node in the parse tree
has a corresponding non-terminal symbol from G. If we merge all such nodes
with the same non-terminal, the result is a directed acyclic graph (DAG) called
the parse DAG. See Figure [I] for an example of an RCFG and its parse tree and
parse DAG.

A A
A — BC
B — DC B/\C é/
D —ce /NN S N
C C a a C C a

Fig. 1. A restricted context-free grammar (RCFG) and its corresponding parse tree
and parse DAG.

3 Staged Self-assembly

In this section we describe the 1D labeled staged self-assembly system model.
The model described here is a variant of the staged self-assembly model defined
in [2]. In this model, individual building blocks are 2D square-shaped tiles that
translate in the plane. Each tile has four sides (north, south, east, and west) and
has glues on its east and west sides. Each tile also has a label (a,b,c,...). We
denote a tile xq[zo]zs where x; is the west glue, x5 is the label, z3 is the east
glue (e.g., 1[a]2).

Tiles combine when the pair of glues on the west side of one tile and east
side of the other are complementary. We denote glue values by numbers (e.g.,
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1,2,...), and the complementary glues are denoted 1’,2’,.... In this paper we
use the convention that east glues are always complementary (prime) glues. So
a tile 1[a]2 actually has east glue 2'.

When tiles combine they create assemblies (and we consider tiles to be a
special case of assemblies). The labels of each individual tile combine to form
a label string of the assembly consisting of the labels of the combined tiles in
order. For example, 1[a]2 and 2[b]3 combine to form the assembly 1[ab]3. Note
that the east glue of 1[a]2 and west glue of 2[b]3 have disappeared: they are on
the interior of the assembly and are omitted for clarity. Assemblies can also be
combined to form larger assemblies. The size of an assembly is the number of
tiles it contains.

Initially each tile type exists in a separate bin. When bins are mixed, the
assemblies present in each bin are free to attach to each other. The products of
each mixing are terminal assemblies: assemblies that do not attach to any other
assemblies. All other assemblies produced during the mixing are assumed to be
filtered out before the bin is combined with other bins.

A self-assembly system instance is defined by the starting tiles and a mix
DAG defining bins and the orders in which they are mixed. The mix DAG is a
rooted DAG: a DAG with only one node (the root) without in-edges. where each
node represents a bin and the edges leaving it point to the bins whose contents
are mixed into this bin. Each leaf of the DAG is a bin of a single tile type.

Definition 5. A self-assembly system (SAS) is a one-dimensional labeled staged
self-assembly instance that produces a single goal assembly and is defined by a
miz DAG and a unique tile type for each leaf of the DAG.

Definition 6. The size of a SAS A (denoted |A|) is the number of edges in its
miz DAG.

The goal assembly produced by a SAS must appear in the bin corresponding
to the root node of the mix DAG. Reading the labels of an assembly from west
to east defines a string which we call the label string of the assembly. The label
string of the goal assembly is the string generated by the SAS.

In previous staged-assembly constructions [2], each bin has a single assembly
produced in it by mixing the contents of two other bins (which also contain single
items). However the model as defined does not require that each bin contains a
single assembly. A mix DAG in which one or more bins has multiple assemblies is
said to use bin parallelism. We distinguish a self-assembly system instance that
does not use bin parallelism as a single self-assembly system (SSAS).

Definition 7. A single self-assembly system (SSAS) is a SAS in which no bin
contains more than one distinct assembly.

Definition 8. The minimum SSAS problem is the following: given an input
string s, find a smallest SSAS generating an assembly with label string s.
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4 Equivalence between RCFGs and SSASs

In this section we show that converting between an RCFG G deriving a string s
and a SSAS instance A assembling a labeled assembly with label s is possible with
only a constant-factor scaling. As a result, any algorithm generating an O(f(n))-
approximation to either the minimum grammar problem or the minimum SSAS
problem implies an O(f(n))-approximation algorithm for the other.

4.1 Converting RCFGs to SSASs

Let G be an RCFG deriving a string s. We begin by converting G to an equivalent
RCFG @ with at most two symbols on the right-hand side of each production
(such a CFG is called a binary CFG).

Recall that each rule is represented by a subtree of the parse DAG consisting
of a root node (the left-hand side symbol) and its children (the right-hand side
symbols). This subtree can obviously be converted into a binary tree which has
size at most twice the number of leaves, and is at most twice the size of the
original subtree. So each rule can be expanded to a set of binary rules with at
most twice as many symbols. As a result, G is at most doubled in size and thus
|G'| < 2|G.

Next we convert each production of G’ to a SSAS mixing. However, a problem
occurs if the same non-terminal appears as a right-hand side symbol in several
production rules. Recall that a production in the grammar specifies the left-to-
right order in which the right-hand side symbols appear, while the west-to-east
order in which assemblies attach is determined by their glues. To produce exactly
the assembly desired in a mixing requires combining its subassemblies with the
correct glues.

To resolve this issue, we construct several copies of every assembly: one for
each possible west/east glue pair. Since the grammar is binary, at most two
assemblies are mixed in each bin and so three glue pairs is enough to uniquely
specify the mixing product. Given a production A — BC', we create six bins and
six mixings that assemble the six west/east glue pair combinations for A from
the six west/east glue pair combinations for B and C' (see Table [1)).

Table 1. The set of mixings to produce all necessary glue pair variations for assembly
A in the production A — BC.

A glues|(1,2)[(1,3)[(2,1)[(2,3)|(3,1)|(3,2)
B glues|(1,3)[(1,2)((2,3)[(2,1)|(3,2)|(3,1)
C glues|(3,2)((2,3)|(3,1)|(1, 3)[(2,1)[(1, 2)

Lemma 1. A parse DAG for a binary RCFG G’ deriving string s can be con-
verted to a valid SSAS A of size at most 6|G'| that constructs an assembly with
label string s.
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Proof. We build the mix DAG of A in the following way: For each symbol (ter-
minal and non-terminal) create 6 bins for the glue-pair variants of the symbol.
For each production A — BC of G’, mix the 6 bins of B and C into the 6
bins of A as in Table [I} The resulting mix DAG has 6 bins for each symbol of
G’, each containing a unique glue-pair variant of an assembly with label string
corresponding to the string derived by the symbol in G’. Each edge of the parse
DAG of G’ is converted to 6 edges in the mix DAG of A, one for each glue-pair
variant. So |A| < 6|G|. O

Theorem 1. Given an RCFG G deriving a string s, the algorithm described
in Section [{.1] computes a SSAS instance A with |A| < 12|G| that produces an
assembly with label string s.

Proof. The algorithm converts G to a binary RCFG G’, and then converts G’
to a mix DAG for A. By Lemmall] |A| < 6|G’|. So |A| < 6|G’| < 12|G]. O

4.2 Converting SSASs to RCFGs

Let A be a SSAS constructing an assembly with label string s. We perform a
(nearly) one-to-one mapping from the mix DAG of A to the parse DAG of a
grammar (. For each leaf bin of A, create a terminal symbol in G equal to the
label string of the tile in the bin. For each non-leaf bin of A, create a non-terminal
symbol in G. For each mixing in A combining the contents of bins b1, ba, ..., bi
into bin B, create a production in G with B on the left-hand side and b; through
by on the right-hand side in the order they combine when mixed in B.

Theorem 2. For any SSAS A constructing an assembly with label string s, an
RCFG G deriving s can be constructed from A such that |G| = |A].

Proof. The terminal symbols of G are equal to the label strings of their corre-
sponding tiles. Each mixing in A produces a single assembly with a label string
equal to the string derived by the corresponding non-terminal symbol in G, be-
cause the production orders the right-hand side symbols in the same order that
they combine in A. So the start symbol of G derives a string equal to the label
string of the assembly produces in the root of the mix DAG of A. So G derives
s. Each edge of the mix DAG of A causes a right-hand side symbol to appear in
a production of G. So |G| = |A]. O

4.3 Approximation Equivalence

The conversions presented above in Sections [£.1] and .2l immediately imply that
approximation algorithms for either problem transfer to the other, at a constant-
factor loss.

Corollary 1. An O(f(n))-approzimation algorithm for the smallest grammar
problem exists if and only if an O(f(n))-approzimation algorithm for the mini-
mum SSAS problem exists.
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In practice this theorem makes computing efficient SSAS instances easier, as
several O(logn)-approximation algorithms to the minimum grammar problem
exist [TI7U8]. We have taken advantage of this fact to produce a software tool for
finding O(logn) approximations to the minimum SSAS problem in O(n) time
using the algorithm by Sakamoto [§].

This result also suggests that finding an improved approximation algorithm
for the minimum SSAS problem is unlikely. In 2002, Lehman showed that a
polynomial-time approximation algorithm for the smallest grammar problem
with factor o(blg‘;i gn) would enable progress on “a difficult algebraic problem in
a well-studied area” [5].

5 Separation Between SASs and RCFGs

Now we show that the general 1D staged self-assembly model (SAS) is not equiv-
alent to RCFGs. The proof is constructive: we give a set of strings and describe
a set of SAS instances that produce assemblies with these label strings. We then
show that any CFG producing these strings is asymptotically larger than the
SAS instance producing the corresponding label string.

It might appear obvious that allowing bin parallelism should allow a reduc-
tion in the amount of work needed to construct an assembly. However, using
parallelism has two costs that make saving work difficult. First, for any mini-
mal SAS, no two assemblies in the same bin may share a common glue (this is
proven in Lemma . As a result, additional parallelism requires more unique
glues, which in turn requires more starting bins, and thus more work. Second,
since the goal of an assembly system is to construct a single goal assembly, bins
with parallelism must eventually be “collapsed” into a single bin with a single
object (otherwise the parallelism was extraneous). Collapsing bins with paral-
lelism involves adding tiles to join the various assemblies together, and since the
glues on each assembly are unique, creating and mixing the joining tiles requires
additional work proportional to the amount of parallelism in the bin.

5.1 A Set of Strings Si

To derive an asymptotic bound between SASs and RCFGs, we use a special set
of strings that can be built by small SASs but require large RCFGs. Each string
consists of a sequence of interleavings of pairs of smaller strings. We will consider
only odd values of k for the remainder of the paper.

Let BINARY(4, £) be the binary representation of 7 of length ¢. The following
is a function used to double every character in a string:

DOUBLE(b1b2b3 - bn) = b1b1b2b2b3b3 .. by,

We define sy o s5 to be the concatenation of string s; followed by s,. We wish
to encode a number of distinct “characters” in binary. To construct a suitably
hard-to-compress string, we want to ensure that the beginning and end of each
encoding are clearly delineated. To that end, we define the following strings for
all values of k and all values of i < 2k:



One-Dimensional Staged Self-Assembly 9

Definition 9. Aj; = (01) o DOUBLE(BINARY(%, 1 + [log k])) o (01).

Note that each such string has length 6 + 2[log k].

We wish to use these characters to construct a string with a lot of structure
(so that it is efficiently constructible using a SAS) but minimal repetition (so that
it is not efficiently constructible using a CFG). To minimize repetition, we choose
a string with the property that no sequential pair of characters is repeated. We
define the following functions, which are permutations for 0 < z < k:

Tko(x) = 2z mod k 71 (z) =2z + 1 mod k

We use these two simple functions to construct a more complex permutation.

Definition 10. Say that the bits of BINARY(4,¢) are by,...,be. Then

0, (5) = Thb (Theybey (- -+ Thoybo (T 60 (5)) - - )

Because k is odd, this function is a permutation for 0 < j < k. In addition, as long
as 0 < i < 2¢, this function has the property that IIj, ;(j) = (2°-j +4) mod k.
This means that for fixed values of k, £, and j, each value of ¢ such that 0 <1 < k
will generate a different value of ITy, ¢ (7).

This permutation can be used to ensure that no sequential pair of characters
is repeated. To do so, we construct pairs of characters as follows:

Chrij=Apjo (01)hogk1 o Ak’HHwam(j) o (Ol)flogk].

We concenate these pairs to construct Py ; = Cr 400 Cgi10...0Ck;r—1. Note
that the length of each Cy; ; is 12 + 8[log k], and therefore the length of each
Py is (12 + 8[log k) - k.

We concatenate each Py ; to get the string we wish to compress:

Definition 11. S, =010 P, 90010 P, 100l0...0010 P 1001

In the next two subsections we give bounds on compressing Sy using both a

RCFG and a SAS.

5.2 A SAS Upper Bound for Sk

Now we describe a self-assembly system using bin parallelism that produces an
assembly with S} as its label string. The system is broken down into several
subsystems described in this section. A diagram of the SAS for S3 is seen in

Figure

Constructing Ay ; for all 0 < ¢ < 2k Say that we are given 2k glue pairs
x;, ¥, and that we want to assemble x;[Ay ;]y;. for each 0 < i < 2k. In addi-
tion, say that we are given three additional glues gg, g1, and go for use in our
construction. Let £ =1+ [log k].

For each binary string s of length < ¢, we construct two bins: I; and F;. Let
s =tob, where b € {0,1}. I; will contain an assembly with glue gy on the left,
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fized bin

permutation bin 2 (1) B

Lor ]| [ ] | [1x0us]

[210010] [408] [elo]r2]

renormalization bin

X X — rotating bin
permutation bin 1 (7o) —

|
|7[1|]1 | |11[|1]3 | 9[!]5 | [1or7] | [3i019] | [5l0111]

[208] [a012] [eloji0] [ 14502 | [ 3145404 ] [ewz] [roma] [12(e]

5[43,5]6 |

Fig. 2. The mix DAG for a SAS generating an assembly with label string Ss.

glue g1 on the right, and the label DOUBLE(¢) o b. F will contain an assembly
with glue go on the left, glue g on the right, and the label DOUBLE(s). The
assembly in bin I will be constructed by adding the tile g2[b]g; to the assembly
in bin F;. The assembly in bin Fy will be constructed by adding the tile g1 [b]go
to the assembly in bin I.

To finish this construction, we add the constant-sized assemblies x;[01]go
and g2[01]y; to the bin Fgyapy(i,e)- This ensures that for 0 < i < 2k, the bin
Fginarv(i,e) contains an assembly with the label Ay ;. The total number of bins
required for this construction is O(k).

Fixed and Rotating Bins The fixed bin contains the following set of tiles:

0[Ak,0]1,2[Ak 113, - - -, (2k — 2)[Ak k—1](2k — 1)
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The rotating bin contains the following set of tiles:

Ak k+0]2, 3[Agpt1l4, ., (26 = 1)[Ag oy (5-1)] (2F)

Permutation and Renormalization Bins Permuting the assemblies in the
rotating bin is simulated by attaching permutation tiles to the east and west
ends of those assemblies. The permutations 7 ¢ and 7 ; are implemented as
two sets of 2k tiles, each set in a separate permutation bin. A third set of 2k
tiles are put in a remormalization bin used to solve a technical issue with the
permutation bins.

The permutation bin for m ¢ has tiles that replace the primal glues of as-
sembly ¢ (2¢ + 1 and 2i + 2) with the dual glues of assembly 7y 0(¢) (27x,0(2) +
1+ (2k+1) and 27 0(i) + 2 + (2k 4 1)) for all assemblies 0 < ¢ < k — 1. The
permutation bin for 7y ; is constructed analogously. Each tile attaches to either
the east or west end of the assembly and correspondingly has the primal and
dual glues on its east and west sides. The tiles attaching to the east end of the
assembly have the label 0; the tiles attaching to the west end of the assembly
have the label 1.

The renormalization bin has a pair of tiles for changing the dual glues of
assembly i ((2i4+1)4(2k+1) and (2¢+2) + (2k+1)) to its primal glues ((2+1)
and (2i+2)). The tiles attaching to the east end of each assembly have the label
1; the tiles attaching to the west end of each assembly have the label 0.

Creating Interleaved Assemblies The permutation and renormalization bins
are applied in a branching manner to produce all permutation sequences of length
{. First 7, ¢ and 7,1 are mixed separately with the rotating bin, then 7 o and
m,1 are each mixed separately with the product of both of these mixings, etc.
After each mixing with a permutation bin, the renormalization bin is mixed with
the product. After all permutation sequences are created, the fixed bin is mixed
with each, creating single assemblies with label strings Py ; for all 0 <13 < k.

Combining Interleaved Assemblies The final step is to combine each as-
sembly with label Py ; into a single assembly. Each assembly is contained in a
separate bin after its production, and has glue 0 on its west side and glue 2k
on its east side. To the assembly with label Py ;, the tiles (2k + 1 + ¢)[1]0 and
(2k)[0](2k 4+ 2 + ) are added. Then these assemblies are combined to produce a
single long assembly with glue (2k + 1) on the west side, and glue (3k + 1) on
the east. To finish off the assembly, two more tiles are added: (null)[0](2k + 1)
and (3k + 1)[1](nwll). This ensures that the final result is an assembly with the
label Sy and null glues on both ends.

Theorem 3. The SAS described in Section[5.9 has size O(k).
Proof. Break the SAS into the following sections:

1. Creating the a-bin and b-bin.
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2. Creating the permutation and renormalization bins.
3. Creating the interleaved assemblies.
4. Combining interleave assemblies.

Item 1 requires O(k) edges to create a tile for each symbol in Ay or By
respectively and mixing them together. Item 2 requires O(k) edges to create
three bins each with a pair of tiles for each c-buffered element of the b-bin.
Item 3 requires O(k) edges: this portion of the mix DAG resembles an upside-
down tree and contains no more than two leaves per permutation assembly.
TItem 4 requires O(1) edges per assembly (and thus O(k) edges total) to add two
location-specifying tiles and combine it with the other assemblies into a single
bin. In total k interleave assemblies (one per shift) are created, so O(k) edges
are in this portion of the mix DAG. Combining interleave assemblies is done by
adding at most two tiles to each interleave assembly followed by combining them
into a single bin. A constant number of edges exist for each assembly, so O(k)
edges exist in this portion of the mix DAG. O

5.3 An RCFG Lower Bound for Si
The following definition and theorem are taken from [7].

Definition 12. As defined in [3], the size of the LZ-factorization of a string s
(denoted |LZ(s)|) is the number of elements generated by the LZ77 algorithm
without self-referencing.

Theorem 4. For an RCFG G generating a string s, |LZ(s)| < |G.
Lemma 2. All factors in the LZ-factorization of Sy have size < 16[log k] + 26.

Proof. Assume, for the sake of contradiction, the LZ-factorization of Sy contains
some factor y of size > 16[log k] + 26. Then the factor is long enough that there
must be some %, j such that Cj; ; is a substring of y. Let « be the part of the
string preceding y. Then by the definition of LZ factorization, y is a substring
of z, and therefore C}, ; ; is a substring of z.

Cl,i,; contains as a substring the string Ay ;. To ensure the correct parity
on runs of characters, the portion of x where Ay ; is found must have been
completely generated by some other Ay ;«. Then it must be that Ay ; = Ay j-,
and by Definition |§|, it follows that j = j*. So the portion of x where C}; ; is
found must have been completely generated by some other C, ;« ;, where ¢ # ¢*.
Then Ak)k:+Hk7|,logk:."i(j) = Ak7k+Hk,(1ogk1,i*(j)' By Definition follows that
k41T, nog k1, (7) = k+ Iy, [1og k7,5+ (7). Therefore, by Definition i = 1*, which
gives us a contradiction. a

Theorem 5. The smallest CFG that can be used to construct Sy has size 2(k?).

Proof. By Lemma 2| the maximum length of an LZ factor is 16[log k] +29. The
sum of the lengths of the LZ factors is equal to |Sk| = ©(k?log k). Hence, the
number of LZ factors is £2(k?). By Theorem |4} the size of the minimum grammar
must therefore be 2(k?). O
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5.4 Asymptotic Separation of SASs and RCFGs for Si

Separation refers to the minimum difference in size between an RCFG and a
SAS generating the same (label) string. Here we show the separation achieved
for the strings Sk, where k is the number of glues used to generate the label
string Sy, by the SAS in Section [5.3| and n is the length of Sj.

Corollary 2. The strings Sy have separation £2(k).

Proof. By Theorem any RCFG generating Sy has size 2(k?). By Theorem
a self-assembly system of size O(k) exists that produces an assembly with label
string Sk. So the ratio of the size of any grammar generating Sy to the size of
some SAS instance is 2(k). O

Corollary 3. The strings Sy have separation 2(y/n/logn).

Proof. The length of Sy is O(k%logk). So k = ©(y/n/logn). By Corollary I,
the separation is {2(k). So the separation is also 2(1/n/logn).

Given that the number of glues is limited in practice, it is natural to consider
whether (2(k) separation is possible for k glues where k < n. We show this is
possible for k = O(logn).

Definition 13. Define the recursive string Ty = 010 Ty ;1 001 0Ty 1 001,
where Ty 1 = Sk. The length of Tk+ is ©(2!Sk|) = O(2'k* log k).

Theorem 6. The strings Ty, have separation 2(k) and use O(logn) glues.

Proof. Since Ty, ;, has Sy, as a substring, any CFG generating T} has size 2(k?)
by Theorem [5] To construct a SAS to generate this string, we first use the
SAS described in Section to generate an assembly a[Sg]b. We can then add
a constant number of tiles to get two assemblies ¢[15;0]e and e[15;0]d, which
when combined create the assembly ¢[15,015;0]d. We then add two more tiles
to construct the assembly a[015;015;01]b. This process can then be repeated
k times. In total O(k) additional work is performed, so the new SAS has size
O(k). The length n of the string is ©(2¥k%logk), so k = O(logn). O

5.5 Upper Bounds for Separation of SASs and RCFGs
The PSASs described in Section constructing Sy used O(k) distinct glue
pairs to achieve a separation of (2(k). We now show bounds on the worst-case

separation in terms of the number of glues k£ and the length of the string n.

Lemma 3. Given a minimal SAS A, any two distinct assemblies A1 and As in
the same bin must have different glues on either the west side or the east side.
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Proof. For the sake of contradiction, say that there is a distinct pair of assem-
blies A; and A; with matching glues on both the west and east sides of the
assemblies. Because the accessible glues on both assemblies are identical, any
assembly which adheres to A; must also adhere to As, and vice versa. Hence,
for every superassembly of A;, there is a corresponding superassembly of As in
the same bin with the same accessible glues, but a different label sequence. Any
attempt to merge two such assemblies to create a single assembly results in an
infinite label sequence. So the SAS A cannot produce a single goal assembly,
violating the definition of a SAS. a

Corollary 4. Given a minimal SAS A using k glues to produce a string s, each
bin in A contains at most k? distinct assemblies.

Lemma 4. Given a SAS A using k glues and generating an assembly with label
string s, an RCFG of size O(k%|A|) generating s can be constructed.

Proof. For each bin in A and each distinct assembly in that bin, construct one
bin in the SSAS B. By Corollary 4] the number of bins in B will be at most k?
times the number of bins in A.

Now consider what happens when ¢ bins in A are simultaneously mixed to
produce a single bin ¢ containing several assemblies. How many edges must we
add to B to ensure that each assembly in ¢ is correctly constructed in B? To
determine this, we define G to be a directed graph with a node corresponding
to each glue and, for each distinct input assembly g¢1[s]ge, a directed edge from
g1 to g2. Then each distinct assembly in ¢ corresponds to a source-sink pair in
G, and each possible way to construct that assembly corresponds to a path in
G from the source of the assembly to the sink of the assembly.

Say that there exist three glues g1, g2, g3 such that (¢g1,¢2) and (go, g3) are
edges in G but (g1,93) is not an edge in G. Then we can mix the assembly
corresponding to the edge (g1, g2) with the assembly corresponding to the edge
(g2, 93) to get an assembly with glue g; to the west and glue g3 to the east. This
is equivalent to adding the edge (g1, g3) to G. Each such mixing requires us to
add a constant number of nodes and edges to the mix DAG B, and increases the
number of edges in G by 1. The graph G can never have more than k? edges, so
repeated mixings of this type add a total of O(k?) work to B. Hence, any mixing
of bins in A can be replaced by O(k?) binary mixes in B. As a result, |B| has
size O(k%|Al), and can therefore be converted to an RCFG with size O(k?|A|)
by Theorem 0

Theorem 7. With respect to the total number of distinct glue pairs k, the sep-
aration for any string is O(k?).

Proof. Let A be a SAS using k glues that generates a string s. By Lemmald], there
is an RCFG of size O(k?|A|) that generates s. So separation is at most O(k?). O

Theorem 8. With respect to the length of the string n, the separation for any
binary string is O((n/ log n)2/3),
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Proof. Let A be a SAS generating a string s of length n. Let k be the number
of glues used in A. Either k = O((n/logn)'/3) or k = w((n/logn)'/3). If
k = O((n/logn)'/?) then by Lemma [4| there is an RCFG of size O(k?|A|) =
O((n/logn)?? - |A|) generating s. So the separation is at most O((n/logn)?/?).
Now suppose k is w((n/logn)'/3). Then |A| = w((n/logn)'/?). Lemma 2 of
Section 2.2 in [5] shows that there is an RCFG of size O(n/logn) generating
s. Hence, the separation is o((n/log n)?/3). So in both cases the separation is

O((n/ logn)z/S). O
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