Approximability of Partitioning Graphs with Supply and Demand (Extended Abstract)

Takehiro Ito¹, Erik D. Demaine², Xiao Zhou¹, and Takao Nishizeki¹

- Graduate School of Information Sciences, Tohoku University, Aoba-yama 6-6-05, Sendai, 980-8579, Japan.
- ² MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA 02139, USA. take@nishizeki.ecei.tohoku.ac.jp, edemaine@mit.edu, {zhou, nishi}@ecei.tohoku.ac.jp

Abstract. Suppose that each vertex of a graph G is either a supply vertex or a demand vertex and is assigned a positive real number, called the supply or the demand. Each demand vertex can receive "power" from at most one supply vertex through edges in G. One thus wishes to partition G into connected components so that each component C either has no supply vertex or has exactly one supply vertex whose supply is at least the sum of demands in C, and wishes to maximize the fulfillment, that is, the sum of demands in all components with supply vertices. This maximization problem is known to be NP-hard even for trees having exactly one supply vertex and strongly NP-hard for general graphs. In this paper, we focus on the approximability of the problem. We first show that the problem is MAXSNP-hard and hence there is no polynomialtime approximation scheme (PTAS) for general graphs unless P = NP. We then present a fully polynomial-time approximation scheme (FPTAS) for series-parallel graphs having exactly one supply vertex. The FPTAS can be easily extended for partial k-trees, that is, graphs with bounded treewidth.

1 Introduction

Consider a graph G such that each vertex is either a supply vertex or a demand vertex. Each vertex v is assigned a positive real number; the number is called the supply of v if v is a supply vertex; otherwise, it is called the demand of v. Each demand vertex can receive "power" from at most one supply vertex through edges in G. One thus wishes to partition G into connected components by deleting edges from G so that each component G has exactly one supply vertex whose supply is at least the sum of demands of all demand vertices in G. However, such a partition does not always exist. So we wish to partition G into connected components so that each component G either has no supply vertex or has exactly one supply vertex whose supply is at least the sum of demands of all demand vertices in G, and wish to maximize the "fulfillment," that is, the sum

Fig. 1. (a) Partition of a graph with maximum fulfillment, (b) partition of a series-parallel graph G having exactly one supply vertex, and (c) a star S with a supply vertex at the center.

of demands of the demand vertices in all components with supply vertices. We call this problem the maximum partition problem [4]. The maximum partition problem has some applications to the power supply problem for power delivery networks [4, 6]. Figure 1(a) illustrates a solution of the maximum partition problem for a graph, whose fulfillment is (2+7)+(8+7)+(3+6)+(4+8)=45. In Fig. 1(a) each supply vertex is drawn as a rectangle and each demand vertex as a circle, the supply or demand is written inside, the deleted edges are drawn by thick dotted lines, and each connected component with a supply vertex is shaded.

Given a set A of integers and an upper bound (integer) b, the maximum subset sum problem asks to find a subset C of A such that the sum of integers in C is no greater than the bound b and is maximum among all such subsets C. The maximum subset sum problem can be reduced in linear time to the maximum partition problem for a particular tree, called a star, with exactly one supply vertex at the center, as illustrated in Fig. 1(c) [4]. Since the maximum subset sum problem is NP-hard, the maximum partition problem is also NP-hard even for stars. Thus it is very unlikely that the maximum partition problem can be exactly solved in polynomial time even for trees. However, there is a fully polynomial-time approximation scheme (FPTAS) for the maximum partition problem on trees [4]. One may thus expect that the FPTAS for trees can be extended to a larger class of graphs, for example series-parallel graphs and partial k-trees, that is, graphs with bounded treewidth [1, 2].

In this paper, we study the approximability of the maximum partition problem. We first show that the maximum partition problem is MAXSNP-hard, and hence there is no polynomial-time approximation scheme (PTAS) for the problem on general graphs unless P = NP. We then present an FPTAS for series-parallel graphs having exactly one supply vertex. The FPTAS for series-parallel graphs can be extended to partial k-trees. (The details are omitted from this extended abstract.) Figure 1(b) depicts a series-parallel graph together with a connected component C found by our FPTAS. One might think that it would be straightfoward to extend the FPTAS for the maximum subset sum problem in [3] to an

FPTAS for the maximum partition problem with a single supply vertex. However, this is not the case since we must take a graph structure into account. For example, the vertex v of demand 2 in Fig. 1(b) cannot be supplied power even though the supply vertex w has marginal power 25-(2+3+2+2+3+7+4)=2, while the vertex v in Fig. 1(c) can be supplied power from the supply vertex w in the star having the same supply and demands as in Fig. 1(b). Indeed, we not only extend the "scaling and rounding" technique but also employ many new ideas to derive our FPTAS.

The rest of the paper is organized as follows. In Section 2 we show that the maximum partition problem is MAXSNP-hard. In Section 3 we present a pseudo-polynomial-time algorithm for series-parallel graphs. In Section 4 we present an FPTAS based on the algorithm in Section 3.

2 MAXSNP-hardness

Assume in this section that a graph G has one or more supply vertices. (See Figs. 1(a) and 2(b).) The main result of this section is the following theorem.

Theorem 1. The maximum partition problem is MAXSNP-hard for bipartite graphs.

Proof. As in [7,8], we use the concept of "L-reduction" which is a special kind of reduction that preserves approximability. Suppose that both A and B are maximization problems. Then we say that A can be L-reduced to B if there exist two polynomial-time algorithms R and S and two positive constants α and β which satisfy the following two conditions (1) and (2) for each instance I_A of A:

- (1) the algorithm R returns an instance $I_B = R(I_A)$ of B such that $OPT_B(I_B) \leq \alpha \cdot OPT_A(I_A)$, where $OPT_A(I_A)$ and $OPT_B(I_B)$ denote the maximum solution values of I_A and I_B , respectively; and
- (2) for each feasible solution of I_B with value c_B , the algorithm S returns a feasible solution of I_A with value c_A such that $OPT_A(I_A) c_A \le \beta \cdot (OPT_B(I_B) c_B)$.

Note that, by condition (2) of the L-reduction, S must return the optimal solution of I_A for the optimal solution of I_B .

We show that a MAXSNP-hard problem, called "3-occurrence MAX3SAT" [7, 8], can be L-reduced to the maximum partition problem for bipartite graphs. However, due to the page limitation, we only show in this extended abstract that condition (1) of the L-reduction holds.

We now show that condition (1) of the L-reduction holds. An instance Φ of 3-occurrence MAX3SAT consists of a collection of m clauses C_1, C_2, \dots, C_m on n variables x_1, x_2, \dots, x_n such that each clause has exactly three literals and each variable appears at most three times in the clauses. The problem 3-occurrence MAX3SAT is to find a truth assignment for the variables which satisfies the maximum number of clauses. Then it suffices to show that, from each instance

Fig. 2. (a) Variable gadget G_{x_j} , and (b) the bipartite graph G_{\varPhi} corresponding to an instance \varPhi with three clauses $C_1 = (x_1 \vee \bar{x}_2 \vee x_3)$, $C_2 = (\bar{x}_1 \vee \bar{x}_2 \vee x_3)$ and $C_3 = (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3)$.

 Φ of 3-occurrence MAX3SAT, one can construct in polynomial time a bipartite graph G_{Φ} as an instance of the maximum partition problem such that

$$OPT_{MPP}(G_{\Phi}) \le 26 \cdot OPT_{SAT}(\Phi),$$
 (1)

where $OPT_{MPP}(G_{\Phi})$ and $OPT_{SAT}(\Phi)$ are the maximum solution values of G_{Φ} and Φ , respectively: condition (1) of the L-reduction holds for $\alpha = 26$.

We first make a variable gadget G_{x_j} for each variable x_j , $1 \le j \le n$; G_{x_j} is a binary tree with three vertices as illustrated in Fig. 2(a); the root is a supply vertex of supply 7, and two leaves x_j and \bar{x}_j are demand vertices of demands 4. The graph $G_{\bar{\Phi}}$ is constructed as follows. For each variable x_j , $1 \le j \le n$, put the variable gadget G_{x_j} to the graph, and for each clause C_i , $1 \le i \le m$, put a demand vertex C_i of demand 1 to the graph. Finally, for each clause C_i , $1 \le i \le m$, join a demand vertex x_j (or \bar{x}_j) in G_{x_j} with the demand vertex C_i if and only if the literal x_j (or \bar{x}_j) is in C_i , as illustrated in Fig. 2(b). Clearly, $G_{\bar{\Phi}}$ can be constructed in polynomial time, and is a bipartite graph. It should be noted that the degree of each demand vertex in the variable gadget for x_j is at most four since x_j appears at most three times in the clauses. Therefore, each supply vertex in the variable gadget G_{x_j} has enough "power" to supply all demand vertices C_i whose corresponding clauses have x_j or \bar{x}_j . Then one can verify Eq. (1), whose proof is omitted from this extended abstract.

3 Pseudo-polynomial-time algorithm

Since the maximum partition problem is strongly NP-hard [5], there is no pseudo-polynomial-time algorithm for general graphs unless P = NP. However, Ito *et al.* presented a pseudo-polynomial-time algorithm for the maximum partition problem on series-parallel graphs [5]. In this section we present another pseudo-polynomial-time algorithm, which is suited to an FPTAS presented in Section 4. More precisely, we have the following theorem.

Theorem 2. The maximum partition problem for a series-parallel graph G with a single supply vertex can be solved in time $O(F^2n)$ if the demands and the supply

are integers, where n is the number of vertices and F is the sum of all demands in G.

3.1Terminology and definitions

Suppose that there is exactly one supply vertex w in a graph G = (V, E), as illustrated in Figs. 1(b) and (c). Let $\sup(w)$ be the supply of w. For each demand vertex v, we denote by dem(v) the demand of v. Let dem(w) = 0 although w is a supply vertex. Then, instead of finding a partition of G, we shall find a set $C \subseteq V$, called a supplied set for G, such that

- (a) $w \in C$;
- (b) $\sum_{v \in C} \text{dem}(v) \leq \sup(w)$; and (c) C induces a connected subgraph of G.

The fulfillment f(C) of a supplied set C is $\sum_{v \in C} \text{dem}(v)$. A supplied set C is called the maximum supplied set for G if f(C) is maximum among all supplied sets for G. Then the maximum partition problem is to find a maximum supplied set for a given graph G. The maximum fulfillment f(G) of a graph G is the fulfillment f(C) of the maximum supplied set C for G. For the series-parallel graph G in Fig. 1(b), the supplied set C shaded in the figure has the maximum fulfillment, and hence f(G) = f(C) = 23, while f(S) = 25 for the star S in Fig. 1(c).

A (two-terminal) series-parallel graph G is defined recursively as a graph obtained from two series-parallel graphs by the so-called series or parallel connection [9]. The terminals of G are denoted by $v_s(G)$ and $v_t(G)$. Since we deal with the maximum partition problem, we may assume without loss of generality that G is a simple graph.

A series-parallel graph G can be represented by a "binary decomposition tree" T [9]. Every leaf of T represents a subgraph of G induced by a single edge. Each node u of T corresponds to a subgraph $G_u = (V_u, E_u)$ of G induced by all edges represented by the leaves that are descendants of u in T. G_u is a series-parallel graph for each node u of T, and $G = G_r$ for the root r of T. Since a binary decomposition tree of a given series-parallel graph G can be found in linear time [9], we may assume that a series-parallel graph G and its binary decomposition tree T are given.

3.2Algorithm

In this subsection we give an algorithm to solve the maximum partition problem in time $O(F^2n)$ as a proof of Theorem 2.

Let G be a series-parallel graph, let u, u' and u'' be nodes of a binary decomposition tree T of G, and let $G_u = (V_u, E_u), G_{u'} = (V_{u'}, E_{u'})$ and $G_{u''} =$ $(V_{u''}, E_{u''})$ be the subgraphs of G for nodes u, u' and u'', respectively, as illustrated in Fig. 3(a). Every supplied set C for G naturally induces subsets of V_u , $V_{u'}$ and $V_{u''}$. The supplied set C for G in Fig. 3(a) induces a single subset C_{st} of V_u in Fig. 3(b) such that $C_{st} = C \cap V_u$ and $v_s(G_u), v_t(G_u) \in C_{st}$. On the

Fig. 3. (a) A supplied set C for a series-parallel graph G, (b) a connected set C_{st} for G_u , (c) a separated pair (C_s, C_t) of sets for $G_{u'}$, and (d) a separated pair (C_s, C_t) of isolated sets for $G_{u''}$.

other hand, C induces a pair of subsets C_s and C_t of $V_{u'}$ in Fig. 3(c) such that $C_s \cup C_t = C \cap V_{u'}$, $C_s \cap C_t = \emptyset$, $v_s(G_{u'}) \in C_s$ and $v_t(G_{u'}) \in C_t$. A set C_{st} , C_s or C_t is not always a supplied set for G_u or $G_{u'}$, because it may not contain the supply vertex w. C_{st} is a "connected set" for G_u , that is, C_{st} induces a connected subgraph of G_u , while the pair (C_s, C_t) is a "separated pair of sets" for $G_{u'}$, that is, C_s and C_t induce vertex-disjoint connected subgraphs of $G_{u'}$. The set C contains no terminals of $G_{u''}$ in Fig. 3(a). In such a case, we regard that $\text{dem}(v_s(G_{u''})) = \text{dem}(v_t(G_{u''})) = 0$ and C induces a separated pair of singleton sets (C_s, C_t) such that $C_s = \{v_s(G_{u''})\}$ and $C_t = \{v_t(G_{u''})\}$, as illustrated in Fig. 3(d).

If a set C_{st} , C_s or C_t contains the supply vertex w, then the set may have the "marginal" power, the amount of which is no greater than $\sup(w)$. If a set does not contain w, then the set may have the "deficient" power, the amount of which is no greater than $\sup(w)$. Thus we later introduce five functions g, h_1 , h_2 , h_3 and h_4 ; for a series-parallel graph G_u and a real number x, the value $g(G_u, x)$ represents the maximum marginal power or the minimum deficient power of connected sets for G_u ; for a series-parallel graph G_u and a real number x, the value $h_i(G_u, x)$, $1 \le i \le 4$, represents the maximum marginal power or the minimum deficient power of separated pairs of sets for G_u . Our idea is to compute $g(G_u, x)$ and $h_i(G_u, x)$, $1 \le i \le 4$, from the leaves of T to the root r of T by means of dynamic programming.

We now formally define the notion of connected sets and separated pair of sets for a series-parallel graph G. Let $G_u = (V_u, E_u)$ be a subgraph of G for a node

u of a binary decomposition tree T of G, and let $v_s = v_s(G_u)$ and $v_t = v_t(G_u)$. We call a set $C \subseteq V_u$ a connected set for G_u if C satisfies the following three conditions (see Fig. 3(b)):

- (a) $v_s, v_t \in C$;
- (b) C induces a connected subgraph of G_u ; and
- (c) $\sum_{v \in C} \text{dem}(v) \le \sup(w)$ if $w \in C$.

A pair of sets $C_s, C_t \subseteq V_u$ is called a separated pair (of sets) for G_u if C_s and C_t satisfy the following four conditions (see Fig. 3(c)):

- (a) $C_s \cap C_t = \emptyset$, $v_s \in C_s$ and $v_t \in C_t$;
- (b) C_s and C_t induce connected subgraphs of G_u ;
- (c) $\sum_{v \in C_s} \text{dem}(v) \leq \sup(w) \text{ if } w \in C_s;$ and (d) $\sum_{v \in C_t} \text{dem}(v) \leq \sup(w) \text{ if } w \in C_t.$

We then classify connected sets and separated pairs further into smaller classes. Let $\mathbb{R}_w = \{x \in \mathbb{R} : |x| \leq \sup(w)\}$, where \mathbb{R} denotes the set of all real numbers. For each real number $i \in \mathbb{R}_w$, we call a connected set C for G_u an i-connected set if C satisfies the following two conditions:

(a) if i > 0, then $w \in C$ and $i + \sum_{x \in C} \text{dem}(x) \leq \sup(w)$; and (b) if $i \leq 0$, then $w \notin C$ and $\sum_{x \in C} \text{dem}(x) \leq |i| = -i$. An *i*-connected set C for G_u with i > 0 is a supplied set for G_u , and hence corresponds to some supplied set C_r for the whole graph $G = G_r$ such that $w \in C \subseteq C_r$, where r is the root of T; an amount i of the remaining power of w can be delivered outside G_u through v_s or v_t ; and hence the "margin" of C is i. On the other hand, an i-connected set C for G_u with $i \leq 0$ is not a supplied set for G_u , but may correspond to a supplied set C_r for $G = G_r$ such that $w \notin C \subset C_r$ and $w \in C_r$; an amount |i| of power must be delivered to C through v_s or v_t , and hence the "deficiency" of C is |i|. For an i-connected set C for G_u , let

$$f(C, i) = \sum_{x \in C} \text{dem}(x).$$

Then f(C,i) = f(C) if $0 < i \le \sup(w)$. On the other hand, if $-\sup(w) \le i \le 0$, then f(C,i) represents the fulfillment of C when an amount |i| of power is delivered to C from w in the outside of G_u .

Let $\sigma \notin \mathbb{R}_w$ be a symbol. For each pair of j and k in $\mathbb{R}_w \cup \{\sigma\}$, we call a separated pair (C_s, C_t) for G_u a (j,k)-separated pair if (C_s, C_t) satisfies the following seven conditions:

- (a) if j > 0, then $w \in C_s$ and $j + \sum_{x \in C_s} \text{dem}(x) \le \sup(w)$; (b) if $j \le 0$, then $w \notin C_s$ and $\sum_{x \in C_s} \text{dem}(x) \le -j$;
- (c) if $j = \sigma$, then $C_s = \{v_s\}$;
- (d) if k > 0, then $w \in C_t$ and $k + \sum_{x \in C_t} \text{dem}(x) \le \sup(w)$; (e) if $k \le 0$, then $w \notin C_t$ and $\sum_{x \in C_t} \text{dem}(x) \le -k$;
- (f) if $k = \sigma$, then $C_t = \{v_t\}$; and
- (g) if $j + k \le 0$, then $j \le 0$ and $k \le 0$.

Since G has only one supply vertex w, there is no (j,k)-separated pair (C_s,C_t) for G such that j > 0 and k > 0. A (j, k)-separated pair (C_s, C_t) for G_u with j > 0corresponds to a supplied set C_r for the whole graph G such that $w \in C_s \subseteq C_r$; an amount j of the remaining power of w can be delivered outside C_s through v_s , and hence the margin of C_s is j. A (j,k)-separated pair (C_s,C_t) for G_u with $j \leq 0$ may correspond to a supplied set C_r for G such that $C_s \subset C_r$ and either $w \in C_t$ or $w \in C_r - C_s \cup C_t$; an amount |j| of power must be delivered to C_s through v_s , and hence the deficiency of C_s is |j|. A (j,k)-separated pair (C_s,C_t) for G_u with $j=\sigma$ corresponds to a supplied set C_r for G such that $v_s \notin C_r$, that is, v_s is never supplied power. (See Figs. 3(a) and (d).) A (j,k)-separated pair (C_s,C_t) for G_u with k>0, $k\leq 0$ or $k=\sigma$ corresponds to a supplied set C_r for G similarly as above. For a (j,k)-separated pair (C_s,C_t) for G_u , let

$$f(C_s, C_t, j, k) = \begin{cases} \sum_{x \in C_s \cup C_t} \operatorname{dem}(x) & \text{if } j, k \in \mathbb{R}_w; \\ \sum_{x \in C_s} \operatorname{dem}(x) & \text{if } j \in \mathbb{R}_w \text{ and } k = \sigma; \\ \sum_{x \in C_t} \operatorname{dem}(x) & \text{if } j = \sigma \text{ and } k \in \mathbb{R}_w. \end{cases}$$

Let

$$f(C_s, C_t, \sigma, \sigma) = \max\{f(C_u) \mid C_u \text{ is a supplied set for } G_u$$

such that $v_s, v_t \notin C_u\}$;

let $f(C_s, C_t, \sigma, \sigma) = 0$ if G_u has no supplied set C_u such that $v_s, v_t \notin C_u$.

We now formally define a function g as follows: for a series-parallel graph G_u and a real number $x \in \mathbb{R}$,

$$g(G_u, x) = \max\{i \in \mathbb{R}_w \mid G_u \text{ has an } i\text{-connected set } C \text{ such that } f(C, i) \geq x\}.$$

If G_u has no *i*-connected set C with $f(C,i) \geq x$ for any number $i \in \mathbb{R}_w$, then let $g(G_u,x) = -\infty$. We then formally define a function h_1 as follows: for a series-parallel graph G_u and a real number $x \in \mathbb{R}$,

$$h_1(G_u, x) = \max\{j + k \mid G_u \text{ has a } (j, k)\text{-separated pair } (C_s, C_t) \text{ such that } j, k \in \mathbb{R}_w, |j + k| \leq \sup(w), \text{ and } f(C_s, C_t, j, k) \geq x\}.$$

If G_u has no (j,k)-separated pair (C_s,C_t) with $f(C_s,C_t,j,k) \geq x$ for any pair of numbers j and k in \mathbb{R}_w , then let $h_1(G_u,x) = -\infty$. It should be noted that a (j,k)-separated pair (C_s,C_t) for G_u with $j,k \in \mathbb{R}_w$ corresponds to a supplied set C_r for G such that $C_s \cup C_t \subseteq C_r$, and hence we can simply take the summation of j and k as the marginal power or the deficient power of $C_s \cup C_t$. We next formally define a function h_2 as follows: for a series-parallel graph G_u and a real number $x \in \mathbb{R}$,

$$h_2(G_u, x) = \max\{j \in \mathbb{R}_w \mid G_u \text{ has a } (j, \sigma)\text{-separated pair } (C_s, \{v_t\})$$
 such that $f(C_s, \{v_t\}, j, \sigma) \geq x\}.$

If G_u has no (j, σ) -separated pair $(C_s, \{v_t\})$ with $f(C_s, \{v_t\}, j, \sigma) \geq x$ for any number $j \in \mathbb{R}_w$, then let $h_2(G_u, x) = -\infty$. We then formally define a function h_3 as follows: for a series-parallel graph G_u and a real number $x \in \mathbb{R}$,

$$h_3(G_u,x)=\max\{k\in\mathbb{R}_w\mid G_u \text{ has a } (\sigma,k)\text{-separated pair } (\{v_s\},C_t)$$
 such that $f(\{v_s\},C_t,\sigma,k)\geq x\}.$

If G_u has no (σ, k) -separated pair $(\{v_s\}, C_t)$ with $f(\{v_s\}, C_t, \sigma, k) \geq x$ for any number $k \in \mathbb{R}_w$, then let $h_3(G_u, x) = -\infty$. We finally define a function h_4 as follows: for a series-parallel graph G_u and a real number $x \in \mathbb{R}$,

$$h_4(G_u, x) = \begin{cases} 0 & \text{if } G_u \text{ has a } (\sigma, \sigma)\text{-separated pair } (\{v_s\}, \{v_t\}) \\ & \text{such that } f(\{v_s\}, \{v_t\}, \sigma, \sigma) \ge x; \\ -\infty & \text{otherwise.} \end{cases}$$

Our algorithm computes $g(G_u, x)$ and $h_i(G_u, x)$, $1 \le i \le 4$, for each node u of a binary decomposition tree T of a given series-parallel graph G from the leaves to the root r of T by means of a dynamic programming. Since $G = G_r$, one can compute the maximum fulfillment f(G) of G from $g(G_r, x)$ and $h_i(G_r, x)$, $1 \le i \le 4$. However, due to the page limitation, we omit the details of our algorithm.

We now show that our algorithm takes time $O(F^2n)$. Since all demands and the supply of vertices in a given series-parallel graph G are integers, $f(C_u)$ is an integer for any supplied set C_u for G_u . Similarly, f(C,i) and $f(C_s,C_t,j,k)$ are integers for any i-connected set C and any (j,k)-separated pair (C_s,C_t) , respectively. Then one can easily observe that it suffices to compute values $g(G_u,x)$ and $h_i(G_u,x)$, $1 \le i \le 4$, only for all integers x such that $0 \le x \le F$, because $f(G) \le F = \sum_{v \in V} \text{dem}(v)$. We compute $g(G_u,x)$ and $h_i(G_u,x)$, $1 \le i \le 4$, for each internal node u of T from the counterparts of the two children of u in T. This is called $combining \ operation$, and can be done in time $O(F^2)$. Since T has at most 2n-4 internal nodes, the combining operation is executed no more than 2n times and hence one can compute g(G,x) and $h_i(G,x)$, $1 \le i \le 4$, in time $O(F^2n)$. Our algorithm thus takes time $O(F^2n)$.

4 FPTAS

Assume in this section that the supply and all demands are positive real numbers which are not always integers. Since the maximum partition problem is MAXSNP-hard, there is no PTAS for the problem on general graphs unless P = NP. However, using the pseudo-polynomial-time algorithm in Section 3, we can obtain an FPTAS for series-parallel graphs having exactly one supply vertex, and have the following theorem.

Theorem 3. There is a fully polynomial-time approximation scheme for the maximum partition problem on a series-parallel graph having exactly one supply vertex.

We give an algorithm to find a supplied set C for a series-parallel graph G with $f(C) \geq (1-\varepsilon)f(G)$ in time polynomial in n and $1/\varepsilon$ for any real number ε , $0 < \varepsilon < 1$. Thus our approximate maximum fulfillent $\bar{f}(G)$ of G is f(C), and hence the error is bounded by $\varepsilon f(G)$, that is,

$$f(G) - \bar{f}(G) = f(G) - f(C) \le \varepsilon f(G). \tag{2}$$

We now outline our algorithm and the analysis. We extend the ordinary "scaling and rounding" technique for the knapsack problem [3] and the maximum partition problem on trees [4] and apply it to the maximum partition problem for a series-parallel graph with a single supply vertex. For some scaling factor t, we consider the set $\{\cdots, -2t, -t, 0, t, 2t, \cdots\}$ as the range of functions g and h_i , $1 \le i \le 4$, and find the approximate solution $\bar{f}(G)$ by using the pseudo-polynomial-time algorithm in Section 3. Then we have

$$f(G) - \bar{f}(G) < 4nt. \tag{3}$$

Intuitively, Eq. (3) holds because the combining operation is executed no more than 2n times and each combining operation adds at most 2t to the error $f(G) - \bar{f}(G)$. Let m_d be the maximum demand, that is, $m_d = \max\{\text{dem}(v) \mid v \in V_d\}$. Taking $t = \varepsilon m_d/(4n)$ and claiming $f(G) \geq m_d$, we have Eq. (2). One can observe that the algorithm takes time

$$O\left(\left(\left\lfloor \frac{F}{t}\right\rfloor + 1\right)^2 n\right) = O\left(\frac{n^5}{\varepsilon^2}\right),$$

because $F \leq nm_d$ and hence we have $F/t \leq 4n^2/\varepsilon$.

Acknowledgments

We thank Mohammad Taghi Hajiaghayi for fruitful discussions.

References

- S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable graphs, J. Algorithms, Vol. 12, pp. 308–340, 1991.
- 2. H. L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees, J. Algorithms, Vol. 11, pp. 631–643, 1990.
- 3. O. H. Ibarra and C. E. Kim, Fast approximation algorithms for the knapsack and sum of subset problems, J. ACM, Vol. 22, pp. 463–468, 1975.
- T. Ito, X. Zhou and T. Nishizeki, Partitioning trees of supply and demand, International J. of Foundations of Computer Science, Vol. 16, pp. 803–827, 2005.
- T. Ito, X. Zhou and T. Nishizeki, Partitioning graphs of supply and demand, Proc. of the 2005 IEEE Int'l Symposium on Circuits and Syst., pp. 160–163, 2005.
- A. B. Morton and I. M. Y. Mareels, An efficient brute-force solution to the network reconfiguration problem, IEEE Trans. on Power Delivery, Vol. 15, pp. 996–1000, 2000.
- 7. C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
- C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity classes, J. Computer and System Sciences, Vol. 43, pp. 425–440, 1991.
- K. Takamizawa, T. Nishizeki and N. Saito, Linear-time computability of combinatorial problems on series-parallel graphs, J. ACM, Vol. 29, pp. 623–641, 1982.