
Approximability of
Partitioning Graphs with Supply and Demand

(Extended Abstract)

Takehiro Ito1, Erik D. Demaine2, Xiao Zhou1, and Takao Nishizeki1

1 Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan.

2 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA.

take@nishizeki.ecei.tohoku.ac.jp, edemaine@mit.edu,
{zhou, nishi}@ecei.tohoku.ac.jp

Abstract. Suppose that each vertex of a graph G is either a supply
vertex or a demand vertex and is assigned a positive real number, called
the supply or the demand. Each demand vertex can receive “power”
from at most one supply vertex through edges in G. One thus wishes to
partition G into connected components so that each component C either
has no supply vertex or has exactly one supply vertex whose supply is at
least the sum of demands in C, and wishes to maximize the fulfillment,
that is, the sum of demands in all components with supply vertices. This
maximization problem is known to be NP-hard even for trees having
exactly one supply vertex and strongly NP-hard for general graphs. In
this paper, we focus on the approximability of the problem. We first show
that the problem is MAXSNP-hard and hence there is no polynomial-
time approximation scheme (PTAS) for general graphs unless P = NP.
We then present a fully polynomial-time approximation scheme (FPTAS)
for series-parallel graphs having exactly one supply vertex. The FPTAS
can be easily extended for partial k-trees, that is, graphs with bounded
treewidth.

1 Introduction

Consider a graph G such that each vertex is either a supply vertex or a de-
mand vertex. Each vertex v is assigned a positive real number; the number is
called the supply of v if v is a supply vertex; otherwise, it is called the demand
of v. Each demand vertex can receive “power” from at most one supply vertex
through edges in G. One thus wishes to partition G into connected components
by deleting edges from G so that each component C has exactly one supply
vertex whose supply is at least the sum of demands of all demand vertices in C.
However, such a partition does not always exist. So we wish to partition G into
connected components so that each component C either has no supply vertex or
has exactly one supply vertex whose supply is at least the sum of demands of all
demand vertices in C, and wish to maximize the “fulfillment,” that is, the sum

Fig. 1. (a) Partition of a graph with maximum fulfillment, (b) partition of a series-
parallel graph G having exactly one supply vertex, and (c) a star S with a supply
vertex at the center.

of demands of the demand vertices in all components with supply vertices. We
call this problem the maximum partition problem [4]. The maximum partition
problem has some applications to the power supply problem for power delivery
networks [4, 6]. Figure 1(a) illustrates a solution of the maximum partition prob-
lem for a graph, whose fulfillment is (2 + 7) + (8 + 7) + (3 + 6) + (4 + 8) = 45.
In Fig. 1(a) each supply vertex is drawn as a rectangle and each demand vertex
as a circle, the supply or demand is written inside, the deleted edges are drawn
by thick dotted lines, and each connected component with a supply vertex is
shaded.

Given a set A of integers and an upper bound (integer) b, the maximum
subset sum problem asks to find a subset C of A such that the sum of integers in
C is no greater than the bound b and is maximum among all such subsets C. The
maximum subset sum problem can be reduced in linear time to the maximum
partition problem for a particular tree, called a star, with exactly one supply
vertex at the center, as illustrated in Fig. 1(c) [4]. Since the maximum subset sum
problem is NP-hard, the maximum partition problem is also NP-hard even for
stars. Thus it is very unlikely that the maximum partition problem can be exactly
solved in polynomial time even for trees. However, there is a fully polynomial-
time approximation scheme (FPTAS) for the maximum partition problem on
trees [4]. One may thus expect that the FPTAS for trees can be extended to a
larger class of graphs, for example series-parallel graphs and partial k-trees, that
is, graphs with bounded treewidth [1, 2].

In this paper, we study the approximability of the maximum partition prob-
lem. We first show that the maximum partition problem is MAXSNP-hard, and
hence there is no polynomial-time approximation scheme (PTAS) for the problem
on general graphs unless P = NP. We then present an FPTAS for series-parallel
graphs having exactly one supply vertex. The FPTAS for series-parallel graphs
can be extended to partial k-trees. (The details are omitted from this extended
abstract.) Figure 1(b) depicts a series-parallel graph together with a connected
component C found by our FPTAS. One might think that it would be straight-
foward to extend the FPTAS for the maximum subset sum problem in [3] to an

FPTAS for the maximum partition problem with a single supply vertex. How-
ever, this is not the case since we must take a graph structure into account. For
example, the vertex v of demand 2 in Fig. 1(b) cannot be supplied power even
though the supply vertex w has marginal power 25−(2+3+2+2+3+7+4) = 2,
while the vertex v in Fig. 1(c) can be supplied power from the supply vertex w
in the star having the same supply and demands as in Fig. 1(b). Indeed, we not
only extend the “scaling and rounding” technique but also employ many new
ideas to derive our FPTAS.

The rest of the paper is organized as follows. In Section 2 we show that the
maximum partition problem is MAXSNP-hard. In Section 3 we present a pseudo-
polynomial-time algorithm for series-parallel graphs. In Section 4 we present an
FPTAS based on the algorithm in Section 3.

2 MAXSNP-hardness

Assume in this section that a graph G has one or more supply vertices. (See
Figs. 1(a) and 2(b).) The main result of this section is the following theorem.

Theorem 1. The maximum partition problem is MAXSNP-hard for bipartite
graphs.

Proof. As in [7, 8], we use the concept of “L-reduction” which is a special kind
of reduction that preserves approximability. Suppose that both A and B are
maximization problems. Then we say that A can be L-reduced to B if there exist
two polynomial-time algorithms R and S and two positive constants α and β
which satisfy the following two conditions (1) and (2) for each instance IA of A:

(1) the algorithm R returns an instance IB = R(IA) of B such that
OPTB(IB) ≤ α · OPTA(IA), where OPTA(IA) and OPTB(IB) denote
the maximum solution values of IA and IB , respectively; and

(2) for each feasible solution of IB with value cB , the algorithm S returns
a feasible solution of IA with value cA such that OPTA(IA) − cA ≤
β ·
(
OPTB(IB)− cB

)
.

Note that, by condition (2) of the L-reduction, S must return the optimal solu-
tion of IA for the optimal solution of IB .

We show that a MAXSNP-hard problem, called “3-occurrence MAX3SAT” [7,
8], can be L-reduced to the maximum partition problem for bipartite graphs.
However, due to the page limitation, we only show in this extended abstract
that condition (1) of the L-reduction holds.

We now show that condition (1) of the L-reduction holds. An instance Φ of 3-
occurrence MAX3SAT consists of a collection of m clauses C1, C2, · · · , Cm on n
variables x1, x2, · · · , xn such that each clause has exactly three literals and each
variable appears at most three times in the clauses. The problem 3-occurrence
MAX3SAT is to find a truth assignment for the variables which satisfies the
maximum number of clauses. Then it suffices to show that, from each instance

Fig. 2. (a) Variable gadget Gxj , and (b) the bipartite graph GΦ corresponding to an
instance Φ with three clauses C1 = (x1 ∨ x̄2 ∨ x3), C2 = (x̄1 ∨ x̄2 ∨ x3) and C3 =
(x̄1 ∨ x̄2 ∨ x̄3).

Φ of 3-occurrence MAX3SAT, one can construct in polynomial time a bipartite
graph GΦ as an instance of the maximum partition problem such that

OPTMPP (GΦ) ≤ 26 ·OPTSAT (Φ), (1)

where OPTMPP (GΦ) and OPTSAT (Φ) are the maximum solution values of GΦ

and Φ, respectively: condition (1) of the L-reduction holds for α = 26.
We first make a variable gadget Gxj

for each variable xj , 1 ≤ j ≤ n; Gxj
is

a binary tree with three vertices as illustrated in Fig. 2(a); the root is a supply
vertex of supply 7, and two leaves xj and x̄j are demand vertices of demands
4. The graph GΦ is constructed as follows. For each variable xj , 1 ≤ j ≤ n,
put the variable gadget Gxj

to the graph, and for each clause Ci, 1 ≤ i ≤ m,
put a demand vertex Ci of demand 1 to the graph. Finally, for each clause Ci,
1 ≤ i ≤ m, join a demand vertex xj (or x̄j) in Gxj

with the demand vertex Ci

if and only if the literal xj (or x̄j) is in Ci, as illustrated in Fig. 2(b). Clearly,
GΦ can be constructed in polynomial time, and is a bipartite graph. It should
be noted that the degree of each demand vertex in the variable gadget for xj

is at most four since xj appears at most three times in the clauses. Therefore,
each supply vertex in the variable gadget Gxj

has enough “power” to supply all
demand vertices Ci whose corresponding clauses have xj or x̄j . Then one can
verify Eq. (1), whose proof is omitted from this extended abstract. ut

3 Pseudo-polynomial-time algorithm

Since the maximum partition problem is strongly NP-hard [5], there is no pseudo-
polynomial-time algorithm for general graphs unless P = NP. However, Ito et
al. presented a pseudo-polynomial-time algorithm for the maximum partition
problem on series-parallel graphs [5]. In this section we present another pseudo-
polynomial-time algorithm, which is suited to an FPTAS presented in Section
4. More precisely, we have the following theorem.

Theorem 2. The maximum partition problem for a series-parallel graph G with
a single supply vertex can be solved in time O(F 2n) if the demands and the supply

are integers, where n is the number of vertices and F is the sum of all demands
in G.

3.1 Terminology and definitions

Suppose that there is exactly one supply vertex w in a graph G = (V,E), as
illustrated in Figs. 1(b) and (c). Let sup(w) be the supply of w. For each demand
vertex v, we denote by dem(v) the demand of v. Let dem(w) = 0 although w
is a supply vertex. Then, instead of finding a partition of G, we shall find a set
C ⊆ V , called a supplied set for G, such that

(a) w ∈ C;
(b)

∑
v∈C dem(v) ≤ sup(w); and

(c) C induces a connected subgraph of G.
The fulfillment f(C) of a supplied set C is

∑
v∈C dem(v). A supplied set C is

called the maximum supplied set for G if f(C) is maximum among all supplied
sets for G. Then the maximum partition problem is to find a maximum supplied
set for a given graph G. The maximum fulfillment f(G) of a graph G is the
fulfillment f(C) of the maximum supplied set C for G. For the series-parallel
graph G in Fig. 1(b), the supplied set C shaded in the figure has the maximum
fulfillment, and hence f(G) = f(C) = 23, while f(S) = 25 for the star S in
Fig. 1(c).

A (two-terminal) series-parallel graph G is defined recursively as a graph
obtained from two series-parallel graphs by the so-called series or parallel con-
nection [9]. The terminals of G are denoted by vs(G) and vt(G). Since we deal
with the maximum partition problem, we may assume without loss of generality
that G is a simple graph.

A series-parallel graph G can be represented by a “binary decomposition
tree” T [9]. Every leaf of T represents a subgraph of G induced by a single
edge. Each node u of T corresponds to a subgraph Gu = (Vu, Eu) of G induced
by all edges represented by the leaves that are descendants of u in T . Gu is a
series-parallel graph for each node u of T , and G = Gr for the root r of T . Since
a binary decomposition tree of a given series-parallel graph G can be found in
linear time [9], we may assume that a series-parallel graph G and its binary
decomposition tree T are given.

3.2 Algorithm

In this subsection we give an algorithm to solve the maximum partition problem
in time O(F 2n) as a proof of Theorem 2.

Let G be a series-parallel graph, let u, u′ and u′′ be nodes of a binary de-
composition tree T of G, and let Gu = (Vu, Eu), Gu′ = (Vu′ , Eu′) and Gu′′ =
(Vu′′ , Eu′′) be the subgraphs of G for nodes u, u′ and u′′, respectively, as illus-
trated in Fig. 3(a). Every supplied set C for G naturally induces subsets of Vu,
Vu′ and Vu′′ . The supplied set C for G in Fig. 3(a) induces a single subset Cst

of Vu in Fig. 3(b) such that Cst = C ∩ Vu and vs(Gu), vt(Gu) ∈ Cst. On the

Fig. 3. (a) A supplied set C for a series-parallel graph G, (b) a connected set Cst for
Gu, (c) a separated pair (Cs, Ct) of sets for Gu′ , and (d) a separated pair (Cs, Ct) of
isolated sets for Gu′′ .

other hand, C induces a pair of subsets Cs and Ct of Vu′ in Fig. 3(c) such that
Cs ∪ Ct = C ∩ Vu′ , Cs ∩ Ct = ∅, vs(Gu′) ∈ Cs and vt(Gu′) ∈ Ct. A set Cst, Cs

or Ct is not always a supplied set for Gu or Gu′ , because it may not contain
the supply vertex w. Cst is a “connected set” for Gu, that is, Cst induces a con-
nected subgraph of Gu, while the pair (Cs, Ct) is a “separated pair of sets” for
Gu′ , that is, Cs and Ct induce vertex-disjoint connected subgraphs of Gu′ . The
set C contains no terminals of Gu′′ in Fig. 3(a). In such a case, we regard that
dem(vs(Gu′′)) = dem(vt(Gu′′)) = 0 and C induces a separated pair of singleton
sets (Cs, Ct) such that Cs = {vs(Gu′′)} and Ct = {vt(Gu′′)}, as illustrated in
Fig. 3(d).

If a set Cst, Cs or Ct contains the supply vertex w, then the set may have
the “marginal” power, the amount of which is no greater than sup(w). If a set
does not contain w, then the set may have the “deficient” power, the amount of
which is no greater than sup(w). Thus we later introduce five functions g, h1, h2,
h3 and h4; for a series-parallel graph Gu and a real number x, the value g(Gu, x)
represents the maximum marginal power or the minimum deficient power of
connected sets for Gu; for a series-parallel graph Gu and a real number x, the
value hi(Gu, x), 1 ≤ i ≤ 4, represents the maximum marginal power or the
minimum deficient power of separated pairs of sets for Gu. Our idea is to compute
g(Gu, x) and hi(Gu, x), 1 ≤ i ≤ 4, from the leaves of T to the root r of T by
means of dynamic programming.

We now formally define the notion of connected sets and separated pair of sets
for a series-parallel graph G. Let Gu = (Vu, Eu) be a subgraph of G for a node

u of a binary decomposition tree T of G, and let vs = vs(Gu) and vt = vt(Gu).
We call a set C ⊆ Vu a connected set for Gu if C satisfies the following three
conditions (see Fig. 3(b)):

(a) vs, vt ∈ C;
(b) C induces a connected subgraph of Gu; and
(c)

∑
v∈C dem(v) ≤ sup(w) if w ∈ C.

A pair of sets Cs, Ct ⊆ Vu is called a separated pair (of sets) for Gu if Cs and
Ct satisfy the following four conditions (see Fig. 3(c)):

(a) Cs ∩ Ct = ∅, vs ∈ Cs and vt ∈ Ct;
(b) Cs and Ct induce connected subgraphs of Gu;
(c)

∑
v∈Cs

dem(v) ≤ sup(w) if w ∈ Cs; and
(d)

∑
v∈Ct

dem(v) ≤ sup(w) if w ∈ Ct.

We then classify connected sets and separated pairs further into smaller
classes. Let Rw = {x ∈ R : |x| ≤ sup(w)}, where R denotes the set of all
real numbers. For each real number i ∈ Rw, we call a connected set C for Gu an
i-connected set if C satisfies the following two conditions:

(a) if i > 0, then w ∈ C and i +
∑

x∈C dem(x) ≤ sup(w); and
(b) if i ≤ 0, then w /∈ C and

∑
x∈C dem(x) ≤ |i| = −i.

An i-connected set C for Gu with i > 0 is a supplied set for Gu, and hence
corresponds to some supplied set Cr for the whole graph G = Gr such that
w ∈ C ⊆ Cr, where r is the root of T ; an amount i of the remaining power
of w can be delivered outside Gu through vs or vt; and hence the “margin” of
C is i. On the other hand, an i-connected set C for Gu with i ≤ 0 is not a
supplied set for Gu, but may correspond to a supplied set Cr for G = Gr such
that w /∈ C ⊂ Cr and w ∈ Cr; an amount |i| of power must be delivered to C
through vs or vt, and hence the “deficiency” of C is |i|. For an i-connected set
C for Gu, let

f(C, i) =
∑
x∈C

dem(x).

Then f(C, i) = f(C) if 0 < i ≤ sup(w). On the other hand, if −sup(w) ≤ i ≤ 0,
then f(C, i) represents the fulfillment of C when an amount |i| of power is
delivered to C from w in the outside of Gu.

Let σ /∈ Rw be a symbol. For each pair of j and k in Rw ∪ {σ}, we call
a separated pair (Cs, Ct) for Gu a (j, k)-separated pair if (Cs, Ct) satisfies the
following seven conditions:

(a) if j > 0, then w ∈ Cs and j +
∑

x∈Cs
dem(x) ≤ sup(w);

(b) if j ≤ 0, then w /∈ Cs and
∑

x∈Cs
dem(x) ≤ −j;

(c) if j = σ, then Cs = {vs};
(d) if k > 0, then w ∈ Ct and k +

∑
x∈Ct

dem(x) ≤ sup(w);
(e) if k ≤ 0, then w /∈ Ct and

∑
x∈Ct

dem(x) ≤ −k;
(f) if k = σ, then Ct = {vt}; and
(g) if j + k ≤ 0, then j ≤ 0 and k ≤ 0.

Since G has only one supply vertex w, there is no (j, k)-separated pair (Cs, Ct) for
G such that j > 0 and k > 0. A (j, k)-separated pair (Cs, Ct) for Gu with j > 0
corresponds to a supplied set Cr for the whole graph G such that w ∈ Cs ⊆ Cr;

an amount j of the remaining power of w can be delivered outside Cs through
vs, and hence the margin of Cs is j. A (j, k)-separated pair (Cs, Ct) for Gu with
j ≤ 0 may correspond to a supplied set Cr for G such that Cs ⊂ Cr and either
w ∈ Ct or w ∈ Cr − Cs ∪ Ct; an amount |j| of power must be delivered to Cs

through vs, and hence the deficiency of Cs is |j|. A (j, k)-separated pair (Cs, Ct)
for Gu with j = σ corresponds to a supplied set Cr for G such that vs /∈ Cr,
that is, vs is never supplied power. (See Figs. 3(a) and (d).) A (j, k)-separated
pair (Cs, Ct) for Gu with k > 0, k ≤ 0 or k = σ corresponds to a supplied set
Cr for G similarly as above. For a (j, k)-separated pair (Cs, Ct) for Gu, let

f(Cs, Ct, j, k) =


∑

x∈Cs∪Ct
dem(x) if j, k ∈ Rw;∑

x∈Cs
dem(x) if j ∈ Rw and k = σ; and∑

x∈Ct
dem(x) if j = σ and k ∈ Rw.

Let

f(Cs, Ct, σ, σ) = max{f(Cu) | Cu is a supplied set for Gu

such that vs, vt /∈ Cu};

let f(Cs, Ct, σ, σ) = 0 if Gu has no supplied set Cu such that vs, vt /∈ Cu.

We now formally define a function g as follows: for a series-parallel graph Gu

and a real number x ∈ R,

g(Gu, x) = max{i ∈ Rw | Gu has an i-connected set C such that f(C, i) ≥ x}.

If Gu has no i-connected set C with f(C, i) ≥ x for any number i ∈ Rw, then
let g(Gu, x) = −∞. We then formally define a function h1 as follows: for a
series-parallel graph Gu and a real number x ∈ R,

h1(Gu, x) = max{j + k | Gu has a (j, k)-separated pair (Cs, Ct) such that
j, k ∈ Rw, |j + k| ≤ sup(w), and f(Cs, Ct, j, k) ≥ x}.

If Gu has no (j, k)-separated pair (Cs, Ct) with f(Cs, Ct, j, k) ≥ x for any pair
of numbers j and k in Rw, then let h1(Gu, x) = −∞. It should be noted that a
(j, k)-separated pair (Cs, Ct) for Gu with j, k ∈ Rw corresponds to a supplied set
Cr for G such that Cs ∪Ct ⊆ Cr, and hence we can simply take the summation
of j and k as the marginal power or the deficient power of Cs ∪ Ct. We next
formally define a function h2 as follows: for a series-parallel graph Gu and a real
number x ∈ R,

h2(Gu, x) = max{j ∈ Rw | Gu has a (j, σ)-separated pair (Cs, {vt})
such that f(Cs, {vt}, j, σ) ≥ x}.

If Gu has no (j, σ)-separated pair (Cs, {vt}) with f(Cs, {vt}, j, σ) ≥ x for any
number j ∈ Rw, then let h2(Gu, x) = −∞. We then formally define a function
h3 as follows: for a series-parallel graph Gu and a real number x ∈ R,

h3(Gu, x) = max{k ∈ Rw | Gu has a (σ, k)-separated pair ({vs}, Ct)
such that f({vs}, Ct, σ, k) ≥ x}.

If Gu has no (σ, k)-separated pair ({vs}, Ct) with f({vs}, Ct, σ, k) ≥ x for any
number k ∈ Rw, then let h3(Gu, x) = −∞. We finally define a function h4 as
follows: for a series-parallel graph Gu and a real number x ∈ R,

h4(Gu, x) =

0 if Gu has a (σ, σ)-separated pair ({vs}, {vt})
such that f({vs}, {vt}, σ, σ) ≥ x;

−∞ otherwise.

Our algorithm computes g(Gu, x) and hi(Gu, x), 1 ≤ i ≤ 4, for each node
u of a binary decomposition tree T of a given series-parallel graph G from the
leaves to the root r of T by means of a dynamic programming. Since G = Gr, one
can compute the maximum fulfillment f(G) of G from g(Gr, x) and hi(Gr, x),
1 ≤ i ≤ 4. However, due to the page limitation, we omit the details of our
algorithm.

We now show that our algorithm takes time O(F 2n). Since all demands and
the supply of vertices in a given series-parallel graph G are integers, f(Cu) is an
integer for any supplied set Cu for Gu. Similarly, f(C, i) and f(Cs, Ct, j, k) are
integers for any i-connected set C and any (j, k)-separated pair (Cs, Ct), respec-
tively. Then one can easily observe that it suffices to compute values g(Gu, x)
and hi(Gu, x), 1 ≤ i ≤ 4, only for all integers x such that 0 ≤ x ≤ F , because
f(G) ≤ F =

∑
v∈V dem(v). We compute g(Gu, x) and hi(Gu, x), 1 ≤ i ≤ 4, for

each internal node u of T from the counterparts of the two children of u in T .
This is called combining operation, and can be done in time O(F 2). Since T has
at most 2n−4 internal nodes, the combining operation is executed no more than
2n times and hence one can compute g(G, x) and hi(G, x), 1 ≤ i ≤ 4, in time
O(F 2n). Our algorithm thus takes time O(F 2n).

4 FPTAS

Assume in this section that the supply and all demands are positive real num-
bers which are not always integers. Since the maximum partition problem is
MAXSNP-hard, there is no PTAS for the problem on general graphs unless
P = NP. However, using the pseudo-polynomial-time algorithm in Section 3,
we can obtain an FPTAS for series-parallel graphs having exactly one supply
vertex, and have the following theorem.

Theorem 3. There is a fully polynomial-time approximation scheme for the
maximum partition problem on a series-parallel graph having exactly one supply
vertex.

We give an algorithm to find a supplied set C for a series-parallel graph G
with f(C) ≥ (1 − ε)f(G) in time polynomial in n and 1/ε for any real number
ε, 0 < ε < 1. Thus our approximate maximum fulfillent f̄(G) of G is f(C), and
hence the error is bounded by εf(G), that is,

f(G)− f̄(G) = f(G)− f(C) ≤ εf(G). (2)

We now outline our algorithm and the analysis. We extend the ordinary
“scaling and rounding” technique for the knapsack problem [3] and the maximum
partition problem on trees [4] and apply it to the maximum partition problem
for a series-parallel graph with a single supply vertex. For some scaling factor
t, we consider the set {· · · ,−2t,−t, 0, t, 2t, · · · } as the range of functions g and
hi, 1 ≤ i ≤ 4, and find the approximate solution f̄(G) by using the pseudo-
polynomial-time algorithm in Section 3. Then we have

f(G)− f̄(G) < 4nt. (3)

Intuitively, Eq. (3) holds because the combining operation is executed no more
than 2n times and each combining operation adds at most 2t to the error f(G)−
f̄(G). Let md be the maximum demand, that is, md = max{dem(v) | v ∈ Vd}.
Taking t = εmd/(4n) and claiming f(G) ≥ md, we have Eq. (2). One can observe
that the algorithm takes time

O

((⌊
F

t

⌋
+ 1
)2

n

)
= O

(
n5

ε2

)
,

because F ≤ nmd and hence we have F/t ≤ 4n2/ε.

Acknowledgments

We thank MohammadTaghi Hajiaghayi for fruitful discussions.

References

1. S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable
graphs, J. Algorithms, Vol. 12, pp. 308–340, 1991.

2. H. L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees, J. Algorithms, Vol. 11, pp. 631–643, 1990.

3. O. H. Ibarra and C. E. Kim, Fast approximation algorithms for the knapsack and
sum of subset problems, J. ACM, Vol. 22, pp. 463–468, 1975.

4. T. Ito, X. Zhou and T. Nishizeki, Partitioning trees of supply and demand, Inter-
national J. of Foundations of Computer Science, Vol. 16, pp. 803–827, 2005.

5. T. Ito, X. Zhou and T. Nishizeki, Partitioning graphs of supply and demand,
Proc. of the 2005 IEEE Int’l Symposium on Circuits and Syst., pp. 160–163, 2005.

6. A. B. Morton and I. M. Y. Mareels, An efficient brute-force solution to the network
reconfiguration problem, IEEE Trans. on Power Delivery, Vol. 15, pp. 996–1000,
2000.

7. C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
8. C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and com-

plexity classes, J. Computer and System Sciences, Vol. 43, pp. 425–440, 1991.
9. K. Takamizawa, T. Nishizeki and N. Saito, Linear-time computability of combina-

torial problems on series-parallel graphs, J. ACM, Vol. 29, pp. 623–641, 1982.

