
Approximability of

Partitioning Graphs with Supply and Demand

Takehiro Ito a,∗, Erik D. Demaine b, Xiao Zhou a and
Takao Nishizeki a

aGraduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan.

bMIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA.

Abstract

Suppose that each vertex of a graph G is either a supply vertex or a demand
vertex and is assigned a positive real number, called the supply or the demand.
Each demand vertex can receive “power” from at most one supply vertex through
edges in G. One thus wishes to partition G into connected components by deleting
edges from G so that each component C either has no supply vertex or has exactly
one supply vertex whose supply is at least the sum of demands in C, and wishes to
maximize the fulfillment, that is, the sum of demands in all components with supply
vertices. This maximization problem is known to be NP-hard even for trees having
exactly one supply vertex and strongly NP-hard for general graphs. In this paper,
we focus on the approximability of the problem. We first show that the problem
is MAXSNP-hard and hence there is no polynomial-time approximation scheme
(PTAS) for general graphs unless P = NP. We then present a fully polynomial-time
approximation scheme (FPTAS) for series-parallel graphs having exactly one supply
vertex.

1 Introduction

Consider a graph G such that each vertex is either a supply vertex or a de-
mand vertex. Each vertex v is assigned a positive real number; the number

∗ Corresponding author.
Email addresses: takehiro@ecei.tohoku.ac.jp (Takehiro Ito),

edemaine@mit.edu (Erik D. Demaine), zhou@ecei.tohoku.ac.jp (Xiao Zhou),
nishi@ecei.tohoku.ac.jp (Takao Nishizeki).

Preprint submitted to Elsevier 2 November 2007



13

8

15

2

10 2

12

57

3

84

5

67

(a)                                                                                       (b) 

C

w

v

44

3

2 7

2

22

3

3 3

5 25

Cw

v

4

4

3

2

7

2

2

2 3

3

3

5

b = 25

supply vertex

demand vertex

(c) 

Fig. 1. (a) Partition of a graph with maximum fulfillment, (b) partition of a series–
parallel graph G having exactly one supply vertex, and (c) a star S with a supply
vertex at the center.

is called the supply of v if v is a supply vertex; otherwise, it is called the de-
mand of v. Each demand vertex can receive “power” from at most one supply
vertex through edges in G. One thus wishes to partition G into connected
components by deleting edges from G so that each component C has exactly
one supply vertex whose supply is at least the sum of demands of all demand
vertices in C. However, such a partition does not always exist. So we wish to
obtain a partition of G into connected components so that each component C
either has no supply vertex or has exactly one supply vertex whose supply is
at least the sum of demands of all demand vertices in C, and wish to maximize
the “fulfillment,” that is, the sum of demands of the demand vertices in all
components with supply vertices. We call this problem the maximum partition
problem [7]. Figure 1(a) illustrates a solution of the maximum partition prob-
lem for a graph, whose fulfillment is (2+7)+(8+7)+(3+6)+(4+8) = 45. In
Fig. 1(a) each supply vertex is drawn as a rectangle and each demand vertex
as a circle, the supply or demand is written inside, the deleted edges are drawn
by thick dotted lines, and each connected component with a supply vertex is
shaded.

The maximum partition problem has some applications to the power supply
problem for power delivery networks [3,7,10,14]. Let G be a graph of a power

2



delivery network. Each supply vertex represents a “feeder,” which can supply
electrical power. Each demand vertex represents a “load,” which requires elec-
trical power supplied from exactly one of the feeders through a network. Each
edge of G represents a cable segment, which can be “turned off” by a switch.
Then the maximum partition problem represents the “power supply switching
problem” to maximize the sum of all loads that can be supplied powers in a
network “reconfigured” by turning off some cable segments.

Given a set A of integers and an upper bound (integer) b, the maximum subset
sum problem [4,5] asks to find a subset C of A such that the sum of integers in C
is no greater than the bound b and is maximum among all such subsets C. The
maximum subset sum problem can be reduced in linear time to the maximum
partition problem for a particular tree, called a star, with exactly one supply
vertex at the center, as illustrated in Fig. 1(c) [7]. Since the maximum subset
sum problem is NP-hard, the maximum partition problem is also NP-hard
even for stars. Thus it is very unlikely that the maximum partition problem
can be exactly solved in polynomial time even for trees. However, there is
a fully polynomial-time approximation scheme (FPTAS) for the maximum
partition problem on trees [7]. One may thus expect that the FPTAS for trees
can be extended to a larger class of graphs, for example series-parallel graphs
and partial k-trees, that is, graphs with bounded treewidth [1,2].

In this paper, we study the approximability of the maximum partition prob-
lem. We first show that the maximum partition problem is MAXSNP-hard,
and hence there is no polynomial-time approximation scheme (PTAS) for the
problem on general graphs unless P = NP. We then present an FPTAS for
series-parallel graphs having exactly one supply vertex. The FPTAS for series-
parallel graphs can be extended to partial k-trees. Figure 1(b) depicts a series-
parallel graph together with a connected component C found by our FPTAS.
One might think that it would be straightforward to extend the FPTAS for the
maximum subset sum problem in [5] to an FPTAS for the maximum partition
problem with a single supply vertex. However, this is not the case since we
must take a graph structure into account. For example, the vertex v of demand
2 drawn by a thick circle in Fig. 1(b) cannot be supplied power even though
the supply vertex w has marginal power 25−(2+3+2+2+3+7+4) = 2, while
the vertex v in Fig. 1(c) can be supplied power from the supply vertex w in
the star having the same supply and demands as in Fig. 1(b). Indeed, we not
only extend the “scaling and rounding” technique but also employ many new
ideas to derive our FPTAS. An early version of the paper has been presented
at [6].

The rest of the paper is organized as follows. In Section 2 we show that the
maximum partition problem is MAXSNP-hard. In Section 3 we present a
pseudo-polynomial-time algorithm for series-parallel graphs. In Section 4 we
present an FPTAS based on the algorithm in Section 3.

3



2 MAXSNP-hardness

Assume in this section that a graph G has one or more supply vertices. (See
Figs. 1(a) and 2(b).) The main result of this section is the following theorem.

Theorem 1 The maximum partition problem is MAXSNP-hard for bipartite
graphs.

A variant of the MAXSAT problem, called the “3-occurrence MAX3SAT prob-
lem,” is MAXSNP-hard [11,12]. An instance Φ of the problem consists of a
collection of m clauses C1, C2, · · · , Cm on n variables x1, x2, · · · , xn such that
each clause has exactly three literals and each variable appears at most three
times in the clauses. The 3-occurrence MAX3SAT problem is to find a truth
assignment for the variables which satisfies the maximum number of clauses.
Since each clause has exactly three literals, we have

n ≤ 3m. (1)

In order to prove Theorem 1, we use the concept of “L-reduction” which is
a special kind of reduction that preserves approximability [11,12]. Suppose
that both A and B are maximization problems. Then we say that A can be
L-reduced to B if there exist two polynomial-time algorithms Q and R and
two positive constants α and β which satisfy the following two conditions (1)
and (2) for each instance IA of A:

(1) the algorithm Q returns an instance IB = Q(IA) of B such that

OPTB(IB) ≤ α · OPTA(IA),

where OPTA(IA) and OPTB(IB) denote the maximum solution values
of IA and IB, respectively; and

(2) for each feasible solution of IB with value cB, the algorithm R returns
a feasible solution of IA with value cA such that

OPTA(IA) − cA ≤ β · (OPTB(IB) − cB).

Note that, by condition (2) of the L-reduction, R must return the optimal
solution of IA for the optimal solution of IB.

We now prove Theorem 1.

Proof of Theorem 1.

It suffices to show that the 3-occurrence MAX3SAT problem can be L-reduced
to the maximum partition problem for bipartite graphs.

4



7

44xj xj

7

44x1 x1

7

44x3 x3

7

44x2 x2

1 1 1

(a) Gxj                                                                  (b) GΦ

C3C2C1

Gx1 Gx2 Gx3

Fig. 2. (a) Variable gadget Gxj , and (b) bipartite graph GΦ corresponding to an
instance Φ with three clauses C1 = (x1 ∨ x̄2 ∨ x3), C2 = (x̄1 ∨ x̄2 ∨ x3) and
C3 = (x̄1 ∨ x̄2 ∨ x̄3).

We first show that condition (1) of the L-reduction holds for α = 26. It suffices
to show that, from each instance Φ of the 3-occurrence MAX3SAT problem,
one can construct in polynomial time a bipartite graph GΦ as an instance of
the maximum partition problem such that

OPTMPP (GΦ) ≤ 26 · OPTSAT (Φ), (2)

where OPTMPP (GΦ) is the maximum solution value of the maximum partition
problem for GΦ and OPTSAT (Φ) is the maximum solution value of the 3-
occurrence MAX3SAT problem for Φ.

We first make a variable gadget Gxj
for each variable xj, 1 ≤ j ≤ n; Gxj

is a binary tree with three vertices as illustrated in Fig. 2(a); the root is a
supply vertex of supply 7, and the two leaves xj and x̄j are demand vertices of
demands 4. Then the graph GΦ is constructed as follows. For each variable xj,
1 ≤ j ≤ n, put the variable gadget Gxj

to the graph, and for each clause Ci,
1 ≤ i ≤ m, put a demand vertex Ci of demand 1 to the graph. Finally, for each
clause Ci, 1 ≤ i ≤ m, join a demand vertex xj (or x̄j) in Gxj

, 1 ≤ j ≤ n, with
the demand vertex Ci if and only if the literal xj (or x̄j) is in Ci, as illustrated
in Fig. 2(b). Clearly, GΦ can be constructed in polynomial time, and is a
bipartite graph. It should be noted that, since each variable xj, 1 ≤ j ≤ n,
appears at most three times in the clauses, the supply vertex in Gxj

has enough
“power” to supply all demand vertices Ci whose corresponding clauses have
xj or x̄j.

We then verify Eq. (2). One can easily have

OPTMPP (GΦ) = 4n + OPTSAT (Φ). (3)

5



Note that, for each j, 1 ≤ j ≤ n, exactly one of the two demand vertices xj

and x̄j is supplied power in the maximum solution of the maximum partition
problem for GΦ and hence the first term 4n of the right side of Eq. (3) repre-
sents the sum of the demands in Gxj

, 1 ≤ j ≤ n, which are supplied power.
Since OPTSAT (Φ) ≤ m, by Eqs. (1) and (3) we have

OPTMPP (GΦ) ≤ 12m + m = 13m. (4)

On the other hand, we have OPTSAT (Φ) ≥ m/2, because if a truth assignment
satisfies only less than half of clauses of Φ, then the negation of the truth
assignment satisfies at least half of the clauses of Φ. Therefore, by Eq. (4) we
have

OPTMPP (GΦ) ≤ 13m = 26 · m

2
≤ 26 · OPTSAT (Φ).

We have thus verified Eq. (2).

We next show that condition (2) of the L-reduction holds for β = 1. One
can give a truth assignment in polynomial time from a partition P of GΦ, as
follows: set a variable xj to TRUE if the demand vertex xj in Gxj

is supplied
power in P ; otherwise, set xj to FALSE. It suffices to show that

OPTSAT (Φ) − cΦ ≤ OPTMPP (GΦ) − f(P ), (5)

where cΦ is the number of clauses of Φ satisfied by the truth assignment and
f(P ) is the fulfillment of P , that is, the sum of demands of all demand vertices
in components with supply vertices. One can easily observe

cΦ ≥ f(P ) − 4n. (6)

Note that both of the two demand vertices xj and x̄j may not be supplied
power in P for some variable gadgets Gxj

. By Eqs. (3) and (6) we have

OPTSAT (Φ) − cΦ ≤OPTSAT (Φ) − (f(P ) − 4n)

= (4n + OPTSAT (Φ)) − f(P )

= OPTMPP (GΦ) − f(P ).

We have thus verified Eq. (5). �

6



3 Pseudo-polynomial-time algorithm

Since the maximum partition problem is strongly NP-hard [8], there is no
pseudo-polynomial-time algorithm for general graphs unless P = NP. How-
ever, Ito et al. presented a pseudo-polynomial-time algorithm for the maximum
partition problem on series-parallel graphs having one or more supply ver-
tices [8]. In this section we present another pseudo-polynomial-time algorithm
on series-parallel graphs having exactly one supply vertex, which is suited
to an FPTAS presented in Section 4. More precisely, we have the following
theorem.

Theorem 2 The maximum partition problem for a series-parallel graph G
with a single supply vertex can be solved in time O(F 2n) if the demands and
the supply are integers, where n is the number of vertices in G and F is an
arbitrary upper bound on the maximum solution value for G.

A trivial example of the upper bound F is the supply of the supply vertex.
Another example is the sum of demands of all demand vertices in G. A better
upper bound will be given in Section 4.

In the remainder of this section we give an algorithm to solve the maximum
partition problem in time O(F 2n) as a proof of Theorem 2. In Subsection 3.1
we give a definition of a series-parallel graph. In Subsection 3.2 we define some
terms and present ideas of our algorithm. We then present our algorithm in
Subsection 3.3. We finally show, in Subsection 3.4, that our algorithm takes
time O(F 2n).

vs (G )
  = vs (G1)vs (G ) vt (G )

vt (G )
  = vt (G2 )

vt (G1)

vs (G2 )

G1 G2

G1

G2

vs (G )
  = vs (G1)
  = vs (G2 )

vt (G )
  = vt (G1)
  = vt (G2 )

(a)                                                                       (b)

(c)

Fig. 3. (a) A series-parallel graph with a single edge, (b) series connection, and (c)
parallel connection.

7



3.1 Terminologies and definitions

A (two-terminal ) series-parallel graph is defined recursively as follows [13]:
(1) A graph G with a single edge is a series-parallel graph. The ends of the

edge are called the terminals of G and denoted by vs(G) and vt(G).
(See Fig. 3(a).)

(2) Let G1 be a series-parallel graph with terminals vs(G1) and vt(G1), and
let G2 be a series-parallel graph with terminals vs(G2) and vt(G2).

(a) A graph G obtained from G1 and G2 by identifying vt(G1) with
vs(G2) is a series-parallel graph, whose terminals are vs(G) =
vs(G1) and vt(G) = vt(G2). Such a connection is called a series
connection, and G is denoted by G = G1 • G2. (See Fig. 3(b).)

(b) A graph G obtained from G1 and G2 by identifying vs(G1) with
vs(G2) and identifying vt(G1) with vt(G2) is a series-parallel
graph, whose terminals are vs(G) = vs(G1) = vs(G2) and vt(G) =
vt(G1) = vt(G2). Such a connection is called a parallel connec-
tion, and G is denoted by G = G1 ‖ G2. (See Fig. 3(c).)

The terminals vs(G) and vt(G) of G are often denoted simply by vs and vt,
respectively. Since we deal with the maximum partition problem, we may
assume without loss of generality that G is a simple graph and hence G has
no multiple edges.

(G) (G)

p
s s

p
s

( ,v2) (v2 ,v3)
( ,v3)

(v3 , ) ( ,v1) (v1 , )

v2 v3

v1

(a)  G (b)  T

root r

vs vt vs
vs

vs

vt vt

v2 v3

(c)  Gu

u

vs(Gu) = vs(G ) vt(Gu) = vt(G )

Fig. 4. (a) A series-parallel graph G, (b) a binary decomposition tree T of G, and
(c) a subgraph Gu of G.

8



A series-parallel graph G can be represented by a “binary decomposition
tree” [13]. Figure 4(a) illustrates a series-parallel graph G, and Fig. 4(b) de-
picts a binary decomposition tree T of G. Labels s and p attached to internal
nodes in T indicate series and parallel connections, respectively. Nodes labeled
s and p are called s- and p-nodes, respectively. Every leaf of T represents a
subgraph of G induced by a single edge. Each node u of T corresponds to a
subgraph Gu = (Vu, Eu) of G induced by all edges represented by the leaves
that are descendants of u in T . Figure 4(c) depicts Gu for the left child u of
the root r of T in Fig. 4(b). Gu is a series-parallel graph for each node u of T ,
and G = Gr for the root r of T . Since a binary decomposition tree of a given
series-parallel graph G can be found in linear time [13], we may assume that
a series-parallel graph G and its binary decomposition tree T are given.

3.2 Terms and ideas

Suppose that there is exactly one supply vertex w in a graph G = (V, E),
as illustrated in Figs. 1(b) and (c). Let sup(w) be the supply of w. For each
demand vertex v, we denote by dem(v) the demand of v. Let dem(w) = 0
although w is a supply vertex. Then, instead of finding a partition of G, we
shall find a set C ⊆ V such that

(a) w ∈ C;
(b)

∑
v∈C dem(v) ≤ sup(w); and

(c) C induces a connected subgraph of G.

Such a set C ⊆ V is called a supplied set for G. The fulfillment f(C) of a
supplied set C is the sum of demands of all demand vertices in C, that is,

f(C) =
∑
v∈C

dem(v).

A supplied set C is called the maximum supplied set for G if f(C) is maximum
among all supplied sets for G. Then the maximum partition problem is to find
a maximum supplied set for a given graph G. The maximum fulfillment f(G)
of a graph G is the fulfillment f(C) of the maximum supplied set C for G. For
the series-parallel graph G in Fig. 1(b), the supplied set C shaded in the figure
has the maximum fulfillment, and hence f(G) = f(C) = 23, while f(S) = 25
for the star S in Fig. 1(c).

[Main ideas]

Let G be a series-parallel graph, let u, u′ and u′′ be nodes of a binary decompo-
sition tree T of G, and let Gu = (Vu, Eu), Gu′ = (Vu′ , Eu′) and Gu′′ = (Vu′′ , Eu′′)
be the subgraphs of G for nodes u, u′ and u′′, respectively, as illustrated in

9



(a)                                                                                 (b)

Gu

vs(G) vt(G) vs(Gu) vt(Gu)

i

j

C

Cs Ct

Gu’

Gu’’

Gu

Gu’

vs(Gu’) vt(Gu’)

k

(c)                                                                                 (d)

Gu’’

Cs

Ct

vs(Gu’’)

vt(Gu’’)

Cst

Fig. 5. (a) A supplied set C for a series-parallel graph G, (b) a connected set Cst for
Gu, (c) a separated pair (Cs, Ct) of sets for Gu′ , and (d) a separated pair (Cs, Ct)
of isolated sets for Gu′′ .

Fig. 5(a). Every supplied set C for G naturally induces subsets of Vu, Vu′ and
Vu′′ . The supplied set C for G indicated by a dotted closed curve in Fig. 5(a)
induces a single subset Cst of Vu in Fig. 5(b) such that Cst = C ∩ Vu and
vs(Gu), vt(Gu) ∈ Cst. On the other hand, C induces a pair of subsets Cs and
Ct of Vu′ in Fig. 5(c) such that Cs ∪ Ct = C ∩ Vu′ , Cs ∩ Ct = ∅, vs(Gu′) ∈ Cs

and vt(Gu′) ∈ Ct. A set Cst, Cs or Ct is not always a supplied set for Gu or
Gu′ , because it may not contain the supply vertex w. Cst is a “connected set”
for Gu, that is, Cst induces a connected subgraph of Gu, while the pair (Cs, Ct)
is a “separated pair of sets” for Gu′ , that is, Cs and Ct induce vertex-disjoint
connected subgraphs of Gu′ . The set C in Fig. 5(a) contains no terminals of
Gu′′ . In such a case, we regard that dem(vs(Gu′′)) = dem(vt(Gu′′)) = 0 and C
induces a separated pair of singleton sets (Cs, Ct) such that Cs = {vs(Gu′′)}
and Ct = {vt(Gu′′)}, as illustrated in Fig. 5(d). (The formal definitions will be
given later.)

If a set Cst, Cs or Ct contains the supply vertex w, then the set may have
the “marginal” power, the amount of which is no greater than sup(w). If a
set does not contain w, then the set may have the “deficient” power, the
amount of which should be no greater than sup(w). Thus we later introduce
five functions g, h1, h2, h3 and h4; for a series-parallel graph Gu and a real
number x, the value g(Gu, x) represents the maximum marginal power or
the minimum deficient power of connected sets for Gu; for a series-parallel

10



graph Gu and a real number x, the value hi(Gu, x), 1 ≤ i ≤ 4, represents the
maximum marginal power or the minimum deficient power of separated pairs
of sets for Gu. Our idea is to compute g(Gu, x) and hi(Gu, x), 1 ≤ i ≤ 4, from
the leaves of T to the root r of T by means of dynamic programming.

[Formal definitions of “connected sets” and “separated pair of sets”]

We now formally define the notion of connected sets and separated pair of sets
for a series-parallel graph G. Let Gu = (Vu, Eu) be a subgraph of G for a node
u of a binary decomposition tree T of G, and let vs = vs(Gu) and vt = vt(Gu).
We call a set C ⊆ Vu a connected set for Gu if C satisfies the following three
conditions (see Fig. 5(b)):

(a) vs, vt ∈ C;
(b) C induces a connected subgraph of Gu; and
(c)

∑
v∈C dem(v) ≤ sup(w).

A pair of sets Cs, Ct ⊆ Vu is called a separated pair (of sets) for Gu if Cs and
Ct satisfy the following three conditions (see Fig. 5(c)):

(a) Cs ∩ Ct = ∅, vs ∈ Cs and vt ∈ Ct;
(b) Cs and Ct induce connected subgraphs of Gu; and
(c)

∑
v∈Cs∪Ct

dem(v) ≤ sup(w).

We then classify connected sets and separated pairs further into smaller classes.
The “power flow” around a terminal depends on whether the terminal is a
supply vertex or a demand vertex. Since we want to deal with the two cases
uniformly, we introduce a virtual graph G∗

u for a subgraph Gu of G; G∗
u is ob-

tained from Gu by regarding each of the two terminals vs and vt as a demand
vertex whose demand is zero. We denote by dem∗(x) the demand of a demand
vertex x in G∗

u, and hence

dem∗(x) =

⎧⎪⎨
⎪⎩

0 if x is vs or vt;

dem(x) otherwise.

Clearly every connected set for Gu is a connected set for G∗
u. However, a

connected set C for G∗
u is not necessarily a connected set for Gu; for ex-

ample, if
∑

x∈C dem∗(x) ≤ sup(w) but
∑

x∈C dem(x) = dem(vs) + dem(vt) +∑
x∈C dem∗(x) > sup(w), then C is not a connected set for Gu. Similarly, every

separated pair for Gu is a separated pair for G∗
u, while not every separated pair

for G∗
u is a separated pair for Gu. We denote by Gin

u the graph obtained from
Gu by deleting the two terminals vs and vt as illustrated in Fig. 6(b), while
we denote by Gout

u the graph obtained from G by deleting all the vertices of
Gu except vs and vt as illustrated in Fig. 6(c).

11



(a) G                                                                    (b) Gu
in

(c) Gu
out

Gu

Fig. 6. (a) A series-parallel graph G, (b) a subgraph Gin
u of Gu, and (c) a subgraph

Gout
u of G.

Let Rw = {x ∈ R : |x| ≤ sup(w)}, where R denotes the set of all real numbers.
For each real number i ∈ Rw, we call a connected set C for G∗

u an i-connected
set if C satisfies the following two conditions (a) and (b):

(a) if i > 0, then w ∈ C and

i +
∑
x∈C

dem∗(x) ≤ sup(w);

and
(b) if i ≤ 0, then w /∈ C and

∑
x∈C

dem∗(x) ≤ |i| = −i.

An i-connected set C for G∗
u with i > 0 is a supplied set for G∗

u, and hence
corresponds to some supplied set Cr for the whole graph G = Gr such that
w ∈ C ⊆ Cr, where r is the root of T ; an amount i of the remaining power
of w can be delivered outside Gu through vs or vt; and hence the “margin”
of C is i. On the other hand, an i-connected set C for G∗

u with i ≤ 0 is not
a supplied set for G∗

u, but may correspond to a supplied set Cr for G = Gr

such that w /∈ C ⊂ Cr and w ∈ Cr; an amount |i| of power must be delivered
to C from w through vs or vt, and hence the “deficiency” of C is |i|. For an

12



i-connected set C for G∗
u, let

f(C, i) =
∑
x∈C

dem∗(x).

Then f(C, i) = f(C) for G∗
u if 0 < i ≤ sup(w). On the other hand, if

−sup(w) ≤ i ≤ 0, then f(C, i) represents the fulfillment of C when an amount
|i| of power is delivered to C from w in Gout

u . According to the definition of
an i-connected set, a connected set C for G∗

u is not a 0-connected set for G∗
u

if C contains the supply vertex w (
= vs, vt) and

∑
x∈C

dem∗(x) = sup(w).

Because the demands of vs and vt are positive, we have

∑
x∈C

dem(x) > sup(w)

and hence such a connected set C for G∗
u is not a connected set for Gu and we

need not to take C into account. Thus, if C is a 0-connected set for G∗
u, then

C = {vs, vt} and Gu has an edge (vs, vt).

Let σ /∈ Rw be a symbol. For each pair of j and k in Rw ∪ {σ}, we call a
separated pair (Cs, Ct) for G∗

u a (j, k)-separated pair if (Cs, Ct) satisfies the
following seven conditions (a)–(g):

(a) if j ∈ Rw and j > 0, then w ∈ Cs and

j +
∑

x∈Cs

dem∗(x) ≤ sup(w);

(b) if j ∈ Rw and j ≤ 0, then w /∈ Cs and

∑
x∈Cs

dem∗(x) ≤ −j;

(c) if j = σ, then Cs = {vs};
(d) if k ∈ Rw and k > 0, then w ∈ Ct and

k +
∑

x∈Ct

dem∗(x) ≤ sup(w);

(e) if k ∈ Rw and k ≤ 0, then w /∈ Ct and

∑
x∈Ct

dem∗(x) ≤ −k;

(f) if k = σ, then Ct = {vt}; and

13



(g) if j, k ∈ Rw and j + k ≤ 0, then j ≤ 0 and k ≤ 0.

Since there is exactly one supply vertex w in G, there is no (j, k)-separated pair
(Cs, Ct) for G∗

u such that j > 0 and k > 0. A (j, k)-separated pair (Cs, Ct) for
G∗

u with j > 0 corresponds to a supplied set Cr for the whole graph G = Gr

such that w ∈ Cs ⊆ Cr; an amount j of the remaining power of w can be
delivered outside Cs through vs, and hence the margin of Cs is j. A (j, k)-
separated pair (Cs, Ct) for G∗

u with j ≤ 0 may correspond to a supplied set Cr

for G such that Cs ⊂ Cr and either w ∈ Ct or w ∈ Cr − Cs ∪ Ct; an amount
|j| of power must be delivered to Cs through vs, and hence the deficiency of
Cs is |j|. A (j, k)-separated pair (Cs, Ct) for G∗

u with j = σ corresponds to a
supplied set Cr for G such that vs /∈ Cr, that is, vs is never supplied power.
(See Figs. 5(a) and (d).) Clearly Cs = {vs} if Cs is a (0, k)-separated pair
for G∗

u. A (j, k)-separated pair (Cs, Ct) for G∗
u with k > 0, k ≤ 0 or k = σ

corresponds to a supplied set Cr for G similarly as above. For a (j, k)-separated
pair (Cs, Ct) for G∗

u, let

f(Cs, Ct, j, k) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
x∈Cs∪Ct

dem∗(x) if j, k ∈ Rw;∑
x∈Cs

dem∗(x) if j ∈ Rw and k = σ; and∑
x∈Ct

dem∗(x) if j = σ and k ∈ Rw.

Let

f({vs}, {vt}, σ, σ) = max{f(Cu) | Cu is a supplied set for G∗
u

such that vs, vt /∈ Cu},

and let f({vs}, {vt}, σ, σ) = 0 if G∗
u has no supplied set Cu such that vs, vt /∈

Cu.

[Formal definitions of functions g and hi, 1 ≤ i ≤ 4]

Let G denote the set of all series-parallel graphs. We now formally define a
function g : (G, R) → Rw∪{−∞} as follows: for a series-parallel graph G∗

u ∈ G
and a real number x ∈ R,

g(G∗
u, x) = max{i ∈ Rw | G∗

u has an i-connected set C

such that f(C, i) ≥ x}. (7)

If G∗
u has no i-connected set C with f(C, i) ≥ x for any number i ∈ Rw, then let

g(G∗
u, x) = −∞. We then formally define a function h1 : (G, R) → Rw ∪{−∞}

as follows: for a series-parallel graph G∗
u ∈ G and a real number x ∈ R,

14



h1(G
∗
u, x) = max{j + k | G∗

u has a (j, k)-separated pair (Cs, Ct) such that

j, k ∈ Rw, |j + k| ≤ sup(w), and f(Cs, Ct, j, k) ≥ x}. (8)

If G∗
u has no (j, k)-separated pair (Cs, Ct) with f(Cs, Ct, j, k) ≥ x for any

pair of numbers j and k in Rw, then let h1(G
∗
u, x) = −∞. It should be noted

that a (j, k)-separated pair (Cs, Ct) for G∗
u with j, k ∈ Rw corresponds to a

supplied set Cr for G such that Cs ∪ Ct ⊆ Cr, and hence we can simply take
the summation of j and k as the marginal power or the deficient power of
Cs ∪ Ct. We next formally define a function h2 : (G, R) → Rw ∪ {−∞} as
follows: for a series-parallel graph G∗

u ∈ G and a real number x ∈ R,

h2(G
∗
u, x) = max{j ∈ Rw | G∗

u has a (j, σ)-separated pair (Cs, {vt})
such that f(Cs, {vt}, j, σ) ≥ x}. (9)

If G∗
u has no (j, σ)-separated pair (Cs, {vt}) with f(Cs, {vt}, j, σ) ≥ x for any

number j ∈ Rw, then let h2(G
∗
u, x) = −∞. We then formally define a function

h3 : (G, R) → Rw ∪ {−∞} as follows: for a series-parallel graph G∗
u ∈ G and a

real number x ∈ R,

h3(G
∗
u, x) = max{k ∈ Rw | G∗

u has a (σ, k)-separated pair ({vs}, Ct)

such that f({vs}, Ct, σ, k) ≥ x}. (10)

If G∗
u has no (σ, k)-separated pair ({vs}, Ct) with f({vs}, Ct, σ, k) ≥ x for

any number k ∈ Rw, then let h3(G
∗
u, x) = −∞. We finally define a function

h4 : (G, R) → {0,−∞} as follows: for a series-parallel graph G∗
u ∈ G and a

real number x ∈ R,

h4(G
∗
u, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if G∗
u has a (σ, σ)-separated pair ({vs}, {vt})

such that f({vs}, {vt}, σ, σ) ≥ x;

−∞ otherwise.

(11)

Clearly, the five functions g and hi, 1 ≤ i ≤ 4, are non-increasing. For any
negative real number x < 0, we have g(G∗

u, x) = g(G∗
u, 0) and hi(G

∗
u, x) =

hi(G
∗
u, 0), 1 ≤ i ≤ 4.

Our algorithm computes g(G∗
u, x) and hi(G

∗
u, x), 1 ≤ i ≤ 4, for each node u

of a binary decomposition tree T of a given series-parallel graph G from the
leaves to the root r of T by means of dynamic programming.

15



3.3 Algorithm

We first show how to compute the maximum fulfillment f(G) of a given graph
G from g(G∗, x) and hi(G

∗, x), 1 ≤ i ≤ 4.

[How to compute f(G)]

Suppose that g(G∗
r, x) and hi(G

∗
r, x), 1 ≤ i ≤ 4, have been computed for

the root r of T . Since G = Gr, one can easily compute f(G) from g(G∗, x)
and hi(G

∗, x), 1 ≤ i ≤ 4, as in the following two cases (a) and (b), where
vs = vs(G) and vt = vt(G).

Case (a): one of vs and vt is the supply vertex w and the other is a demand
vertex.

One may assume without loss of generality that vs is the supply vertex w and
vt is a demand vertex. Let C be a supplied set for G having the maximum
fulfillment. Then there are the following two cases (i) and (ii), as illustrated
in Fig. 7:

(i) vt is supplied power from vs (= w), that is, vs, vt ∈ C; and
(ii) vt is not supplied power, that is, vs ∈ C and vt /∈ C.

For Case (i), we compute f1(G) as follows:

f1(G) = max{x + dem(vt) | x ∈ R and

sup(w) + g(G∗, x) − dem(vt) ≥ 0}. (12)

Note that g(G∗, x) ≤ 0 for every number x ∈ R since G∗ has no supply
vertex. If sup(w) + g(G∗, x) − dem(vt) < 0 for any number x ∈ R, then let
f1(G) = −∞.

For Case (ii), we compute f2(G) as follows:

f2(G) = max{x ∈ R | sup(w) + h2(G
∗, x) ≥ 0}. (13)

vt vt

(i)                                                         (ii)

vs = wvs = w

C C

Fig. 7. Two cases in Case (a).

16



Note that h2(G
∗, x) ≤ 0 for every number x ∈ R. If sup(w) + h2(G

∗, x) < 0
for any number x ∈ R, then let f2(G) = −∞.

We thus have

f(G) = max{f1(G), f2(G)}. (14)

Case (b): both vs and vt are demand vertices.

Let C be a supplied set for G having the maximum fulfillment. In this case,
there are the following four cases (iii)–(vi), as illustrated in Fig. 8:

(iii) vs, vt ∈ C;
(iv) vs ∈ C and vt /∈ C;
(v) vs /∈ C and vt ∈ C; and
(vi) vs, vt /∈ C.

For Case (iii), we compute f3(G) as follows:

f3(G) = max{x + dem(vs) + dem(vt) | x ∈ R and

g(G∗, x) − dem(vs) − dem(vt) ≥ 0}. (15)

If g(G∗, x) − dem(vs) − dem(vt) < 0 for any number x ∈ R, then let f3(G) =
−∞.

For Case (iv), we compute f4(G) as follows:

f4(G) = max{x + dem(vs) | x ∈ R and

h2(G
∗, x) − dem(vs) ≥ 0}. (16)

(iii)                                         (iv)

vs vt vs vt

(v)                                        (vi)

vs vt vs vt
w

w

w w

Fig. 8. Four cases in Case (b).

17



If h2(G
∗, x) − dem(vs) < 0 for any number x ∈ R, then let f4(G) = −∞.

For Case (v), we compute f5(G) as follows:

f5(G) = max{x + dem(vt) | x ∈ R and h3(G
∗, x) − dem(vt) ≥ 0}. (17)

If h3(G
∗, x) − dem(vt) < 0 for any number x ∈ R, then let f5(G) = −∞.

For Case (vi), we compute f6(G) as follows:

f6(G) = max{x ∈ R | h4(G
∗, x) = 0}. (18)

If h4(G
∗, x) = −∞ for any number x ∈ R, then let f6(G) = −∞.

We thus have

f(G) = max{f3(G), f4(G), f5(G), f6(G)}. (19)

We then explain how to compute g(G∗
u, x) and hi(G

∗
u, x), 1 ≤ i ≤ 4, for each

node u of T .

[How to compute g(G∗
u, x) and hi(G

∗
u, x), 1 ≤ i ≤ 4]

We first compute g(G∗
u, x) and hi(G

∗
u, x), 1 ≤ i ≤ 4, for each leaf u of T , for

which G∗
u contains exactly one edge as illustrated in Fig. 3(a). Since the two

terminals of G∗
u are demand vertices of demands zero, we have

g(G∗
u, x) =

⎧⎪⎨
⎪⎩

0 if x ≤ 0;

−∞ otherwise.
(20)

Similarly, for each index i, 1 ≤ i ≤ 4, we have

hi(G
∗
u, x) =

⎧⎪⎨
⎪⎩

0 if x ≤ 0;

−∞ otherwise.
(21)

We next compute g(G∗
u, x) and hi(G

∗
u, x), 1 ≤ i ≤ 4, for each internal node u

of T from the counterparts of the two children of u in T . However, we show
only how to compute h1(G

∗
u, x) for a p-node u of T , because one can similarly

18



G1
*

G2
*

vs vt

Gu
*

vs
vt

k1

k2

j1

j2

kj
Cs Ct

Cs1 Ct1

Cs2 Ct2

Fig. 9. Combining a (j1, k1)-separated pair (Cs1, Ct1) for G∗
1 and a (j2, k2)-separated

pair (Cs2, Ct2) for G∗
2 to a (j, k)-separated pair (Cs, Ct) for G∗

u = G∗
1 ‖ G∗

2 with
j, k ∈ Rw.

compute g(G∗
u, x) and hi(G

∗
u, x), 1 ≤ i ≤ 4, for each p-node and s-node of T ;

the details are given in Appendix A.

We compute h1(G
∗
u, x) for a p-node u of T . Let Gu = G1 ‖ G2, and let

vs = vs(G
∗
u) and vt = vt(G

∗
u). (See Figs. 3(c) and 9.) Let (Cs, Ct) be a (j, k)-

separated pair for G∗
u with j, k ∈ Rw such that f(Cs, Ct, j, k) ≥ x ∈ R and

j + k = h1(G
∗
u, x) 
= −∞. The (j, k)-separated pair (Cs, Ct) for G∗

u can be
obtained by combining a (j1, k1)-separated pair (Cs1, Ct1) for G∗

1 with a (j2, k2)-
separated pair (Cs2, Ct2) for G∗

2 such that f(Cs, Ct, j, k) = f(Cs1, Ct1, j1, k1) +
f(Cs2, Ct2, j2, k2), where j1, j2, k1, k2 ∈ Rw such that j1 + j2 = j and k1 +
k2 = k, as illustrated in Fig. 9. Since f(Cs, Ct, j, k) = f(Cs1, Ct1, j1, k1) +
f(Cs2, Ct2, j2, k2) ≥ x, we have f(Cs1, Ct1, j1, k1) ≥ y and f(Cs2, Ct2, j2, k2) ≥
x − y for some number y ∈ R. Since (Cs1, Ct1) is a (j1, k1)-separated pair for
G∗

1 with f(Cs1, Ct1, j1, k1) ≥ y, one may assume by Eq. (8) that j1 + k1 =
h1(G

∗
1, y). Similarly, one may assume that j2 + k2 = h1(G

∗
2, x − y). Since

h1(G
∗
u, x) = j + k = (j1 + j2) + (k1 + k2) = h1(G

∗
1, y) + h1(G

∗
2, x− y), one can

compute h1(G
∗
u, x) as follows:

h1(G
∗
u, x) = max

y
{h1(G

∗
1, y) + h1(G

∗
2, x − y)}. (22)

It should be noted that the maximum above is taken over all real numbers
y ∈ R such that

if h1(G
∗
1, y) + h1(G

∗
2, x − y) ≤ 0 then h1(G

∗
1, y) ≤ 0 and h1(G

∗
2, x − y) ≤ 0.

(Remember condition (g) of a (j, k)-separated pair.)

3.4 Proof of Theorem 2

We now show that our algorithm takes time O(F 2n) for a series-parallel graph
G as a proof of Theorem 2, where F is an arbitrary upper bound on the max-
imum fulfillment f(G) of G. For example, F = min{sup(w),

∑
v∈V dem(v)}.

19



Since all demands and the supply in a given series-parallel graph G are inte-
gers, f(Cu) is an integer for any supplied set Cu for Gu. Similarly, f(C, i) and
f(Cs, Ct, j, k) are integers for any i-connected set C and any (j, k)-separated
pair (Cs, Ct) for G∗

u, respectively. We denote by Z the set of all integers. Let
Zw = {x ∈ Z : |x| ≤ w}. Define a function ĝ : (G, Z) → Zw ∪ {−∞} similarly
as g : (G, R) → Rw ∪ {−∞} in Eq. (7): for a series-parallel graph G∗

u ∈ G and
an integer x ∈ Z, we define

ĝ(G∗
u, x) = max{i ∈ Zw | G∗

u has an i-connected set C

such that f(C, i) ≥ x}.

Define functions ĥ1, ĥ2, ĥ3 : (G, Z) → Zw ∪ {−∞} and ĥ4 : (G, Z) → {0,−∞}
similarly as h1, h2, h3 and h4 in Eqs. (8)–(11). Define integral values f̂i(G),
1 ≤ i ≤ 6, similarly as fi(G), 1 ≤ i ≤ 6, in Eqs. (12), (13) and (15)–(18),
respectively. Then clearly f̂i(G) = fi(G), 1 ≤ i ≤ 6, since all demands and the
supply in G are integers. Therefore, by Eqs. (14) and (19) we can compute f(G)
from f̂i(G), 1 ≤ i ≤ 6. We shall thus compute values ĝ(G∗

u, x) and ĥi(G
∗
u, x),

1 ≤ i ≤ 4, for all integers x ∈ Z. However, one can easily observe that it suffices
to compute them only for integers x ∈ Z

+
F , where Z

+
F = {x ∈ Z | 0 ≤ x ≤ F};

remember that F is an upper bound of the maximum fulfillment f(G) of G.

For each leaf u of T and all integers x ∈ Z
+
F , one can easily compute values

ĝ(G∗
u, x) and ĥi(G

∗
u, x), 1 ≤ i ≤ 4, in time O(|Z+

F |) = O(F ) by the counterparts
of Eqs. (20) and (21). Since G is a series-parallel simple graph of n vertices,
G has at most 2n − 3 edges and hence T has at most 2n − 3 leaves. One can
thus compute ĝ(G∗

u, x) and ĥi(G
∗
u, x), 1 ≤ i ≤ 4, for all leaves u of T in time

O(Fn).

For each internal node u of T and all integers x ∈ Z
+
F , one can compute

ĝ(G∗
u, x) and ĥi(G

∗
u, x), 1 ≤ i ≤ 4, in time O(|Z+

F |2) = O(F 2) by the coun-
terparts of Eq. (22) in Subsection 3.3 and Eqs. (A.1)–(A.16) in Appendix A.
Since T has at most 2n − 4 internal nodes, one can compute ĝ(G∗, x) and
ĥi(G

∗, x), 1 ≤ i ≤ 4, in time O(F 2n).

One can compute the maximum fulfillment f(G) of G from ĝ(G∗, x) and
ĥi(G

∗, x), 1 ≤ i ≤ 4, in time O(F ) by the counterparts of Eqs. (12)–(19).

Thus the maximum partition problem can be solved in time O(F 2n). This
completes a proof of Theorem 2. �

20



4 FPTAS

Assume in this section that the supply and all demands are positive real
numbers which are not always integers. Since the maximum partition problem
is MAXSNP-hard, there is no PTAS for the problem on general graphs unless
P = NP. However, using the pseudo-polynomial-time algorithm in Section 3,
we can obtain an FPTAS for series-parallel graphs having exactly one supply
vertex, and have the following theorem.

Theorem 3 There is a fully polynomial-time approximation scheme for the
maximum partition problem on a series-parallel graph having exactly one sup-
ply vertex.

In the remainder of this section, as a proof of Theorem 3, we give an algorithm
to find a supplied set C for a series-parallel graph G with f(C) ≥ (1− ε)f(G)
in time polynomial in n and 1/ε for any real number ε, 0 < ε < 1, where n is
the number of vertices in G. Thus our approximate maximum fulfillent f̄(G)
of G is f(C), and hence the error is bounded by εf(G), that is,

f(G) − f̄(G) = f(G) − f(C) ≤ εf(G). (23)

We now outline our algorithm and the analysis. We extend the ordinary “scal-
ing and rounding” technique for the knapsack problem [5,9] and the maximum
partition problem on trees [7] and apply it to the maximum partition problem
for a series-parallel graph with a single supply vertex. For some scaling factor
t, we consider the set {· · · ,−2t,−t, 0, t, 2t, · · ·} as the range of functions g and
hi, 1 ≤ i ≤ 4, and find the approximate solution f̄(G) by using the pseudo-
polynomial-time algorithm in Section 3. As we will show later in Lemma 2(b),
we have

f(G) − f̄(G) < 4nt. (24)

Intuitively, Eq. (24) holds because the series and parallel connections are
executed no more than 2n times and each connection adds at most 2t to
the error f(G) − f̄(G). Choosing an appropriate upper bound F such that
F/2 ≤ f(G) ≤ F , and taking t = εF/(8n), we have Eq. (23).

One may expect that an FPTAS could be obtained simply by using an ordinary
scaling and rounding technique and the pseudo-polynomial-time algorithm, as
follows:

(1) scale down the supply sup(w) by sup(w) = �sup(w)/t�, and scale up
the demand dem(v) by dem(v) = �dem(v)/t� for each demand vertex
v,

21



200.1

100.1

100 200

101

100

(a)                                                          (b)

Fig. 10. (a) Original problem instance, and (b) instance scaled by factor t = 1.

(2) find a supplied set C for G having the maximum fulfillment for the
scaled instance by using the pseudo-polynomial-time algorithm,

(3) compute the fulfillment f(C) for the original instance, and
(4) output f(C) as an approximate maximum fulfillment f̄(G) for the orig-

inal one.

Although such a straightforward method always finds a feasible solution for the
original instance, the error f(G)− f̄(G) cannot be bounded by 4nt. Consider
an example in Fig. 10, where the supply vertex is drawn by a rectangle and
each demand vertex by a circle. Figure 10(a) depicts an original instance,
while Fig. 10(b) depicts an instance scaled by factor t = 1. For the original
instance, the supplied set shaded in Fig. 10(a) has the maximum fulfillment
f(G) = 200.1. On the other hand, for the scaled one, the supplied set C shaded
in Fig. 10(b) is found by the pseudo-polynomial-time algorithm, and C has a
fulfillment of f(C) = f̄(G) = 100.1 for the original one. Thus f(G) − f̄(G) =
100, and hence f(G) − f̄(G) cannot be bounded by 4nt = 12. Similarly, one
can easily observe that f(G) − f̄(G) cannot be bounded by cnt for any fixed
constant c. Thus the straightforward method above cannot yield an FPTAS.

We now give the details of our algorithm and the proof of its correctness. For
a positive real number t, let R

t = {· · · ,−2t,−t, 0, t, 2t, · · ·} and R
t+
F = {x ∈

R
t | 0 ≤ x ≤ F}. The functions g and hi, 1 ≤ i ≤ 4, in Section 3 have range

R. In this section we define new functions ḡ, h̄1, h̄2, h̄3 and h̄4 which have a
sampled range R

t and approximate g, h1, h2, h3 and h4, respectively. It should
be noted that ḡ and h̄i, 1 ≤ i ≤ 4, do not always take the same value as g and
hi, 1 ≤ i ≤ 4, respectively, even for x ∈ R

t. More precisely, we
(i) define ḡ and h̄i, 1 ≤ i ≤ 4, for x ∈ R

t by the counterparts of Eqs. (7)–
(11), and recursively compute ḡ and h̄i, 1 ≤ i ≤ 4, for x ∈ R

t by the
counterparts of Eqs. (20)–(22) and Eqs. (A.1)–(A.16) in Appendix A;

(ii) define and compute values f̄i(G), 1 ≤ i ≤ 6, by the counterparts of
Eqs. (12), (13) and (15)–(18); and

(iii) define and compute f̄(G) as follows:

f̄(G) = max{f̄1(G), f̄2(G)} (25)

22



if one of vs(G) and vt(G) is the supply vertex w, and

f̄(G) = max{f̄3(G), f̄4(G), f̄5(G), f̄6(G)} (26)

if both vs(G) and vt(G) are demand vertices.

We will show later in Lemma 2(b) that f̄(G) is an approximate value of f(G)
satisfying Eq. (24). It should be noted that the demands and the supply are
never scaled and rounded when we compute the functions ḡ and h̄i, 1 ≤ i ≤ 4,
as above, and hence these functions take real values which are not necessarily
in R

t.

Let T be a binary decomposition tree of G. We denote by n(T ) the number of
nodes in T . For a node u of T , we denote by Tu a subtree of T which is rooted
at u and is induced by all descendants of u in T . We denote by n(Tu) the
number of nodes in Tu. The functions ḡ and h̄i, 1 ≤ i ≤ 4, approximate the
original functions g and hi, 1 ≤ i ≤ 4, as in the following lemma. Note that
ḡ(G∗

u, x) = ḡ(G∗
u, 0) and h̄i(G

∗
u, x) = h̄i(G

∗
u, 0), 1 ≤ i ≤ 4, for any negative

number x ∈ R
t.

Lemma 1 For each node u of a binary decomposition tree T of G, the follow-
ing (a) and (b) hold:

(a) (i) ḡ(G∗
u, x) ≤ g(G∗

u, x) for any number x ∈ R
t;

(ii) ḡ(G∗
u, x) is non-increasing; and

(iii) for any number x ∈ R, there is an integer α such that

0 ≤ α ≤ n(Tu) − 1

and

ḡ(G∗
u, �x/t� t − αt) ≥ g(G∗

u, x),

and
(b) for each index i, 1 ≤ i ≤ 4,

(i) h̄i(G
∗
u, x) ≤ hi(G

∗
u, x) for any number x ∈ R

t;
(ii) h̄i(G

∗
u, x) is non-increasing; and

(iii) for any number x ∈ R, there is an integer βi such that

0 ≤ βi ≤ n(Tu) − 1

and

h̄i(G
∗
u, �x/t� t − βit) ≥ hi(G

∗
u, x).

Proof. See Appendix B. �

23



We then have the following lemma.

Lemma 2 The following (a) and (b) hold:
(a) for each index i, 1 ≤ i ≤ 6,

fi(G) − n(T )t ≤ f̄i(G);

and
(b) f(G) − 4nt < f̄(G) ≤ f(G).

Proof. (a) We prove only for the index i = 1, that is,

f1(G) − n(T )t ≤ f̄1(G), (27)

because one can similarly prove for the other indices.

Let vs = vs(G) and vt = vt(G). One may assume that vs = w for f1(G) and
f̄1(G). Let x be a real number such that

x + dem(vt) = f1(G) 
= −∞, (28)

then by Eq. (12) we have

sup(w) + g(G∗, x) − dem(vt) ≥ 0. (29)

By Lemma 1(a) there is an integer α such that

0 ≤ α ≤ n(T ) − 1 (30)

and

ḡ(G∗, �x/t� t − αt) ≥ g(G∗, x). (31)

By Eqs. (29) and (31) we have

sup(w) + ḡ(G∗, �x/t� t − αt) − dem(vt) ≥ 0.

Therefore, by the counterpart of Eq. (12) we have

f̄1(G) ≥ �x/t� t − αt + dem(vt). (32)

By Eqs. (28), (30) and (32) we have

24



f̄1(G)≥�x/t� t − (n(T ) − 1)t + dem(vt)

= (�x/t�t + t) − n(T )t + dem(vt)

≥x − n(T )t + dem(vt)

≥ f1(G) − n(T )t.

We have thus verified Eq. (27).

(b) By Lemma 1(a), Eq. (12) and its counterpart, we have f̄1(G) ≤ f1(G).
Similarly we have f̄i(G) ≤ fi(G), 2 ≤ i ≤ 6. Therefore by Eqs. (14), (19), (25)
and (26) we have f̄(G) ≤ f(G). By Lemma 2(a) and Eqs. (14), (19), (25) and
(26) we have

f(G) − n(T )t ≤ f̄(G).

Since G is a series-parallel simple graph, G has at most 2n−3 edges and hence
T has at most 2n− 3 leaves. Therefore T has at most 4n− 7 nodes and hence
n(T ) < 4n. We thus have f(G) − 4nt < f̄(G). �

We are now ready to prove Theorem 3.

Proof of Theorem 3.

One may assume without loss of generality that, for each demand vertex v
of a finite demand, a series-parallel graph G has a path Q(v) going from the
supply vertex w to v such that the sum of demands on Q(v) does not exceed
sup(w), and hence v is contained in some supplied set C for G. Otherwise, v
cannot be contained in any supplied set, and hence one can regard that v has
an infinite demand. (We do not delete such a vertex v from G, because the
resulting graph may not be series-parallel.) One can examine in polynomial
time whether there exists such a path Q(v) for each demand vertex v in G; this
can be done for all demand vertices v in G in time O(n2) simply by applying
a single-source shortest path algorithm to a graph similar to a “line-graph” of
G.

One may assume that G has one or more demand vertices of finite demands;
otherwise, f(G) = 0. Let V ′ be the set consisting of the supply vertex w
and all demand vertices of finite demands in G. Let G′ be a subgraph of G
induced by V ′, then G′ is connected. Let md = max{dem(v) | v ∈ V ′}, and let
v′ be a demand vertex such that dem(v′) = md. Then G′ has a supplied set C
containing v′, and C is a supplied set also for G. We thus have

f(G) ≥ f(C) ≥ dem(v′) = md. (33)

25



We now choose an upper bound F on f(G) such that

F

2
≤ f(G) ≤ F. (34)

Consider a simple greedy algorithm to find a supplied set for G′. The algorithm
traverses G′ by the breadth-first search starting from w, and includes traversed
demand vertices in a supplied set as much as possible so that the set induces a
connected subgraph of G′ and the sum of demands in the set does not exceed
sup(w). Let CA be a supplied set for G′ found by the greedy algorithm. If
either f(CA) = sup(w) or f(CA) =

∑
v∈V ′ dem(v), then CA is the maximum

supplied set for G′ and hence for G. One may thus assume without loss of
generality that f(CA) < sup(w) and f(CA) <

∑
v∈V ′ dem(v). Then, there are

demand vertices in G′ which were traversed but could not be included in CA.
Let v′′ be the vertex, among these vertices, that was first traversed. Then we
have

sup(w) < f(CA) + dem(v′′). (35)

We choose F as follows:

F = 2 · max{f(CA), md}. (36)

Then, since f(G) ≤ sup(w) and dem(v′′) ≤ md, by Eqs. (35) and (36) we have

f(G) < f(CA) + dem(v′′)
≤ f(CA) + md

≤ 2 · max{f(CA), md}
= F.

Since CA is a supplied set for G, we have f(G) ≥ f(CA) and hence by Eqs. (33)
and (36)

f(G) ≥ max{f(CA), md} =
F

2
.

We have thus verified Eq. (34).

Let

t =
εF

8n
. (37)

26



Then by Lemma 2(b) and Eqs. (34) and (37) we have

f(G) < f̄(G) + 4n
εF

8n
≤ f̄(G) + εf(G),

and hence we have Eq. (23).

One can observe that the algorithm takes time

O
(∣∣∣Rt+

F

∣∣∣2 n
)

= O

(
n3

ε2

)
,

because |Rt+
F | = �F/t� + 1, and hence by Eq. (37) we have F/t ≤ 8n/ε. �

5 Conclusions

In this paper, we studied the approximability of the maximum partition prob-
lem. We first showed that the maximum partition problem is MAXSNP-hard.
We then gave an FPTAS for series-parallel graphs having exactly one supply
vertex. It is easy to modify the FPTAS so that it actually finds a supplied
set for a series-parallel graph. The FPTAS for series-parallel graphs can be
extended to that for partial k-trees although it would become much more
complicated.

In the ordinary knapsack problem, each “item” is assigned a “size” and “value,”
and one wishes to choose a subset of items that maximizes the sum of val-
ues of items such that their total size does not exceed the size of a bag [5,9].
Consider a slightly modified version of the maximum partition problem on
graphs in which each demand vertex is assigned not only a demand but also a
“value,” and one wishes to find a partition which maximizes the sum of values
of all demand vertices in components with supply vertices. This problem is
indeed a generalization of the ordinary knapsack problem, and can be solved
for series-parallel graphs and partial k-trees using techniques similar to those
for the maximum partition problem if there is exactly one supply vertex. Note
that the standard approximation methods for the knapsack problem in [5,9]
cannot be applied to the modified maximum partition problem.

Acknowledgments

We thank MohammadTaghi Hajiaghayi for fruitful discussions. We also thank
the referees for their comments, one of which leads us to an improvement of

27



the time complexity of our FPTAS.

References

[1] S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable
graphs, J. Algorithms, Vol. 12, pp. 308–340, 1991.

[2] H. L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees, J. Algorithms, Vol. 11, pp. 631–643, 1990.

[3] N. G. Boulaxis and M. P. Papadopoulos, Optimal feeder routing in distribution
system planning using dynamic programming technique and GIS facilities,
IEEE Trans. on Power Delivery, Vol. 17, pp. 242–247, 2002.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.

[5] O. H. Ibarra and C. E. Kim, Fast approximation algorithms for the knapsack
and sum of subset problems, J. Asso. Comput. Mach., Vol. 22, pp. 463–468,
1975.

[6] T. Ito, E. D. Demaine, X. Zhou and T. Nishizeki, Approximability of
partitioning graphs with supply and demand, in Proc. of the 17th Annual
International Symposium on Algorithms and Computation (ISAAC2006),
Lecture Notes in Computer Science, Vol. 4288, pp. 121–130, 2006.

[7] T. Ito, X. Zhou and T. Nishizeki, Partitioning trees of supply and demand,
International J. of Foundations of Computer Science, Vol. 16, pp. 803–827,
2005.

[8] T. Ito, X. Zhou and T. Nishizeki, Partitioning graphs of supply and demand,
Proc. of the 2005 IEEE International Symposium on Circuits and Systems,
pp. 160–163, 2005.

[9] P. N. Klein and N. E. Young, Approximation algorithms for NP-hard
optimization problems, Chap. 34 in (Ed. M. J. Atallah) Algorithms and Theory
of Computation Handbook, CRC Press, Boca Raton, Florida, 1999.

[10] A. B. Morton and I. M. Y. Mareels, An efficient brute-force solution to the
network reconfiguration problem, IEEE Trans. on Power Delivery, Vol. 15,
pp. 996–1000, 2000.

[11] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[12] C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and
complexity classes, J. Computer and System Sciences, Vol. 43, pp. 425–440,
1991.

28



[13] K. Takamizawa, T. Nishizeki and N. Saito, Linear-time computability of
combinatorial problems on series-parallel graphs, J. Asso. Comput. Mach.,
Vol. 29, pp. 623–641, 1982.

[14] J-H. Teng and C-N. Lu, Feeder-switch relocation for customer interruption cost
minimization, IEEE Trans. on Power Delivery, Vol. 17, pp. 254–259, 2002.

A How to compute g(G∗
u, x) and hi(G

∗
u, x), 1 ≤ i ≤ 4

In this section, we explain how to compute g(G∗
u, x) and hi(G

∗
u, x), 1 ≤ i ≤ 4,

for each internal node u of T from the counterparts of the two children of u
in T .

We first consider a parallel connection.

[Parallel connection]

Let Gu = G1 ‖ G2, and let vs = vs(G
∗
u) and vt = vt(G

∗
u). (See Figs. 3(c) and

A.1–A.3.)

We have shown in Section 3 that one can compute h1(G
∗
u, x) in Eq. (8) by

Eq. (22).

We now show how to compute h2(G
∗
u, x) in Eq. (9). For j ∈ Rw, every (j, σ)-

separated pair (Cs, {vt}) for G∗
u with f(Cs, {vt}, j, σ) ≥ x can be obtained by

combining a (j1, σ)-separated pair (Cs1, {vt}) for G∗
1 with a (j2, σ)-separated

pair (Cs2, {vt}) for G∗
2 such that j1, j2 ∈ Rw, j1 + j2 = j and f(Cs, {vt}, j, σ) =

f(Cs1, {vt}, j1, σ) + f(Cs2, {vt}, j2, σ), as illustrated in Fig. A.1. We can thus
compute h2(G

∗
u, x) as follows:

h2(G
∗
u, x) = max

y
{h2(G

∗
1, y) + h2(G

∗
2, x − y)} (A.1)

G1
*

G2
*

vs vt

Gu
*

vs
vt

j1

j2

j

Cs1

Cs2

Cs

Fig. A.1. Combining a (j1, σ)-separated pair (Cs1, {vt}) for G∗
1 and a

(j2, σ)-separated pair (Cs2, {vt}) for G∗
2 to a (j, σ)-separated pair (Cs, {vt}) for

G∗
u = G∗

1 ‖ G∗
2.

29



G1
*

G2
*

vs vt

Gu
*

vs vt

Fig. A.2. Combining a (σ, σ)-separated pair ({vs}, {vt}) for G∗
1 and a (σ, σ)-separated

pair ({vs}, {vt}) for G∗
2 to a (σ, σ)-separated pair ({vs}, {vt}) for G∗

u = G∗
1 ‖ G∗

2.

where the maximum above is taken over all real numbers y ∈ R such that

if h2(G
∗
1, y) + h2(G

∗
2, x − y) ≤ 0

then h2(G
∗
1, y) ≤ 0 and h2(G

∗
2, x − y) ≤ 0.

One can compute h3(G
∗
u, x) in Eq. (10) similarly as h2(G

∗
u, x).

We then show how to compute h4(G
∗
u, x) in Eq. (11). Every (σ, σ)-separated

pair ({vs}, {vt}) for G∗
u with f({vs}, {vt}, σ, σ) ≥ x can be obtained by com-

bining a (σ, σ)-separated pair ({vs}, {vt}) for G∗
1 with a (σ, σ)-separated pair

({vs}, {vt}) for G∗
2 such that f({vs}, {vt}, σ, σ) = f({vs}, {vt}, σ, σ) +

f({vs}, {vt}, σ, σ), as illustrated in Fig. A.2. We can thus compute h4(G
∗
u, x)

as follows:

h4(G
∗
u, x) = max{h4(G

∗
1, y) + h4(G

∗
2, x − y) | y ∈ R}. (A.2)

We next show how to compute g(G∗
u, x) in Eq. (7). There are the following two

cases (a) and (b) where an i-connected set C for G∗
u with f(C, i) ≥ x is formed

from the counterparts of u’s children, as illustrated in Figs. A.3(a) and (b).
We define two functions ga and gb for the two cases (a) and (b), respectively.

Case (a): C is obtained by combining an i1-connected set C1 for G∗
1 with an i2-

connected set C2 for G∗
2 such that f(C, i) = f(C1, i1)+f(C2, i2) and i1+i2 = i.

(See Fig. A.3(a).)

We define ga(G∗
u, x) for each real number x ∈ R, as follows:

ga(G∗
u, x) = max

y
{g(G∗

1, y) + g(G∗
2, x − y)} (A.3)

30



(b)

(a)

G1
*

G2
*

vs vt

Gu
*

vs vt

G1
*

G2
*

vs vt

Gu
*

vs vt

i2

i1

i

k1j1

i
i2

C

C1

C2

Cs1 Ct1

C

C2

Fig. A.3. Forming an i-connected set C for G∗
u = G∗

1 ‖ G∗
2.

where the maximum above is taken over all real numbers y ∈ R such that

if g(G∗
1, y) + g(G∗

2, x − y) ≤ 0 then g(G∗
1, y) ≤ 0 and g(G∗

2, x − y) ≤ 0.

Case (b): C is obtained by either combining a connected set for G∗
1 with a

separated pair for G∗
2 or combining a separated pair for G∗

1 with a connected
set for G∗

2.

One may assume without loss of generality that an i-connected set C is ob-
tained by combining a (j1, k1)-separated pair (Cs1, Ct1) for G∗

1 with an i2-
connected set C2 for G∗

2 such that f(C, i) = f(Cs1, Ct1, j1, k1) + f(C2, i2),
where j1 + k1 + i2 = i. (See Fig. A.3(b).)

We define gb(G∗
u, x) for each real number x ∈ R, as follows:

gb(G∗
u, x) = max

y
{h1(G

∗
1, y) + g(G∗

2, x − y)} (A.4)

where the maximum above is taken over all real numbers y ∈ R such that

if h1(G
∗
1, y) + g(G∗

2, x − y) ≤ 0 then h1(G
∗
1, y) ≤ 0 and g(G∗

2, x − y) ≤ 0.

31



From ga and gb above, one can compute g(G∗
u, x) as follows:

g(G∗
u, x) = max{ga(G∗

u, x), gb(G∗
u, x)}. (A.5)

We next consider a series connection.

[Series connection]

Let Gu = G1 • G2, and let v be the vertex of G identified by the series
connection, that is, v = vt(G1) = vs(G2). (See Figs. 3(b) and A.4–A.7.) We
define sd(v) as follows:

sd(v) =

⎧⎪⎨
⎪⎩

sup(v) if v is a supply vertex,

−dem(v) if v is a demand vertex.

Remember that dem(w) = 0 for the supply vertex w.

We first show how to compute g(G∗
u, i) in Eq. (7). For i ∈ Rw, every i-connected

set C for G∗
u with f(C, i) ≥ x can be obtained by combining an i1-connected

set C1 for G∗
1 with an i2-connected set C2 for G∗

2 such that f(C, i) = f(C1, i1)+
f(C2, i2)+dem(v) and i1 + i2 + sd(v) = i, as illustrated in Fig. A.4. Therefore
g(G∗

u, x) can be computed for each real number x ∈ R, as follows:

g(G∗
u, x) = max

y1,y2
{g(G∗

1, y1) + g(G∗
2, y2) + sd(v)} (A.6)

where the maximum above is taken over all real numbers y1 and y2 such that
(a) y1, y2 ∈ R;
(b) y1 + y2 + dem(v) = x; and
(c) if g(G∗

1, y1) + g(G∗
2, y2) + sd(v) ≤ 0, then g(G∗

1, y1) ≤ 0, g(G∗
2, y2) ≤ 0

and sd(v) < 0.

We next show how to compute h1(G
∗
u, x) in Eq. (8). There are the follow-

ing two cases (a) and (b) where a (j, k)-separated pair (Cs, Ct) for G∗
u with

f(Cs, Ct, j, k) ≥ x is formed from the counterparts of u’s children, as illus-
trated in Figs. A.5(a) and (b). We define two functions ha

1 and hb
1 for the two

cases (a) and (b), respectively.

Case (a): (Cs, Ct) is obtained by either combining a connected set for G∗
1 with

a separated pair for G∗
2 or combining a separated pair for G∗

1 with a connected
set for G∗

2.

32



G1
*

G2
*

vs

vt

Gu
*

vs vt

i2

i1

i

v
v

C2

C1

C

Fig. A.4. Combining an i1-connected set C1 for G∗
1 and an i2-connected set C2 for

G∗
2 to an i-connected set C for G∗

u, where Gu = G1 • G2.

One may assume without loss of generality that a (j, k)-separated pair (Cs, Ct)
is obtained by combining an i1-connected set C1 for G∗

1 with a (j2, k)-separated
pair (Cs2, Ct) for G∗

2 such that f(Cs, Ct, j, k) = f(C1, i1) + f(Cs2, Ct, j2, k) +
dem(v) and i1 + j2 + sd(v) = i. (See Fig. A.5(a).)

We define ha
1(G

∗
u, x) for each real number x ∈ R, as follows:

ha
1(G

∗
u, x) = max

y1,y2
{g(G∗

1, y1) + h1(G
∗
2, y2) + sd(v)} (A.7)

where the maximum above is taken over all real numbers y1 and y2 such that
(a) y1, y2 ∈ R;

(b)

(a)
G2

*

vs

vt
kj2

i1 v

G1
*

vs vt

kj
v

Gu
*

vs vt

kj

v

Gu
*

G1
*

G2
*

vs

vt

j

v

k

Cs
Ct

Cs2

C1

Ct

Cs
Ct

Cs

Ct

Fig. A.5. Forming a (j, k)-separated pair (Cs, Ct) for G∗
u, where j, k ∈ Rw and

Gu = G1 • G2.

33



(b) y1 + y2 + dem(v) = x; and
(c) if g(G∗

1, y1) + h1(G
∗
2, y2) + sd(v) ≤ 0, then g(G∗

1, y1) ≤ 0, h1(G
∗
2, y2) ≤ 0

and sd(v) < 0.

Case (b): (Cs, Ct) is obtained by combining a (j, σ)-separated pair (Cs, {v})
for G∗

1 with a (σ, k)-separated pair ({v}, Ct) for G∗
2 such that f(Cs, Ct, j, k) =

f(Cs, {v}, j, σ) + f({v}, Ct, σ, k). (See Fig. A.5(b).)

We define hb
1(G

∗
u, x) for each real number x ∈ R as follows:

hb
1(G

∗
u, x) = max

y1,y2
{h2(G

∗
1, y1) + h3(G

∗
2, y2)} (A.8)

where the maximum above is taken over all real numbers y1 and y2 such that
(a) y1, y2 ∈ R;
(b) y1 + y2 = x; and
(c) if h2(G

∗
1, y1) + h3(G

∗
2, y2) ≤ 0, then h2(G

∗
1, y1) ≤ 0 and h3(G

∗
2, y2) ≤ 0.

If v is the supply vertex w, then let hb
1(G

∗
u, x) = −∞ for each real number x ∈

R; since G∗
u has a supplied set C = {v}, the (demand) vertices in Cs∪Ct cannot

be supplied power; note that such a case is regarded as a (σ, σ)-separated pair
for G∗

u.

From ha
1 and hb

1 above, one can compute h1(G
∗
u, x) as follows:

h1(G
∗
u, x) = max{ha

1(G
∗
u, x), hb

1(G
∗
u, x)}. (A.9)

We then show how to compute h2(G
∗
u, x) in Eq. (9). There are the follow-

ing two cases (a) and (b) where a (j, σ)-separated pair (Cs, {vt}) for G∗
u with

f(Cs, {v}, j, σ) ≥ x is formed from the counterparts of u’s children, as illus-
trated in Figs. A.6(a) and (b). We define two functions ha

2 and hb
2 for the two

cases (a) and (b), respectively.

Case (a): (Cs, {vt}) is obtained by combining an i1-connected set C1 for G∗
1

with a (j2, σ)-separated pair (Cs2, {vt}) for G∗
2 such that f(Cs, {vt}, j, σ) =

f(C1, i1)+f(Cs2, {vt}, j2, σ)+dem(v) and i1+j2+sd(v) = j. (See Fig. A.6(a).)

We define ha
2(G

∗
u, x) for each real number x ∈ R, as follows:

ha
2(G

∗
u, x) = max

y1,y2
{g(G∗

1, y1) + h2(G
∗
2, y2) + sd(v)} (A.10)

34



(b)

(a)
G2

*

vs

vt
j2

i1 v

G1
*

vs vt

j
v Gu

*

vs vt

j

v
Gu

*

G1
*

G2
*

vs

vt

j

v

Cs

C1

Cs2

Cs
Cs

Fig. A.6. Forming a (j, σ)-separated pair (Cs, {vt}) for G∗
u, where j ∈ Rw and

Gu = G1 • G2.

where the maximum above is taken over all real numbers y1 and y2 such that
(a) y1, y2 ∈ R;
(b) y1 + y2 + dem(v) = x; and
(c) if g(G∗

1, y1) + h2(G
∗
2, y2) + sd(v) ≤ 0, then g(G∗

1, y1) ≤ 0, h2(G
∗
2, y2) ≤ 0

and sd(v) < 0.

Case (b): (Cs, {vt}) is obtained by combining a (j, σ)-separated pair (Cs, {v})
for G∗

1 with a (σ, σ)-separated pair ({v}, {vt}) for G∗
2 such that f(Cs, {vt}, j, σ)

= f(Cs, {v}, j, σ) + f({v}, {vt}, σ, σ). (See Fig. A.6(b).)

We define hb
2(G

∗
u, x) for each real number x ∈ R as follows:

hb
2(G

∗
u, x) = max

y1,y2
{h2(G

∗
1, y1) + h4(G

∗
2, y2)} (A.11)

where the maximum above is taken over all real numbers y1 and y2 such that
(a) y1, y2 ∈ R;
(b) y1 + y2 = x; and
(c) if h2(G

∗
1, y1) + h4(G

∗
2, y2) ≤ 0, then h2(G

∗
1, y1) ≤ 0 and h4(G

∗
2, y2) ≤ 0.

If v is the supply vertex w, then let hb
2(G

∗
u, x) = −∞ for each real number

x ∈ R.

35



(b)

(a)

vs vtv

Gu
*

G1
*

G2
*

vs

vt
v

G2
*

vt
j2

v

G1
*

k1

vs vtv
Gu

*

Ct1

Cs2

Fig. A.7. Forming a (σ, σ)-separated pair ({vs}, {vt}) for G∗
u, where Gu = G1 • G2.

From ha
2 and hb

2 above, one can compute h2(G
∗
u, x) as follows:

h2(G
∗
u, x) = max{ha

2(G
∗
u, x), hb

2(G
∗
u, x)}. (A.12)

One can compute h3(G
∗
u, x) in Eq. (10) similarly as h2(G

∗
u, x).

We finally show how to compute h4(G
∗
u, x) in Eq. (11). There are the following

two cases (a) and (b) where a (σ, σ)-separated pair ({vs}, {vt}) for G∗
u with

f({vs}, {vt}, σ, σ) ≥ x is formed from the counterparts of u’s children, as
illustrated in Figs. A.7(a) and (b). We define two functions ha

4 and hb
4 for the

two cases (a) and (b), respectively.

Case (a): ({vs}, {vt}) is obtained by combining a (σ, σ)-separated pair ({vs}, {v})
for G∗

1 with a (σ, σ)-separated pair ({v}, {vt}) for G∗
2 such that f({vs}, {vt}, σ, σ)

= f({vs}, {v}, σ, σ) + f({v}, {vt}, σ, σ). (See Fig. A.7(a).)

We define ha
4(G

∗
u, x) for each real number x ∈ R, as follows:

ha
4(G

∗
u, x) = max

y1,y2
{h4(G

∗
1, y1) + h4(G

∗
2, y2)} (A.13)

where the maximum above is taken over all real numbers y1 and y2 such that

36



y1 + y2 = x.

Case (b): ({vs}, {vt}) is obtained by combining a (σ, k1)-separated pair ({vs}, Ct1)
for G∗

1 with a (j2, σ)-separated pair (Cs2, {vt}) for G∗
2 such that f({vs}, {vt}, σ, σ)

= f({vs}, Ct1, σ, k1) + f(Cs2, {vt}, j2, σ) + dem(v). (See Fig. A.7(b).)

We first define h′
4(G

∗
u, x) for each real number x ∈ R, as follows:

h′
4(G

∗
u, x) = max

y1,y2
{h3(G

∗
1, y1) + h2(G

∗
2, y2) + sd(v)} (A.14)

where the maximum above is taken over all real numbers y1 and y2 such that
y1 + y2 + dem(v) = x. Then h′

4(G
∗
u, x) ≥ 0 if Ct1 ∪ Cs2 is a supplied set for

G∗
u, otherwise, h′

4(G
∗
u, x) < 0. Thus, we define hb

4(G
∗
u, x) for each real number

x ∈ R, as follows:

hb
4(G

∗
u, x) =

⎧⎪⎨
⎪⎩

0 if h′
4(G

∗
u, x) ≥ 0;

−∞ otherwise.
(A.15)

From ha
4 and hb

4 above, one can compute h4(G
∗
u, x) as follows:

h4(G
∗
u, x) = max{ha

4(G
∗
u, x), hb

4(G
∗
u, x)}. (A.16)

B Proof of Lemma 1

We inductively prove Lemmas 1(a) and (b).

1◦ Proof for each subgraph G∗
u corresponding to a leaf u of T .

We prove only that (a) holds for G∗
u, because one can similarly prove that (b)

holds for G∗
u. Since G∗

u contains exactly one edge and the two terminals of G∗
u

are demand vertices of demands zero, by Eq. (20) and its counterpart we have

ḡ(G∗
u, x) = g(G∗

u, x) =

⎧⎪⎨
⎪⎩

0 if x ≤ 0;

−∞ otherwise
(B.1)

for any number x ∈ R
t, and hence (a)(i) holds.

Equation (B.1) implies that (a)(ii) holds for G∗
u.

37



We finally prove that (a)(iii) holds for G∗
u. By Eqs. (20) and (B.1) we have

ḡ
(
G∗

u,
⌊
x

t

⌋
t
)
≥ g(G∗

u, x)

for any number x ∈ R, and hence (a)(iii) holds for α = 0 = n(Tu) − 1.

2◦ Induction hypothesis

Let u be an internal node of T , and let G1 and G2 be subgraphs of Gu corre-
sponding to the two children of u in T . Let T1 and T2 be subtrees of T rooted
at the two children of u in T . Suppose that (a) and (b) hold for G1 and G2.

3◦ Proof for each subgraph G∗
u corresponding to an internal node u

of T .

We first consider a parallel connection, that is, Gu = G1 ‖ G2. We prove only
that (a) holds for G∗

u, because one can similarly prove that (b) holds for G∗
u.

We first prove that (a)(i) holds for G∗
u. Let x be any number in R

t. By the
counterpart of Eq. (A.5) we have

ḡ(G∗
u, x) = max{ḡa(G∗

u, x), ḡb(G∗
u, x)}.

We assume that

ḡ(G∗
u, x) = ḡa(G∗

u, x). (B.2)

(Proofs for the other cases are similar.) Then by the counterpart of Eq. (A.3)
there is a number y ∈ R

t such that

ḡa(G∗
u, x) = ḡ(G∗

1, y) + ḡ(G∗
2, x − y). (B.3)

By the induction hypothesis, (a)(i) holds for G∗
1 and G∗

2, and hence we have

ḡ(G∗
1, y) ≤ g(G∗

1, y) (B.4)

and

ḡ(G∗
2, x − y) ≤ g(G∗

2, x − y). (B.5)

Substituting Eqs. (B.4) and (B.5) to Eq. (B.3), we have

38



ḡa(G∗
u, x)≤ g(G∗

1, y) + g(G∗
2, x − y). (B.6)

By Eqs. (A.3), (A.5), (B.2) and (B.6) we have

ḡ(G∗
u, x) = ḡa(G∗

u, x)

≤ g(G∗
1, y) + g(G∗

2, x − y)

≤ ga(G∗
u, x)

≤ g(G∗
u, x).

We have thus proved that (a)(i) holds for G∗
u.

We then prove that (a)(ii) holds for G∗
u. It suffices to prove that

ḡ(G∗
u, x + t) ≤ ḡ(G∗

u, x)

for any number x ∈ R
t. By the counterpart of Eq. (A.5) we have

ḡ(G∗
u, x + t) = max{ḡa(G∗

u, x + t), ḡb(G∗
u, x + t)}.

We assume that

ḡ(G∗
u, x + t) = ḡa(G∗

u, x + t). (B.7)

(Proofs for the other cases are similar.) Then by the counterpart of Eq. (A.3)
there is a number y ∈ R

t such that

ḡa(G∗
u, x + t) = ḡ(G∗

1, y) + ḡ(G∗
2, x − y + t). (B.8)

By the induction hypothesis, (a)(ii) holds for G∗
2, and hence we have

ḡ(G∗
2, x − y + t) ≤ ḡ(G∗

2, x − y). (B.9)

Substituting Eq. (B.9) to Eq. (B.8), we have

ḡa(G∗
u, x + t)≤ ḡ(G∗

1, y) + ḡ(G∗
2, x − y). (B.10)

By Eqs. (B.7) and (B.10) and the counterparts of Eqs. (A.3) and (A.5) we
have

ḡ(G∗
u, x + t) = ḡa(G∗

u, x + t)

≤ ḡ(G∗
1, y) + ḡ(G∗

2, x − y)

39



≤ ḡa(G∗
u, x)

≤ ḡ(G∗
u, x).

We have thus proved that (a)(ii) holds for G∗
u.

We finally prove that (a)(iii) holds for G∗
u. Let x be any real number in R. By

Eq. (A.5) we have

g(G∗
u, x) = max{ga(G∗

u, x), gb(G∗
u, x)}.

We assume that

g(G∗
u, x) = ga(G∗

u, x). (B.11)

(Proofs for the other cases are similar.) Then by Eq. (A.3) there is a real
number y ∈ R such that

ga(G∗
u, x) = g(G∗

1, y) + g(G∗
2, x − y). (B.12)

By the induction hypothesis, (a)(iii) holds for G∗
1 and G∗

2, and hence there are
two integers α′ and α′′ such that

0≤α′ ≤ n(T1) − 1, (B.13)

0≤α′′ ≤ n(T2) − 1, (B.14)

g(G∗
1, y)≤ ḡ

(
G∗

1,
⌊
y

t

⌋
t − α′t

)
(B.15)

and

g(G∗
2, x − y) ≤ ḡ

(
G∗

2,
⌊
x − y

t

⌋
t − α′′t

)
. (B.16)

Substituting Eqs. (B.15) and (B.16) to Eq. (B.12), we have

ga(G∗
u, x) ≤ ḡ

(
G∗

1,
⌊
y

t

⌋
t − α′t

)
+ ḡ

(
G∗

2,
⌊
x − y

t

⌋
t − α′′t

)
. (B.17)

By Eq. (B.17) and the counterparts of Eqs. (A.3) and (A.5) we have

ga(G∗
u, x)≤ ḡa

(
G∗

u,
⌊
y

t

⌋
t +

⌊
x − y

t

⌋
t − α′t − α′′t

)

≤ ḡ
(
G∗

u,
⌊
y

t

⌋
t +

⌊
x − y

t

⌋
t − α′t − α′′t

)
. (B.18)

40



Since⌊
y

t

⌋
+
⌊
x − y

t

⌋
>
⌊
x

t

⌋
− 2,

by (a)(ii) we have

ḡ
(
G∗

u,
⌊
y

t

⌋
t +

⌊
x − y

t

⌋
t − α′t − α′′t

)

≤ ḡ
(
G∗

u,
⌊
x

t

⌋
t − (α′ + α′′ + 2)t

)
. (B.19)

Therefore, by Eqs. (B.11), (B.18) and (B.19) we have

g(G∗
u, x) = ga(G∗

u, x)

≤ ḡ
(
G∗

u,
⌊
y

t

⌋
t +

⌊
x − y

t

⌋
t − α′t − α′′t

)

≤ ḡ
(
G∗

u,
⌊
x

t

⌋
t − (α′ + α′′ + 2)t

)
.

Let α = α′ + α′′ + 2 > 0. Then by Eqs. (B.13) and (B.14) we have

α = α′ + α′′ + 2

≤ (n(T1) − 1) + (n(T2) − 1) + 2

= n(T1) + n(T2)

= n(Tu) − 1.

We have thus proved that (a)(iii) holds for G∗
u.

We next consider a series connection, that is, Gu = G1 • G2. We prove only
that (a) holds for G∗

u, because one can similarly prove that (b) holds for G∗
u.

We first prove that (a)(i) holds for G∗
u. Let x be any number in R

t. By the
counterpart of Eq. (A.6), there are two real numbers y1, y2 ∈ R

t such that

ḡ(G∗
u, x) = ḡ(G∗

1, y1) + ḡ(G∗
2, y2) + sd(v) (B.20)

and

y1 + y2 + dem(v) = x. (B.21)

By the induction hypothesis, (a)(i) holds for G∗
1 and G∗

2, and hence we have

ḡ(G∗
1, y1) ≤ g(G∗

1, y1) (B.22)

41



and

ḡ(G∗
2, y2) ≤ g(G∗

2, y2). (B.23)

Substituting Eqs. (B.22) and (B.23) to Eq. (B.20) and using Eqs. (A.6) and
(B.21), we have

ḡ(G∗
u, x)≤ g(G∗

1, y1) + g(G∗
2, y2) + sd(v)

≤ g(G∗
u, x).

We have thus proved that (a)(i) holds for G∗
u.

We then prove that (a)(ii) holds for G∗
u. It suffices to prove that

ḡ(G∗
u, x + t) ≤ ḡ(G∗

u, x)

for any real number x ∈ R
t. By the counterpart of Eq. (A.6) there are two

real numbers y1, y2 ∈ R
t such that

ḡ(G∗
u, x + t) = ḡ(G∗

1, y1) + ḡ(G∗
2, y2 + t) + sd(v) (B.24)

and

y1 + y2 + dem(v) = x. (B.25)

By the induction hypothesis, (a)(ii) holds for G∗
2, and hence we have

ḡ(G∗
2, y2 + t) ≤ g(G∗

2, y2). (B.26)

Substituting Eq. (B.26) to Eq. (B.24) and using Eq. (B.25) and the counterpart
of Eq. (A.6), we have

ḡ(G∗
u, x + t)≤ ḡ(G∗

1, y1) + ḡ(G∗
2, y2) + sd(v)

≤ ḡ(G∗
u, x).

We have thus proved that (a)(ii) holds for G∗
u.

We finally prove that (a)(iii) holds for G∗
u. Let x be any real number in R. By

Eq. (A.6) there are two real numbers y1, y2 ∈ R such that

g(G∗
u, x) = g(G∗

1, y1) + g(G∗
2, y2) + sd(v) (B.27)

42



and

y1 + y2 + dem(v) = x. (B.28)

By the induction hypothesis, (a)(iii) holds for G∗
1 and G∗

2, and hence there are
two integers α′ and α′′ such that

0≤α′ ≤ n(T1) − 1, (B.29)

0≤α′′ ≤ n(T2) − 1, (B.30)

g(G∗
1, y1)≤ ḡ

(
G∗

1,
⌊
y1

t

⌋
t − α′t

)
(B.31)

and

g(G∗
2, y2) ≤ ḡ

(
G∗

2,
⌊
y2

t

⌋
t − α′′t

)
. (B.32)

Substituting Eqs. (B.31) and (B.32) to Eq. (B.27), we have

g(G∗
u, x) ≤ ḡ

(
G∗

1,
⌊
y1

t

⌋
t − α′t

)
+ ḡ

(
G∗

2,
⌊
y2

t

⌋
t − α′′t

)
+ sd(v). (B.33)

By Eq. (B.33) and the counterpart of Eq. (A.6) we have

g(G∗
u, x)≤ ḡ

(
G∗

u,
⌊
y1

t

⌋
t +

⌊
y2

t

⌋
t + dem(v) − α′t − α′′t

)
. (B.34)

By Eq. (B.28) we have

⌊
y1

t

⌋
t +

⌊
y2

t

⌋
t + dem(v) ≥

⌊
x

t

⌋
t − 2t,

and hence by Eq. (B.34) and (a)(ii) we have

g(G∗
u, x)≤ ḡ

(
G∗

u,
⌊
x

t

⌋
t − (α′ + α′′ + 2)t

)
. (B.35)

Let α = α′ + α′′ + 2 > 0. Then by Eqs. (B.29) and (B.30) we have

α = α′ + α′′ + 2

≤ (n(T1) − 1) + (n(T2) − 1) + 2

= n(T1) + n(T2)

= n(Tu) − 1.

43



We have thus proved that (a)(iii) holds for G∗
u. �

44


