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Abstract. We consider the problem of laying out a tree or trie in a
hierarchical memory, where the tree/trie has a fixed parent/child struc-
ture. The goal is to minimize the expected number of block transfers
performed during a search operation, subject to a given probability dis-
tribution on the leaves. This problem was previously considered by Gil
and Itai, who show optimal but high-complexity algorithms when the
block-transfer size is known. We propose a simple greedy algorithm that
is within an additive constant strictly less than 1 of optimal. We also
present a relaxed greedy algorithm that permits more flexibility in the
layout while decreasing performance (increasing the expected number of
block transfers) by only a constant factor. Finally, we extend this lat-
ter algorithm to the cache-oblivious setting in which the block-transfer
size is unknown to the algorithm; in particular this extension solves the
problem for a multilevel memory hierarchy. The query performance of
the cache-oblivious layout is within a constant factor of the query per-
formance of the optimal layout with known block size.

1 Introduction

The B-tree [4] is the classic optimal search tree for external memory, but it is
only optimal when accesses are uniformly distributed. In practice, however, most
distributions are nonuniform, e.g., distributions with heavy tails arise almost
universally throughout computer science. Examples of nonuniform distributions
include access distributions in file systems [3, 16,19, 22].

Consequently, there is a large body of work on optimizing search trees for
nonuniform distributions in a variety of contexts:
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1. Known distribution on a RAM — optimal binary search trees [1,15] and
variations [12], and Huffman codes [13].

2. Unknown distribution on a RAM — splay trees [14, 20].

3. Known distribution in external memory — optimal binary search trees in
the HMM model [21].

4. Unknown distribution in external memory — alternatives to splay trees [14].4

Fixed Tree Topology. Search trees frequently encode decision trees that can-
not be rebalanced because the operations lack associativity. Such trees naturally
arise in the context of string or geometric data, where each node represents a
character in the string or a geometric predicate on the data. Examples of such
structures include tries, suffix trees, Cartesian trees, k-d trees and other BSP
trees, quadtrees, etc. These data structures are among the most practical in
computer science. Almost always their contents are not uniformly distributed,
and often these search trees are unbalanced.

How can we optimize these fixed-topology trees when the access distribution
is known? On a RAM there is nothing to optimize because there is nothing
to vary. In external memory, however, we can choose the layout of the tree
structure in memory, that is, which nodes of the tree are stored in which blocks
in memory. This problem was proposed by Gil and Itai [10, 11] at ESA’95. Among
other results described below, they presented a dynamic-programming algorithm
for optimizing the partition of the N nodes into blocks of size B, given the
probability distribution on the leaves. The algorithm runs in O(N B?log A) time,
where A is the maximum degree of a node, and uses O(Blog N) space.

This problem is so crucial because when trees are unbalanced or distributions
are skewed, there is even more advantage to a good layout. Whereas uniform
distributions lead to B-trees, which save a factor of only lg B over the standard
lg N, the savings grow with nonuniformity in the tree. In the extreme case of a
linear-height tree or a very skewed distribution we obtain a dramatic factor of
B savings over a naive memory layout.

Recently, there has been a surge of interest in data structures for mul-
tilevel memory hierarchies. In particular, Frigo, Leiserson, Prokop, and Ra-
machandran [9,17] introduced the notion of cache-oblivious algorithms, which
have asymptotically optimal memory performance for all possible values of the
memory-hierarchy parameters (block size and memory-level size). As a conse-
quence, such algorithms tune automatically to arbitrary memory hierarchies and
exploit arbitrarily many memory levels. Examples of cache-oblivious data struc-
tures include cache-oblivious B-trees [6] and its simplifications [7,8, 18], cache-
oblivious persistent trees [5], and cache-oblivious priority queues [2]. However,
all of these data structures assume a uniform distribution on operations.

Our Results. In this paper, we design simple greedy algorithms for laying out
a fixed tree structure in a hierarchical memory. The objective is to minimize the

4 Although [14] does not explicitly state its results in the external-memory model, its
approach easily applies to this scenario.



expected number of blocks visited on a root-to-leaf path, for a given probability
distribution on the leaves. Our results are as follows:

1. We give a greedy algorithm whose running time is O(N log B) and whose
query performance is within an additive constant strictly less than 1 of op-
timal.

2. We show that this algorithm is robust even when the greedy choices are
within a constant factor of the locally best choices.

3. Using this greedy approach, we develop a simple cache-oblivious layout whose
query performance is within a small constant factor of optimal at every level
of the memory hierarchy.

Related Work. In addition to the result mentioned above, Gil and Itai [10, 11]
consider other algorithmic questions on tree layouts. They prove that minimizing
the number of distinct blocks visited by each query is equivalent to minimizing
the number of block transfers over several queries; in other words, caching blocks
over multiple queries does not change the optimization criteria. Gil and Itai also
consider the situation in which the total number of blocks must be minimized
(the external store is expensive) and prove that optimizing the tree layout subject
to this constraint is NP-hard. In contrast, with the same constraint, it is possible
optimize the expected query cost within an additive 1/2 in O(N log N) time and
O(B) space. This algorithm is obtained by taking their polynomial-time dynamic
program for the unconstrained problem and tuning it.

2 Tree Layout with Known Block Size

Define the probability of an internal node to be the probability that the node is
on a root-to-leaf path for a randomly chosen leaf, that is, the probability of an
internal node is the sum of the probabilities of the leaves in its subtree. These
probabilities can be computed and stored at the nodes in linear time.

All of our algorithms are based on the following structural lemma:

Lemma 1. There exists an optimal layout of a tree T such that within the block
containing the root of T (the root block) the nodes form a connected subtree.

Proof. The proof follows an exchange argument. To obtain a contradiction, sup-
pose that in all optimal layouts the block containing the root does not form a
connected subtree. Let r be the root of the tree T. Define the root block of a
given layout to be the block containing r. Define the root-block tree to be the
maximal-size (connected) tree rooted at r and entirely contained within the root
block. Consider the optimal layout £* such that the root-block tree is largest. We
will exhibit a layout £ whose search cost is no larger and where the root-block
tree contains at least one additional node. Thus, we will obtain a contradiction.

Consider nodes u,v,w € T, where node u is the parent of node v, and node
w is a descendant of node v; furthermore, node w is in the root-block tree (and



therefore is stored in the root block), node v is stored in a different block, and
node w is stored in the root block (but by definition is not in the root-block
tree). Such nodes u, v, and w must exist by the inductive hypothesis.

To obtain the new layout £ from £*, we exchange the positions of v and w in
memory. This exchange increases the number of nodes in the root-block tree by
at least one. We show that the search cost does not increase; there are three cases.
(1) The search visits neither v nor w. The expected search cost is unchanged in
this case. (2) The search visits both v and w. Again the expected search cost is
unchanged in this case. (3) The search visits v but not w. The search cost in this
case stays the same or decreases because the block that originally housed v may
no longer need to be transferred. Therefore, the search cost does not increase,
and we obtain a contradiction. O

2.1 Greedy Algorithm

The greedy algorithm chooses the root block that maximizes the sum of the prob-
abilities of the nodes within the block. To compute this root block, the algorithm
starts with the root node, and progressively adds maximum-probability nodes
adjacent to nodes already in the root block. Then the algorithm conceptually
removes the root block and recurses on the remaining subtrees. The base case
is reached when a subtree has at most B nodes; these nodes are all stored in a
single block.

Equivalently, the greedy algorithm maximizes the expected depth of the
leaves in the root block. Let p; denote the probability of a leaf node in the
root block, and let d; denote the depth of that leaf. If we write out the sum of
the probabilities of every node in the root block, the term p; will occur for each
ancestor of the corresponding leaf, that is, d; times. Thus, we are choosing the
root block to maximize Zle p;i - d;, which is the expected depth of a leaf.

Because the expected depth of the leaves in the root block plus the expected
depth of the leaves in the remaining subtrees equals the total expected depth
of the leaves in the tree, the greedy algorithm is equivalent to minimizing the
expected depth of leaves in the remaining subtrees.

The greedy algorithm has the following performance:

Theorem 1. The expected block cost of the greedy algorithm is at most the op-
timal expected block cost plus (B —1)/B < 1.

Proof. Consider a smooth cost model for evaluation, in which the cost of ac-
cessing a block containing j elements is j/B instead of 1. By the properties of
the greedy algorithm, the only blocks containing j < B elements are leaf blocks
(those containing all descendents of all contained nodes). This cost model only
decreases the cost, so that the optimal expected smooth cost is a lower bound on
the optimal expected block cost. We claim that the greedy algorithm produces
a layout having the optimal expected smooth cost. Hence, the expected smooth
cost of the greedy algorithm is at most the optimal expected block cost. There-
fore, the expected block cost of the greedy algorithm is at most (B —1)/B plus
the optimal expected block cost.



Now we prove the claim. Consider an optimal layout according to the ex-
pected smooth cost. Assume by induction on the number of nodes in the tree
that only the root block differs from the greedy layout. Pick for removal or de-
motion a minimum-probability leaf d in the root block, and pick for addition
or promotion a maximum-probability child p of another leaf in the root block.
Assuming the root block differs from the greedy layout, the probability of d is
less than the probability of p. We claim that an “exchange,” consisting of de-
moting d and promoting p (as described below) strictly decreases the expected
smooth cost.

First consider demoting d from the root block. We push d into one of its
child blocks. (Recall that d is a leaf of the root block, so its children are in
different blocks.) This push causes a child block to overflow, and we recursively
remove the smallest-probability leaf in that block, which has smaller probability
than d. In the end, we either push a node d’ into a nonempty leaf block, in which
case we simply add d’ to that block, or we reach a full leaf block, so that an
excess node d’ cannot be pushed into a child block because there are no child
blocks. In the latter case, we create a new child block that just stores d’. In
either case, the increase in the expected smooth cost is Pr[d’']/B < Pr[d]/B. Our
re-arrangement could only be worse than the optimal, which is equal to greedy
on these subproblems by induction.

Second consider promoting p to the root block. This corresponds to remov-
ing p from its previous block b. We claim that this will decrease the expected
smooth cost of accessing a leaf by at least Pr[p]/B. If a child of p is not in block b,
then accessing every leaf below that child now costs one block access less than
before, because they no longer have to route through block b (and because by
the greedy strategy, block b is full). Thus, we only need to consider children of p
that are in block b.

If k of p’s children are in block b, then the promotion of p up out of block b
effectively partitions the block into k£ sub-blocks. In any case, any child previously
in block b ends up in a block that stores strictly less than B nodes. Thus, we
can recursively add to that block (at least) the maximum-probability child of a
leaf in the block. In this way, the additions propagate to all leaf blocks below p.
In the end, we move the maximum-probability leaf node from every leaf block
into its parent block. This move decreases the smooth cost of that leaf by at
least 1/B, because it no longer has to access the leaf block which had size at
least 1. The move also decreases the smooth cost of every leaf remaining in that
leaf block by at least 1/B, because the leaf block got smaller by one element.

Thus, the total decrease in expected smooth cost from promoting p to the
root block is at least Pr[p]/B. Again our re-arrangement could only be worse
than the optimal, which is equal to greedy on these subproblems by induction.

In total the expected smooth cost decreases by at least (Pr[p] —Pr[d])/B > 0,
contradicting the assumption that we started with an optimal layout according

to expected smooth cost. Hence the optimal smooth-cost layout is in fact greedy.
O



The greedy algorithm can be implemented in O(N log B) time on a RAM
as follows. Initialize each root-block-selection phase by creating a priority queue
containing only the root node. Until the root block has size B, remove the
maximum-probability node from the priority queue and “add” that node. To
add a node, place it into the root block, compute an order statistic to find
the B maximum-probability children of the node, and add those children into
the priority queue. We can get away with keeping track of only the top B children
because we will select only B nodes total. Any remaining children become the
roots of separate blocks. Hence, the priority queue has size at most B2 at any
moment, so accessing it costs O(log B) time. We compute order statistics only
once for each node, so the total cost for computing order statistics is O(N).

An interesting open problem is how to implement the greedy algorithm ef-
ficiently in a hierarchical memory given a tree in some prescribed form (e.g., a
graph with pointers stored in a contiguous segment of O(N) memory cells). The
bound of ©(N) follows trivially by implementing the priority queue of size B2
as a B-tree of height 2. Can we reduce the number of memory transfers below
O(N)?

2.2 Relaxed Greedy Algorithm

For a constant 0 < ¢ < 1, the relazed greedy algorithm chooses nodes for the root
block in a less greedy manner: at each step, it picks any node whose probability
is at least e times the highest-probability node that could be picked. Once the
root block is chosen, the remaining subtrees are laid out recursively as before.

Theorem 2. The relaxed greedy algorithm has an expected block cost of at most
1/e times optimal, plus (B —1)/B < 1.

Proof. In our analysis we start with a greedy layout and gradually transform
it to a relaxed greedy layout. As we perform the transformation, we bound the
increase in cost. In the greedy layout, we work up from the bottom of the tree,
and change each block into the relaxed-greedy choice for the block. The expected
smooth cost of leaf nodes is the same as before in Theorem 1.

The proof of the claim follows the exchange argument in the proof of The-
orem 1. By induction suppose that only the root block of the tree has not yet
been converted into the relaxed-greedy layout. Consider exchanging nodes, one
at a time, from the greedy layout to the relaxed-greedy layout. Each exchange
causes one highest-probability node d to be demoted from the root block, and
causes one node p to be promoted, where p has probability at least £ times the
highest probability.

By the argument in the proof of Theorem 1, the demotion of d causes the
expected smooth cost to increase by at most 1/B times the probability of d;
and the promotion of p causes the expected smooth cost to decrease by at least
1/B times the probability of p. In particular, the increase in expected smooth
cost at most Pr[d]/B — Pr[p|/B. Because ePr[d] < Pr[p|, this quantity is at most

(% — 1) PrTw < (% — 1) %. Because there are at most B exchanges in the root



block, the expected smooth cost increases by at most ( % — ) Since the original
smooth cost of accessing the (entirely filled) root block was 1, there is a 1/¢
factor increase in the smooth cost in order to change the root block from the
greedy layout to the relaxed greedy layout. This proves the claim. O

3 Cache-Oblivious Tree Layout

We now present the cache-oblivious layout. We follow the greedy algorithm with
unspecified block size B, repeatedly adding the highest-probability node to the
root block, until the number of nodes in the root block is roughly equal to the
expected number of nodes in the child subtrees (rounding so that the root block
may be slightly larger). Then we recursively lay out the root block and each of
the child subtrees and concatenate the resulting recursive layouts (in any order).
At any level of detail, we distinguish a node as either a root block or a leaf block,
depending on the role it played during the last split.

Theorem 3. The cache-oblivious layout has an expected block cost of at most 4
times optimal, plus 4.

Proof. Consider the level of detail at which every block has more than B nodes
and such that, at the next finer level of detail, a further refinement of each block
induces a refined root block with at most B nodes. Thus, the refined child block
that is visited by a random search has an expected number of nodes that is at
most B. That is, if we multiply the size of each refined child block within a
block by the probability of entering that refined child block (the probability of
its root), then the aggregate (expectation) is at most B. Therefore, the expected
number of memory transfers within each block is at most 4: at most 2 for the
refined root block (depending on the alignment with block boundaries) and at
most 2 for a randomly visited refined child block.

Thus, each block has size more than B and has expected visiting cost of
at most 4 memory transfers. The partition into blocks can be considered an
execution of the greedy algorithm in which blocks have varying maximum size
that is always more than B. The expected number of blocks visited can thus
only be better than the expected block cost of greedy in which every block has
size exactly B, which by Theorem 1 is at most optimal plus 1. Hence, the total
expected number of memory transfers is at most 4 times optimal plus 4. O
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