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Abstract

We present a dynamic comparison-based search structure that supports insertions,
deletions, and searches within the unified bound. The unified bound specifies that it
is quick to access an element that is near a recently accessed element. More precisely,
if w(y) distinct elements have been accessed since the last access to element y, and
d(x,y) denotes the rank distance between z and y among the current set of elements,
then the amortized cost to access element z is O(min, loglw(y) + d(z, y) + 2]). This
property generalizes the working-set and dynamic-finger properties of splay trees.
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1 Introduction

The classic dynamic optimality conjecture states that the amortized perfor-
mance of splay trees [ST85] is within a constant factor of the offline optimal
dynamic binary search tree for any given sequence of operations. This conjec-
ture has motivated the study of sublogarithmic time bounds that capture the
performance of splay trees and other comparison-based data structures. For
example, it is known that the performance of splay trees satisfies the follow-
ing two upper bounds. The working-set bound [ST85] says roughly that re-
cently accessed elements are cheap to access again. The dynamic-finger bound
[CMSS00,Col00] says roughly that it is cheap to access an element that is near
to the previously accessed element. These bounds are incomparable: one does
not imply the other. For example, the access sequence 1,n,1,n,1,n,... has a
small working-set bound (constant amortized time per access) because each
accessed element was accessed just two time units ago. In contrast, for this se-
quence the dynamic-finger bound is large (logarithmic time per access) because
each accessed element has rank distance n — 1 from the previously accessed
element. On the other hand, the access sequence 1,2,...,n,1,2,...,n,... has
a small dynamic-finger bound because most accessed elements have rank dis-
tance 1 to the previously accessed element, whereas it has a large working-set
bound because each accessed element was accessed n time units ago.

We propose a unified bound that is strictly stronger than these two bounds
and all other proved bounds on splay trees (detailed below) and most other
comparison-based structures. Roughly, the unified bound says that it is cheap
to access an element that is near to a recently accessed element. For example,
the access sequence 1, 5 +1,2, 8 +2,3, 5 +3, ... has a small unified bound be-
cause most accessed elements have rank distance 1 to the element accessed two
time units ago, whereas it has large working-set and dynamic-finger bounds. It
remains open whether splay trees satisfy the unified bound. However, we de-
velop the unified structure, a comparison-based data structure on the pointer
machine that attains the unified bound.

In the rest of this introduction, we give a more thorough overview of sublog-
arithmic bounds on comparison-based search structures.

Email addresses: mihai@mit.edu (Mihai Badoiu), cole@cs.nyu.edu (Richard
Cole), edemaine@mit.edu (Erik D. Demaine), jiacono@poly.edu (John Iacono).
I Several of the results presented here appeared in preliminary form in
[BD04,Iac01a,Iac01b].

2 Research supported in part by NSF grants CCR-0105678 and CCF-0515127.
3 Research supported in part by NSF grant CCF-0430849.
4 Research supported in part by NSF grant CCF-9732689.



Problem statement. The goal in this line of research is to understand the
optimal time needed to maintain a dynamic set of elements from a totally
ordered universe as it depends on the sequence of insertions, deletions, and
searches performed. The model of computation is a pointer machine under the
(unit-cost) comparison model. We consider a sequence of m operations (inser-
tions, deletions, and searches) in which the ith operation involves element ;.
Thus the access sequence X = (x1, 9, ..., x,,) captures everything except the
type of each operation. To capture insertions and deletions, we let S; denote
the set of elements in the structure just before operation i—at time i—and let
n; denote the number of elements in S;. Thus our goal is to understand the
optimal running time of a data structure as a function of the access sequence
X and the sets 51, Sy, ..., S, determined by the insertions and deletions.

Entropy bound. Let p(z) denote the frequency (empirical probability) of
searches to element z, i.e., the number of occurrences of x in the access se-
quence X divided by the length m of the sequence. The optimal binary search
trees of [Knu71,HT71] achieve the entropy bound—O(1+log[1/p(x;)]) time for
each access x;—provided that the frequency values p(z) are known in advance.
This bound is in fact optimal if the binary search tree cannot be restructured
during the access sequence, or in expectation if the access sequence is gen-
erated by a stochastic process with probabilities given by p. Optimal binary
search trees have been improved over the years to allow insertion and dele-
tion, but these structures still have the fundamental limitation of requiring
the access distribution to be known in advance.

On the other hand, splay trees also achieve the entropy bound of O(1 +
log[1/p(z;)]), only the bound is amortized rather than worst case. They achieve
this bound without any prior knowledge of the input distribution. This prop-
erty of splay trees is the static-optimality theorem of [ST85].

Static-finger bound. Another theorem proved in [ST85] is the static-finger
theorem. 1t states that, for any fixed key f (the “finger”), the amortized time
to access element x; is proportional to the logarithm of the rank distance
between f and z; at time i. The rank distance d;(x,y) between two elements
x and y at time ¢ is the number of elements in S; between z and y, including x
but not y. Thus the static finger theorem states that, for any fixed key f, the
amortized time to access x; is O(log[d;(z;, f) + 2]). The +2 is to assure that
the logarithm is always positive. If f is known, a data structure of Guibas,
McCreight, Pass, and Roberts [GMPR77] achieves a worst-case running time
of O(log[d;(z;, f) + 2]) for access x;. Splay trees achieve this running time, in
the amortized sense, without any knowledge of f, i.e., simultaneously for all f.



Working-set bound. The working-set theorem, introduced in [ST85], is
based upon the following idea: if an access sequence contains elements drawn
only from a subset of size n’ of the n elements, the amortized time for an access
should be O(logn’) instead of O(logn). The actual theorem uses the stronger
idea that elements that have been accessed recently should take less time to
access than elements that have not been accessed in a long time. Formally, let
w;(z) be the number of distinct items accessed since the last access to z before
time 7 (before the execution of access x;). The working-set theorem of [ST85]
states that the amortized time to access x; in a splay tree is O(log[w;(z;)+2]).

It was observed in [lacO1b] that the working-set bound is the strongest of
the three bounds presented so far (entropy, static finger, and working set): a
working-set theorem implies a static-finger theorem, and a static-finger the-
orem implies a static-optimality theorem, in any data structure. Thus the
working-set bound plays an important role at least in our current understand-
ing of splay trees.

As a warmup toward our main result, we present in Section 2 a simple data
structure called the working-set structure. This data structure has the same
O(log[w;(z;) 4 2]) performance attributed to splay trees, except that the per-
formance of the working-set structure is worst case instead of amortized. In
particular, the working-set structure achieves a worst-case bound of O(log n;)
per access, in contrast to the O(n;) worst-case performance of a single ac-
cess in splay trees. As mentioned above, the working-set bound implies that
the working-set structure satisfies both the static-finger bound and the static-
optimality bound, albeit only in the amortized sense. This amortization is best
possible: it is easy to show that the static-finger and static-optimality bounds
cannot be satisfied in the worst case in any data structure lacking knowledge
of the finger and of the frequencies.

Sequential-access bound. One sublogarithmic access bound that splay
trees have but is not implied by the working-set theorem is that, if the ac-
cess sequence X simply consists of searching for every element in the data
structure in sorted order repeatedly, then the amortized cost per access is
O(1). This result is known as the sequential access lemma and was proved by
Tarjan [Tar85], with alternative proofs by Sundar [Sun92,Sun91] and Elmasry
[EIm04].

Dynamic-finger bound. A generalization of the sequential-access lemma
is the dynamic-finger theorem, conjectured in [ST85] and proved by Cole et
al. [CMSS00,Col00]. This bound states that an access should be fast if it is
close, in terms of rank distance, to the previous access. More precisely, in splay



trees, the amortized cost to access x; is O(log|d;(z;, z;—1) + 2]). A non-self-
adjusting data structure with this performance predates splay trees: the level-
linked trees of Brown and Tarjan [BT80] support accesses in O(log[d;(x;, z;_1)+
2]) worst-case time.

Unified bound. The working-set theorem and the dynamic-finger theorem
are the best currently known analyses of access sequences in splay trees, yet
each is easily seen to be incomplete. Consider the following three search se-
quences of length m > nlogn on the set {1,2,...,n} for n even:

Xy L2000, 1,2 ...n,1,2, ...
Xy Lin,In,1n,...

Xyt 1,041,2,2423243...2 01,2 41,...

|3

In X7, the dynamic-finger theorem would tightly bound this sequence as taking
O(m) total time to execute on a splay tree, while the working-set theorem
could say only that the running time is O(mlogn). The situation is reversed
in Xy, with the working-set theorem tightly bounding the execution time as
O(m) while the dynamic-finger theorem yields only an O(mlogn) bound.
More troubling is X3. Both the working-set theorem and the dynamic-finger
theorem say that this sequence takes O(mlogn) time. However, these bounds
are not tight: this sequence executes in O(m) time in splay trees. This fact
can be seen by proving a new theorem, based on the sequential access lemma.
However, introducing new theorems that bound the running times of highly
specific classes of sequences such as X3 will only contribute to our fragmented
understanding of splay trees. In an attempt to more accurately characterize
the running time of access sequences on splay trees, we provide the following
conjecture:

Conjecture 1 (Unified Conjecture)ﬂ The amortized time to search for,
insert, or delete x; in a splay tree is

@, (min log {wz(y) +d;i(z5,y) + 2}) .

YyES;

This conjecture implies the working-set theorem and the dynamic-finger the-
orem, and it is strong enough to predict that X3, and many possible variants,
run in O(m) time. Informally, the unified bound says that an access is fast if
the access is close in key space to some element that has been accessed recently

® Note that a “unified bound” for splay trees is presented in [ST85], which is simply
the minimum of the static-optimality, static-finger, and working-set bounds. This
theorem is distinct from the conjecture presented here.



in time. In the case of X3, the majority of the accesses are to elements that
are at rank distance 1 away from the element accessed two accesses ago, so
the amortized cost per access is O(log[l + 2 + 2]) = O(1). We offer no proof
of this conjecture.

Our main result is a relatively complicated data structure, called the uni-
fied structure, whose performance satisfies the unified bound. This structure
demonstrates the plausibility of the unified conjecture for splay trees. It also
has a worst-case running time of O(logn) per access, in contrast to the ©(n)
attained by splay trees, where n denotes the current value of n;, the size of
the set S;. We present this structure in Section 3.

In terms of proved bounds on the running time of a comparison-based search
structure, the unified structure is strictly better than the splay tree. However,
this superiority does not hold in terms of actual amortized performance: there
are access sequences that a splay tree will execute asymptotically faster than
the unified structure. For example, consider scaling each element in X3 by a
superconstant factor «, forming an access sequence over a set that is « times
as large. Splay trees can factor out the intervals of & — 1 unaccessed elements,
but the unified bound does not capture this feature. We do not know whether
the unified structure executes any access sequences asymptotically faster than
the splay tree; this requires resolving the unified conjecture.

The dynamic optimality conjecture of Sleator and Tarjan [ST85] states that
splay trees can execute any sufficiently long access sequence as fast as any
rotation-based binary search tree, up to constant factors. The unified struc-
ture is composed of a collection of search trees, not one search tree, so we are
unable to derive any statements about dynamic optimality from the results
presented here. In particular, assuming the dynamic optimality conjecture
does not imply the unified conjecture for splay trees. Conversely, a disproof
of the unified conjecture for splay trees would not disprove the dynamic opti-
mality conjecture.

2 Working-Set Structure

The working set structure consists of a set of O(loglog |S;|) 2-4 trees, Ty, T4, . . ., Ty,
and linked lists, Lo, L1, ..., Ly. Let L be the imaginary concatenation of the

¢ + 1 linked lists in index order. Let w(z) denote the number of distinct ele-
ments accessed since the last access to x. The structure maintains the following
invariants:

e Every element in S; is stored in exactly one tree T and exactly once in the
corresponding linked list L; (and in no other linked list).



o For k < ¢, %F |T}| = 22",
i Z?:o T5| < 22,
e If w(z) = h, then = appears as the hth element of L.

These invariants imply that x appears in tree Ty, where llw(z) = 0 if
w(z) = 0 and llw(z) = [logloglw(z) + 1]] otherwise[%]

Search(z). We search for x in Tp, 771, . .. in turn until it is found in some tree
Ti. We know from the observation above that k = llw(z). Because = is now
the most recently accessed item, it must be removed from Ty, ) and L)
and inserted into Tj and the front of Ly. Now observe that Tj is too large by
one element, while Ty, is too small by one element. We then proceed, for
each j in the range 0 to llw(z) — 1, to remove the oldest element from 7} and
L; and insert it into 7}y, and to the front of L;;;. The oldest element in T}
and L; is the last element in the list Lj;.

The running time is dominated by the tree operations. For each tree in the
range 0 to llw(x), we perform one insert, one delete, and one search, at a total

cost of O(Zéli’ém log 2%') = O(log[w(x) + 2]).

Insert(x). If Zgzo T;| < 2%, insert « in T} at cost O(logn) and append z
to the end of L, at cost O(1). If Z?:o T;| = 2%, we increment ¢ and initialize
the new T, and L, to contain only z at cost O(1). In either case, we then
increment n and move z to Ty by calling Search(x). Effectively w(z) = n, so
the cost is O(logn).

Delete(x). Suppose z is in tree Ty. We delete x from T} and Lj. Now, unless
x was in the last tree T, we must correct the size of T} using a procedure
analogous to the one used in the search algorithm. For each j in the range
from k to ¢ — 1, remove the newest element from 7j;; and L, and insert it
into Tj and to the back of L;. The newest element in 7}, and L;; is the first
element in the list L; ;.

The running time is dominated by the tree operations. For each tree in the
range k to £, one insert, one delete, and one search are performed, at a total

cost of O(Z;Zk log2%') = O(logn).

In conclusion, we have proved the following performance of the working-set
structure:

6 Throughout this paper, log is base 2.
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Fig. 1. Overview of our dynamic unified structure. In addition to a single finger
search tree storing all elements in the dynamic set S;, there are £ + 1 ~ loglog |S;]
balanced search trees whose sizes grow doubly exponentially. (As drawn, the heights
double from left to right, which is accurate if the trees are perfectly balanced.)

Theorem 2 The working-set structure supports searching for element x in
O(logw(x) + 2]) worst-case time, and supports inserting and deleting an ele-
ment in O(logn) worst-case time.

3 Unified Structure

In this section, we develop our dynamic unified structure, establishing the
following theorem:

Theorem 3 There is a dynamic data structure in the comparison model on
a pointer machine that supports insertions, deletions, and searches within the
unified bound (amortized).

The bulk of our unified structure consists of O(loglog|S;|) balanced binary
trees, T, T4, ..., ;. Each tree T; has size 22 whenever it is rebuilt, and is
maintained to have at most 22" + 2% + ... + 2%’ elements at all times. Fur-
thermore, at the end of each dictionary operation in the unified structure,
tree T; will have at most 22" clements. Each element is augmented with a
timestamp of when it was last accessed (searched or inserted). Each element
of the structure appears in at most one tree 7} at any time. The structure is
maintained so that smaller trees contain more recently accessed elements, i.e.,
all elements in T} were accessed more recently than all elements in T}, for all
J <k



We can store each tree T}, using any balanced search tree structure supporting
insertions, deletions, and searches in O(log |T}|) = O(2) time, and supporting
insertions and deletions with a pointer to the relevant location in the tree in
O(1) amortized time. For example, B-trees [BM72] support these time bounds.

Our unified structure also stores a single finger search tree containing all ele-
ments of S;. We can use any finger search tree structure supporting insertions,
deletions, and searches within rank distance r of a previously located element
in O(log[r +2]) amortized time, e.g., level-linked B-trees [BT80]. We represent
each element in the set S; by a separate indirect node, with pointers between
this indirect node and the node of the finger search tree that currently stores
the element. This indirection is necessary because the elements may move from
node to node as the finger search tree changes; during such changes, we can
easily maintain the pointers from the indirect node into the finger search tree.
Also, we store pointers between each indirect node and the node in one of the
trees Ty, if any, that stores the element. In this way, we can quickly cross-
index between elements as stored in the trees Tg, T, ..., T, and as stored in
the finger search tree.

3.1 Potential Function

We use the potential method to analyze the amortized running time of each
operation in our structure. The potential function has two components, death
potential and overflow potential.

The death potential of the structure at a given time is four times the size of
all of the trees times a constant ¢ which will be defined later: 4c Z?:o 75|

To define the overflow potential, we introduce the j-graph, defined as follows.
The nodes in the j-graph consist of all the nodes in 7Ty, . .., T};. There is an edge
in the j-graph between every pair of nodes of rank difference at most 22"
We define the j-components to be the connected components of the j-graph.
We define the extent of a j-component to be the rank difference between the

smallest and largest items in the j-component.

The overflow potential of the structure comprises several terms. The overflow
potential of an individual j-component with extent e is 4¢-2/[1+¢/2%"']. The
motivation behind this definition is that we will overflow roughly |1+e/2%" |
items from a j-component from tree 7T to T}, and each such item will cost
©(27). The j-overflow potential is the sum of the overflow potentials of each
j-component. The potential of the entire structure is the sum of the j-overflow
potentials for j =0,1,...,/.

Lemma 4 Remouving an item x from T} cannot increase the overflow poten-



tial.

PROOQOF. For j < k, the j-overflow potential does not change. For a given
j >k, the loss of x can cause one of three things to happen. Let C' denote the
j-connected component that contains x.

Case 1: The extent of C' remains the same. No change.
Case 2: The extent of C' shrinks. There is a loss in potential.

Case 3: The removal of z causes C' to split into C; and C,.. For this to happen,
the rank gap between C; and C, after the removal of x must be more than
22" If ¢(C') denotes the extent of C' before removal of z, and e(C;) and e(C,)
denote the extents of C; and C, after the removal of z, then e(C;) + e(C,) <
e(C)—2%"". Thus the total rank potential of Cj and C, after the removal of z
is 4c- 2712+ [e(C)) +e(C,)] /22 ] < 4e-27[14e(C)/2%""], so the rank potential
does not increase. O

3.2 Querflow

The overflow is an important subroutine that will be used in the implementa-
tion of the search and insert operations. It has 0 amortized cost. The idea is
to fix a tree that has grown too large by rebuilding the tree, and the smaller
trees, to have the desired minimal size (2%’ for tree T}j). We must then decide
what to do with the extra nodes left over from this rebuilding. We cannot
afford to insert all of them into the next larger tree. Instead we retain only
those that would be necessary to help with future searches.

3.2.1 Description

We overflow at level k£ when T} grows to size at least 22t The overflow
operation restores the size of the trees Tj, 0 < j < k, to be 2% and inserts
some excess items into Ty, ;. These insertions may trigger (after completion
of this overflow) an overflow at the next larger level.

An overflow at level k& works as follows. Take all the items in levels Ty, ..., T}.
Populate each tree T, 0 < j < k with the 2% most recent items not in a
tree Ty, with h < j. Of the remaining items, remove every item z for which
there is another smaller item y < x within rank distance 22" of 2. Insert the
still remaining items into Ty;. In order to obtain the proper running time,
this overflow algorithm must be carried out with some care. Algorithm 1 gives
pseudocode that efficiently implements the overflow algorithm.

10



Algorithm 1 Pseudocode for the overflow algorithm at level k.
: L < empty linked list
: for j =0to k do
Merge L with an in-order traversal of the items in 7j.
Store the resulting list, sorted by key value, in L.
end for ‘
Let a be the Z?:o 223)th youngest timestamp among items in L.
Loyerfiow < list of items from L with timestamp older than a.
L « list of items from L with timestamp at least as young as a.
for j = k downto 0 do
Let a be the 22 th oldest timestamp among items in L.
Lt, < list of items from L with timestamp at least as old as a.
L <+ list of items from L with timestamp younger than a.
: end for
: for j =0to k do
Build the new tree Tj using the contents of L.
: end for
: for x in Loyerfiow, €xcept the first item do
If the rank of x minus the rank of the previous remaining item in
Loverflow 18 < 22k+1, then remove x from Lgyverfiow-
19: end for
20: for z in Loverfow dO
21: Insert x into Tj.
22: end for
23: If Ty1 now has size at least 22k+2, then overflow at level k& + 1.

e e e e e
PN DT w2 o

3.2.2  Analysis

The elements that were in Tg, T3, ..., T} will fall into three categories: r ele-
ments that remain in 7y, 77, ..., T}, p elements that are added to Ty, and d
elements that are deleted.

Lemma 5 The following relations hold:

(i) r+d+p> T > 2"
(i) r=22" +... 422
(iii) p<d+p<22" +22 4 ... 422
(i) The invariant on |Tiiq|, |Tei1] < 2
after the overflow of p items into Ty1.

k42 k41 0 ;
T 4 4227 remains true

PROOF. (i) is immediate because the total r + d 4 p is the number of el-
ements originally in Ty, ..., Ty, which is at least the number of items in the
overflowing T}. (ii) holds by construction.

11



(iii) can be obtained as follows. Because T} is the tree overflowing (and Ty, . .., Tp_1
are not), |T;| < 2% for j < k. Also, by the invariant on |Ty|, |Tix| <
22 92" 44192 Thus r4-d+4p = |Ty|+- - -+|Th| < 22 +2-(22" +- - -+22).
Substituting for r from (ii) yields (iii).

(iv) follows because at most p < 22" 4+ 22" 4 ... + 22° clements are inserted
into Tyy1; even if these insertions into Ty, push |Tj41| beyond 22" we still
have that |Tjyq| < 2277 + 227 ... 4 22 O

For technical reasons, the following analysis works only for k£ > kg for a suitable
constant ko. (The exact constraints on k are pointed out below.) For k < ko,
the amortized cost can easily be shown to be O(1).

Actual cost. We claim that the actual running time is at most c(r+d+p-2F)
for an appropriately chosen constant c.

The merging of all of the trees (Lines 1-5) takes time at most Z?:o O(|T;| +
Cico [Thl) = X0 0¥ + 542 227) = X, 0(277) = 0(22) = O(r +
d+p).

The order statistic on Line 6 takes O(r +d+ p) time by transferring the items
into an array and using linear-time median finding. The filtering on Lines 7-8
also takes O(r + d + p) time.

The loop on Lines 9-13 takes time O(X¥_ ¥/ 22"y = 0(2%) = O(r).

Because a balanced binary tree can be built in linear time from a sorted list,
the loop on Lines 14-16 take time O(3F_;2?) = 012%) = O(r).

Removing the data to be deleted on Lines 17-19 takes O(| Loverfiow|) = O(d+p)
time. Inserting the remaining p items in Lines 2022 into T}, which has size
0(2%"%) takes O(p - 2%) time.

Thus, the actual cost is O(r +d + p - 2%), or by choosing ¢ sufficiently large,
at most ¢+ (r+d+p-2*).

Change in potential. The death potential is reduced by 4cd.
For j > k, the j-overflow potential does not increase. This claim follows by

Lemma 4 because, from the point of view of the j-graph, we have just deleted
d items.

12



For j < k, we analyze the change in j-overflow potential as if the overflow
first deleted all of Ty, ..., T}, then added the p elements to T}, then rebuilt
T, ... Tg.

Deleting all of the elements will result in a loss of at least 4cp2* units in the
k-overflow potential. The reason is that, for each k-component of extent e, we
will insert at most |1+ e/22"" | elements into T} (this would be exact if we
did not populate Ty, . .., T}, with r elements). Thus p < Yo|1 + e(C)/22"" |,
and so 4cp2* is less than or equal to the old k-overflow potential.

Adding the p elements to Ty, does not change the j-overflow potential for
J<k.

For each j < k, re-inserting the Z{L:o 22" items into the j-graph could cause, in
the worst-case, each of them to be in a separate j-component. In this case there
could be a j-overflow potential increase of up to 333 _, 4¢-2922" < 6¢-272% . The
total increase in overflow potential, for 7 < k, is thus at most Zfzo 6c-272% <

7.5 c- 292"

Amortized cost. Therefore the gain in potential is at most 7.5¢2k92" —
4ep2k — 4ed < 7.562822" — cp2ktt — o — 2c(p+d). Now, p+d > |Ty| —r >
22" — k2% Also, 7.5 - 2022° < 22" — vk 9% for k> 3. Thus the
gain in potential is at most —cp2*™ — cd — ¢(p + d). Because p +d > r
(22 — E?:o 22 > Z?:o 22 for all k > 0), the gain in potential is at most
—cp2ktt —ed — er < —c(p2* + d + r). This is the negation of the actual cost
of the overflow. Thus we have shown

Lemma 6 The amortized cost of overflow is at most 0.
3.3 Search

3.3.1 Description

Up to constant factors, the unified property requires us to find an element
x = x; in O(2%) time if it is within rank distance 22° of an element y with
working-set number w;(y) < 22°. The data structure maintains the invariant
that all such elements x are within rank distance (k+4) - 22° of some element
y' in TyUTy U--- UTj. (This invariant is proved below in Lemma 7.)

At a high level, then, our search algorithm will investigate the elements in
Ty, Ty, ..., Ty and, for each such element, search among the elements within
rank distance (k+4) - 22" for the query element z. The algorithm cannot per-
form this procedure exactly, because it does not know k. Thus we perform the

13



procedure for each £ = 0,1,2,... until success. To avoid repeated searching
around the elements in 7}, j < k, we maintain the two elements so far en-
countered among these T}’s that straddle the target =, and just search inside
those two elements. If any of the searches from any of the elements would be
successful, one of these two searches will be successful. After finding z in the
finger structure, we are able to obtain a pointer to the tree, call it 7}, that x
is in (if it is in a tree). We remove z from 7, using the pointer and then insert
it into Tj.

More precisely, our algorithm to search for an element x proceeds as shown in
Algorithm 2. The variables L and U store pointers to elements in the finger
search tree such that . < x < U. These variables represent the tightest known
bounds on x among elements that we have located in the finger search tree as
predecessors and successors of x in Ty, 11, . .., T}. In each round, we search for
x in the next tree Ty, and update L and/or U if we find elements closer to .
Then we search for x in the finger search tree within rank distance (k+4) .92
of L and U.

Algorithm 2 To search for an element z.

e Initialize L «+— —oo and U « oo.
e For k=0,1,2,...,loglogn:
(1) Ifk<¢
(a) Search for = in T}, to obtain two elements Lj and Uy in T} such that
(b) Update L «— max{L, Ly} and U « min{U, Uy }.
(2) Finger search for z within the rank ranges [L, L + (k +4) - 22°] and [U —
(k+4)-22° U]
(3) If we find x in the finger search tree:
(a) Delete x from whatever tree T, contains it, if any (found using the
pointer in the finger search tree).
(b) Insert z into tree Tp.
(c) If Ty is too full (storing 22" elements), overflow Ty as described in
Algorithm 1.
(d) Return a pointer to z in the finger search tree.

3.3.2  Unified Invariant

Lemma 7 All elements within rank distance 2" of an element y with working-
set number w;(y) < 22 are within rank distance (k +4) - 22" of some element

PROOF. We consider the time interval between y’s last access (before time 7)
and time ¢, which consists of w;(y) < 22" distinct accesses. During this time
interval, we track the motion of an element 3/, initially y, through the trees
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Ty, T1, ..., Ty. Initially, because 3y’ = y was just accessed, 3’ is in Tj. The only
time at which we change the element y’ being tracked is when overflowing 7}
causes ¢y’ to be discarded, in which case we continue by tracking the element
within rank distance 22" of y that gets promoted to tree Tj1;. Each such
“jump” of the tracked element changes the rank of ¢/, and hence increases the
rank distance between y and ¢/, but by at most 22",

The tracked element 3y’ may switch trees for several reasons: it may be accessed,
in which case it returns to Tp; it may move to a smaller tree because of an
overflow (if smaller trees were undersized); and it may move to the next larger
tree because of an overflow (and either it was promoted or it was deleted and
then the tracked element changed to a different, promoted element). Only the
last case can cause a jump in 3’. This last case can happen relatively easily
once in each T}, if T; was already near overflowing at the beginning of the
time interval. However, for the same tree T} to overflow more than once in the
time interval, there must be accesses to at least 2% _ 9% distinct elements
in between every two consecutive overflows.

Suppose that y’ overflows o; times from tree T; during the time interval. First
we observe that o = op41 = --- = 0, = 0, because y’ remains one of the 22*
youngest elements during the time interval, so it must remain in 7q, 1%, ..., T}
during an overflow of 7}, and thus could not reach Tjs for ¥’ > k. As argued
above, if 0; > 1, there must be (j — 1)(2”“ — 2% distinct accesses that cause
T; to overflow. (However, the same accesses may cause overflows at several
levels.) Because the total number of distinct accesses in the time window is at
most 22", for any j < k,

(0; — 1)(2¥" —2%) < 22",

It follows that _ , .
(0; —1)22" (1 —1/2%) < 2%,

The total distance that ¢/ may jump over the course of the time interval is at
most

kz_:l 22]+1 Z 22]+1 + Z N 1 22]+1
§=0 =0
k ; k—1 22k
<
LT
<125-22’“+22’“kzl.2i
= =27 1
—125.92" 49" kf (1 + .1>
P AN
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<1.25- 2% + 2% (k + 1.5)
<(k+3)-2%.

Finally, insertions between y’ and the original value y can increase the rank
distance between y and y’ by an additional 22° . Deletions only decrease the
distance. a

3.3.83 Analysis

In Section 3.2, we showed that the amortized cost of an overflow is nonpositive.
Therefore we only need to analyze the operations other than the overflow.
There are two quantities we must examine in order to bound the amortized
cost. The first quantity is the actual running time of the operation. The second
quantity is the change of potential caused by inserting z into 7Ty and possibly
removing it from another tree 7,,.

Actual cost. By Step 2 of the algorithm, if x is within rank distance (k+4)-
22" of an element in ToUT U- - -UTy, then the search algorithm will complete in
round k. The actual total running time of k£ rounds is Z?:o O(log |T};]) = O(2F).
The insertion and possible deletion take O(1) time, because we have pointers
to where the item will be deleted and inserted. Thus, the search algorithm
attains the unified bound, provided we have the invariant in Lemma 7 above.

Potential change. Recall that we do not need to consider the effects of the
overflow.

There is no change in death potential.

For 7 < k, for each j-graph, in the worst case a new connected compo-
nent is formed; it has potential O(27). This gives a total potential gain of
S, 0(20) = O(2").

Call y the item in tree T} that was used as the starting point of the successful
finger search. For j > k, we note that x will always appear in the same j-

component as y. The growth of these components gives a potential gain of at
most 33241 427 e = O(1),

Summary. The amortized cost of a search is given by the unified bound.
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3.4 Insert

To perform an insertion, we search for the element as in Algorithm 2, but
stop when we find the predecessor. Then we add the new element into Tj
(and overflow as usual). This new element appears in the same connected
component as its predecessor, and thus it increases the overflow potential by
O(1) (as in the search analysis). Also, the increase in death potential is O(1).

Thus the running time is dominated by the search for the predecessor, so the
amortized cost of the insert operation is the unified bound for the predecessor,
which is within a constant factor of the unified bound for the element itself.

3.5 Delete

To delete an element, we search for it as in Algorithm 2; once it is found, we
simply delete it from the tree Ty, if any, in which we find it, and also from the
finger search tree.

The actual cost can be bounded as follows. One or two tree deletions are
performed at O(1) amortized cost each, because the search gives us pointers
to the nodes to be deleted. Suppose that the search terminated in tree T}, so
that the cost for the search is O(2%).

Next we consider the change in potential. The death potential decreases. We
claim that the overflow potential also does not increase. By Lemma 4, remov-
ing the element from the tree does not increase the potential. Removing the
element from the set of stored elements causes the rank difference between
some elements to decrease. Thus additional edges may appear in some of the
j-graphs. However, these edges do not cause any combining of connected com-
ponents because, if a j-edge from w to z now appears, there must have already
been a j-edge from w to the deleted element x and a j-edge from x to z. Thus
the potential does not increase.

Therefore the amortized cost of a deletion is within a constant factor of the
unified bound.
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