On Universally Easy Classes
for NP-complete Problems *

Erik D. Demaine®, Alejandro Lépez-Ortiz P, J. Tan MunroP
aMIT Laboratory for Computer Science, 200 Technology Square,
Cambridge, MA 02139, USA

b Department of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

Abstract

We explore the natural question of whether all NP-complete problems have a com-
mon restriction under which they are polynomially solvable. More precisely, we
study what languages are universally easy in that their intersection with any NP-
complete problem is in P (universally polynomial) or at least no longer NP-complete
(universally simplifying). In particular, we give a polynomial-time algorithm to
determine whether a regular language is universally easy. While our approach is
language-theoretic, the results bear directly on finding polynomial-time solutions to
very broad and useful classes of problems.

Key words: Complexity theory, polynomial time, NP-completeness, classes of
instances, universally polynomial, universally simplifying, regular languages

1 Introduction and Overview

It is well-known that many NP-complete problems, when restricted to par-
ticular classes of instances, yield to polynomial-time algorithms. For example,
COLOURING, CLIQUE and INDEPENDENT SET are classic NP-complete prob-
lems that have polynomial-time solutions when restricted to interval graphs [9].
But this property of interval graphs is not universal: graph list coloring and
determining the existence of k vertex-disjoint paths (where k is part of the
input) remain NP-complete for interval graphs [1,8].

* A preliminary version of this paper appeared at SODA 2001 [3].
Email addresses: edemaine@mit.edu (Erik D. Demaine), alopez-o@uwaterloo.
ca (Alejandro Lopez-Ortiz), imunro@uwaterloo.ca (J. Ian Munro).

Preprint submitted to Elsevier Science 5 October 2002

To better understand this behavior, we introduce the notion of universally
easy classes of instances for NP-complete problems. It turns out that such
languages exist, and it seems difficult to give a complete characterization.
Thus we focus on two natural classes of languages: regular languages and
context-free languages. In particular, we characterize precisely which regular
languages are universally easy in the sense defined in Section 2.

Many classes of restrictions have been studied before; see for example Brand-
stadt, Le, and Spinrad [2] for a detailed survey of graph classes.

2 Definitions

For simplicity of exposition, assume that the alphabet ¥ = {0,1}. We use
interchangably the notions of a language, a decision problem, and a class of
instances.

Definition 2.1 The restriction of a problem P to a class of instances C' is
the intersection PN C.

Definition 2.2 Given an NP-complete problem P, a language C' € NP s a
simplifying restriction if the restriction of P to C is not NP-complete; and
a language C' € P is a polynomial restriction if the restriction of P to C' is
in P.

Of course, this definition is trivial if P = NP.

Definition 2.3 A language C' € NP is universally simplifying if it is a sim-
plifying restriction of all NP-complete problems.

Definition 2.4 A language C € P s universally polynomial if it is a poly-
nomaual restriction of all NP-complete problems.

Informally, we use the term universally easy to refer to either notion, univer-
sally simplifying or universally polynomial.

3 Easy Languages

A natural question is whether there exist universally simplifying languages if
P # NP. This can be readily answered in the affirmative by noticing that all
finite languages are universally polynomial, which is not very enlightening. A
more general class to consider is regular languages, which can be characterized
according to their density.

Definition 3.1 The growth function of a language L is the function v (n) =
{z € L : |z| < n}|. A language is sparse if its growth function is bounded
from above by a polynomial, and is exponentially dense if the growth function
is bounded from below by 2™

Theorem 3.1 Any sparse language is either universally simplifying or uni-
versally polynomial. If P # NP, it must be universally simplifying.

Proof: Consider a sparse language L. If it is universally simplifying, there is
nothing to show. If it is not universally simplifying, there is a problem P C »*
such that the restriction P N L is NP-complete. Because P N L C L, this
restriction is also a sparse set, and it is NP-complete. Mahaney [7] proved that
if a language is sparse and NP-complete, then P = NP. Therefore P = NP
and consequently P N L € P for all NP-complete languages L. a

Definition 3.2 A cycle in a DFA A is a directed cycle in the state graph
of A.

Definition 3.3 Let C; and Cs be two cycles in a DFA such that neither is a
subgraph of the other. We say that C'y and Cs interlace if there is an accepting
computation path in the DFA containing the sequence Cy---Cy---Cy or the
sequence Cy---Cy---Cy. See Fig. 1.

—=(O—=0—=0O—=0—=0
(c)

Fig. 1. Examples of DFAs with length-4 cycles C; and Cy that (a—b) interlace and
(c) do not interlace. The accepting state is denoted by a double circle.

The following theorem was proved by Flajolet [4]. Our proof uses a construc-
tive argument needed for Theorem 3.3.

Theorem 3.2 Fvery reqular language s either sparse or exponentially dense.

Proof: Consider L C ¥* recognized by a DFA A. If L is finite, then it is
trivially sparse; otherwise, L is infinite and contains strings of arbitrary length.
The pumping lemma states that any DFA accepting a sufficiently long string
has at least one cycle in its state graph, which can be traversed (pumped) zero
or more times.

If A has no interlacing cycles, then each accepting computation T} can be
written as

Tk - (817t17827t27‘"7Cf78i7ti7"'70;7"‘7qf)7

where the s;’s are states, t;’s are input symbols causing transitions, C;’s are
disjoint cycles, ¢y is a final state of A, and s; # s; for all i # j. Here s;,¢;, s;11
denotes the transition from state s; to s;;1 upon reading symbol ¢;. Notice
that, apart from the actual value represented by the Kleene star, there are
only finitely many such orderings of states and cycles, and thus the language
L can be written as the finite union of 7T},’s. Let j, denote the number of cycles
and 7, the number of states in T}. Then the total number of strings of length
n generated by T} is at most (";”) = O(n’*). A union of finitely many such
sets, each with a polynomially bounded number of strings of length n, is itself
polynomially bounded and therefore sparse.

We now proceed to show that a DFA A with interlacing cycles accepts an
exponentially dense language. Consider an accepting computation path T}
of A with interlacing cycles, that is,

Tkz(Shtl,...,017...,CQ,...,Ol,...7q]c).

Now we pump subsequences (C1,...,Cs,...), (C1), and (Cy), and remove the
second occurrence of (', obtaining

T’;:(Sl,tl,...,[T,..., ;,]*,,qu)

We also remove any other cycles occurring in 7}, before or after the square
brackets, so that no states are repeated on each side of the square brackets.
We introduce the special character w; to denote the transitions in C; followed
by any number of transitions (possibly zero) encompassed by the various “...”
in 7}, above (but no C5). Similarly we define ws in terms of Cy. Then T}, can be
rewritten as the regular expression ¢y - - - {wy, wa}* - - - t5. It follows that there
are at least 2"~ 2"+ strings T}, of length n in (XU {wy, ws})*. We are guaranteed
that each w; expands to a string distinct from each w,. Also, the lengths of
w; and ws are both bounded above by the length of the original T}. Thus
v (n) > 200=2m)/1Tkl wwhich implies 7 (n) = 2% as required. O

Theorem 3.3 No exponentially dense reqular language is universally simpli-
fying.

Proof: Let L be an exponentially dense regular language. From the proof of
Theorem 3.2, we know that a DFA accepting L necessarily contains interlacing
cycles. Furthermore, there is a computation path T} with interlacing cycles of
the form T}, = (¢1---t;{wy,w2}*t;---t;) where wy and w, are distinct. We
define an injective polynomial-time transformation F' : ¥* — L as follows.
Now we map 0 to w;, and 1 to wy. So a string x;29---x; € X* is mapped

to 11+ LiWay 41 Wy i1+ W1ty -+ -y, This transformation £ and its inverse
can be computed in polynomial time. (To compute the inverse of F, drop
the leading ¢ characters and the trailing f — 7 + 1 characters, and repeatedly
extract a leading wy and wo, preferring longer matches over shorter ones, and
output the corresponding 0 or 1.)

Given any NP-complete language P, we define
P={zxeL:x=F(y) for some y € P}.

It follows that P is NP-complete, because the y’s together with polynomial-
length certificates from P serve as certificates for P, and F is a reduction from

P to P. Because P C L, we have PN L = P, which is NP- complete. Thus L
is not universally simplifying. O

Corollary 3.1 If an exponentially dense reqular language is universally poly-
nomial, then P = NP.

Note that the property of interlacing cycles for regular languages, and hence
“easiness”, can be tested in polynomial time.

4 Extensions

Recently, the sparse/exponential-density property in Theorem 3.2 has been
generalized to context-free languages [5,6]. In the original version of this pa-
per [3], we conjectured that our results also generalize to context-free lan-
guages, the main obstruction being to find a polynomially constructive proof.
Recently, Tran [10] extended our work to prove this conjecture, i.e., every uni-
versally simplifying context-free language is sparse. In addition, he establishes
that, if DEXT = NEXT,! all sparse context-free (or regular) languages
are universally polynomial; and if DEXT # NEXT, only finite languages
are universally polynomial. In the latter case of DEXT # NEXT, we also
have P # NP [11, Cor. 24.3, p. 425], so every sparse language is universally
simplifying.

Acknowledgments

We thank the anonymous referees for their helpful comments.

1 DEXT is the class problems solvable in 2°(™ deterministic time, and NEXT is
the analogous class for nondeterministic time.

References

[1] Esther M. Arkin and Ellen B. Silverberg. Scheduling jobs with fixed start and
end times. Discrete Appl. Math, 18(1):1-8, 1987.

[2] Andreas Brandstadt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A
Survey. STAM Monographs on Discrete Mathematics and Applications, 1999.

[3] Erik D. Demaine, Alejandro Lépez-Ortiz, and J. Ian Munro. On universally
easy classes for NP-complete problems. Proc. 12th Annual ACM-SIAM Sympos.
Discrete Algorithms, Washington, DC, January 2001, pp. 910-911.

[4] Philippe Flajolet. Analytic models and ambiguity of context-free languages.
Theoret. Comput. Sci., 49:283-309, 1987.

[5] Lucian Ilie, Grzegorz Rozenberg, and Arto Salomaa. A characterization of poly-
slender context-free languages. Theoret. Informatics Appl., 34(1):77-86, 2000.

[6] Roberto Incitti. The growth function of context-free languages. Theoretic.
Comput. Sci., 255:601-605, 2000.

[7] Stephen R. Mahaney. Sparse complete sets for NP: Solution of a conjecture of
Berman and Hartmanis. J. Comput. System Sci., 25(2):130-143, 1982.

[8] S. Natarajan and A. P. Sprague. Disjoint Paths in Circular Arc Graphs. Nordic
J. Comput., 3(3):256-270, Fall 1996.

[9] Christos H. Papadimitrou. Computational Complezity. Addison-Wesley, 1994.

[10] Nicholas Tran. On universally polynomial context-free languages. Proc. 7th
Annual Internat. Computing and Combinatorics Conf., vol. 2108 of Lecture
Notes in Computer Science, Guilin, China, August 2001, pp. 21-27.

[11] K. Wagner and G. Wechsung. Computational Complezity. D. Reidel and
Kluwer, 1986.

