
On Universally Easy Classes

for NP-complete Problems ?

Erik D. Demaine a, Alejandro López-Ortiz b, J. Ian Munro b

aMIT Laboratory for Computer Science, 200 Technology Square,

Cambridge, MA 02139, USA

bDepartment of Computer Science, University of Waterloo,

Waterloo, Ontario N2L 3G1, Canada

Abstract

We explore the natural question of whether all NP-complete problems have a com-
mon restriction under which they are polynomially solvable. More precisely, we
study what languages are universally easy in that their intersection with any NP-
complete problem is in P (universally polynomial) or at least no longer NP-complete
(universally simplifying). In particular, we give a polynomial-time algorithm to
determine whether a regular language is universally easy. While our approach is
language-theoretic, the results bear directly on finding polynomial-time solutions to
very broad and useful classes of problems.

Key words: Complexity theory, polynomial time, NP-completeness, classes of
instances, universally polynomial, universally simplifying, regular languages

1 Introduction and Overview

It is well-known that many NP-complete problems, when restricted to par-
ticular classes of instances, yield to polynomial-time algorithms. For example,
colouring, clique and independent set are classic NP-complete prob-
lems that have polynomial-time solutions when restricted to interval graphs [9].
But this property of interval graphs is not universal: graph list coloring and
determining the existence of k vertex-disjoint paths (where k is part of the
input) remain NP-complete for interval graphs [1,8].

? A preliminary version of this paper appeared at SODA 2001 [3].
Email addresses: edemaine@mit.edu (Erik D. Demaine), alopez-o@uwaterloo.

ca (Alejandro López-Ortiz), imunro@uwaterloo.ca (J. Ian Munro).

Preprint submitted to Elsevier Science 5 October 2002

To better understand this behavior, we introduce the notion of universally

easy classes of instances for NP-complete problems. It turns out that such
languages exist, and it seems difficult to give a complete characterization.
Thus we focus on two natural classes of languages: regular languages and
context-free languages. In particular, we characterize precisely which regular
languages are universally easy in the sense defined in Section 2.

Many classes of restrictions have been studied before; see for example Brand-
stadt, Le, and Spinrad [2] for a detailed survey of graph classes.

2 Definitions

For simplicity of exposition, assume that the alphabet Σ = {0, 1}. We use
interchangably the notions of a language, a decision problem, and a class of
instances.

Definition 2.1 The restriction of a problem P to a class of instances C is

the intersection P ∩ C.

Definition 2.2 Given an NP-complete problem P , a language C ∈ NP is a

simplifying restriction if the restriction of P to C is not NP-complete; and

a language C ∈ P is a polynomial restriction if the restriction of P to C is

in P.

Of course, this definition is trivial if P = NP.

Definition 2.3 A language C ∈ NP is universally simplifying if it is a sim-

plifying restriction of all NP-complete problems.

Definition 2.4 A language C ∈ P is universally polynomial if it is a poly-

nomial restriction of all NP-complete problems.

Informally, we use the term universally easy to refer to either notion, univer-
sally simplifying or universally polynomial.

3 Easy Languages

A natural question is whether there exist universally simplifying languages if
P 6= NP. This can be readily answered in the affirmative by noticing that all
finite languages are universally polynomial, which is not very enlightening. A
more general class to consider is regular languages, which can be characterized
according to their density.

2

Definition 3.1 The growth function of a language L is the function γL(n) =
|{x ∈ L : |x| ≤ n}|. A language is sparse if its growth function is bounded

from above by a polynomial, and is exponentially dense if the growth function

is bounded from below by 2Ω(n).

Theorem 3.1 Any sparse language is either universally simplifying or uni-

versally polynomial. If P 6= NP, it must be universally simplifying.

Proof: Consider a sparse language L. If it is universally simplifying, there is
nothing to show. If it is not universally simplifying, there is a problem P ⊆ Σ∗

such that the restriction P ∩ L is NP-complete. Because P ∩ L ⊆ L, this
restriction is also a sparse set, and it isNP-complete. Mahaney [7] proved that
if a language is sparse and NP-complete, then P = NP. Therefore P = NP

and consequently P ∩ L ∈ P for all NP-complete languages L. 2

Definition 3.2 A cycle in a DFA A is a directed cycle in the state graph

of A.

Definition 3.3 Let C1 and C2 be two cycles in a DFA such that neither is a

subgraph of the other. We say that C1 and C2 interlace if there is an accepting

computation path in the DFA containing the sequence C1 · · ·C2 · · ·C1 or the

sequence C2 · · ·C1 · · ·C2. See Fig. 1.

C2

C1 C1 C2C1

(a) (b) (c)

C2

Fig. 1. Examples of DFAs with length-4 cycles C1 and C2 that (a–b) interlace and
(c) do not interlace. The accepting state is denoted by a double circle.

The following theorem was proved by Flajolet [4]. Our proof uses a construc-
tive argument needed for Theorem 3.3.

Theorem 3.2 Every regular language is either sparse or exponentially dense.

Proof: Consider L ⊆ Σ∗ recognized by a DFA A. If L is finite, then it is
trivially sparse; otherwise, L is infinite and contains strings of arbitrary length.
The pumping lemma states that any DFA accepting a sufficiently long string
has at least one cycle in its state graph, which can be traversed (pumped) zero
or more times.

3

If A has no interlacing cycles, then each accepting computation Tk can be
written as

Tk = (s1, t1, s2, t2, . . . , C
∗
1 , si, ti, . . . , C

∗
j , . . . , qf),

where the si’s are states, ti’s are input symbols causing transitions, Ci’s are
disjoint cycles, qf is a final state of A, and si 6= sj for all i 6= j. Here si, ti, si+1

denotes the transition from state si to si+1 upon reading symbol ti. Notice
that, apart from the actual value represented by the Kleene star, there are
only finitely many such orderings of states and cycles, and thus the language
L can be written as the finite union of Tk’s. Let jk denote the number of cycles
and rk the number of states in Tk. Then the total number of strings of length
n generated by Tk is at most

(

n−rk

jk

)

= O(njk). A union of finitely many such
sets, each with a polynomially bounded number of strings of length n, is itself
polynomially bounded and therefore sparse.

We now proceed to show that a DFA A with interlacing cycles accepts an
exponentially dense language. Consider an accepting computation path Tk

of A with interlacing cycles, that is,

Tk = (s1, t1, . . . , C1, . . . , C2, . . . , C1, . . . , qf).

Now we pump subsequences (C1, . . . , C2, . . .), (C1), and (C2), and remove the
second occurrence of C1, obtaining

T ′
k = (s1, t1, . . . , [C

∗
1 , . . . , C

∗
2 , . . .]

∗, . . . , qf).

We also remove any other cycles occurring in T ′
k before or after the square

brackets, so that no states are repeated on each side of the square brackets.
We introduce the special character w1 to denote the transitions in C1 followed
by any number of transitions (possibly zero) encompassed by the various “. . .”
in T ′

k above (but no C2). Similarly we define w2 in terms of C2. Then T
′
k can be

rewritten as the regular expression t1 · · · {w1, w2}
∗ · · · tf . It follows that there

are at least 2n−2rk strings T ′
k of length n in (Σ∪{w1, w2})

∗. We are guaranteed
that each w1 expands to a string distinct from each w2. Also, the lengths of
w1 and w2 are both bounded above by the length of the original Tk. Thus
γL(n) ≥ 2

(n−2rk)/|Tk|, which implies γL(n) = 2
Ω(n) as required. 2

Theorem 3.3 No exponentially dense regular language is universally simpli-

fying.

Proof: Let L be an exponentially dense regular language. From the proof of
Theorem 3.2, we know that a DFA accepting L necessarily contains interlacing
cycles. Furthermore, there is a computation path Tk with interlacing cycles of
the form Tk = (t1 · · · ti{w1, w2}

∗tj · · · tf) where w1 and w2 are distinct. We
define an injective polynomial-time transformation F : Σ∗ → L as follows.
Now we map 0 to w1, and 1 to w2. So a string x1x2 · · · xj ∈ Σ

∗ is mapped

4

to t1 · · · tiwx1+1wx2+1 · · ·wxj+1tj · · · tf . This transformation F and its inverse
can be computed in polynomial time. (To compute the inverse of F , drop
the leading i characters and the trailing f − j + 1 characters, and repeatedly
extract a leading w1 and w2, preferring longer matches over shorter ones, and
output the corresponding 0 or 1.)

Given any NP-complete language P , we define

P̂ = {x ∈ L : x = F (y) for some y ∈ P}.

It follows that P̂ is NP-complete, because the y’s together with polynomial-
length certificates from P serve as certificates for P̂ , and F is a reduction from
P to P̂ . Because P̂ ⊆ L, we have P̂ ∩ L = P̂ , which is NP-complete. Thus L
is not universally simplifying. 2

Corollary 3.1 If an exponentially dense regular language is universally poly-

nomial, then P = NP.

Note that the property of interlacing cycles for regular languages, and hence
“easiness”, can be tested in polynomial time.

4 Extensions

Recently, the sparse/exponential-density property in Theorem 3.2 has been
generalized to context-free languages [5,6]. In the original version of this pa-
per [3], we conjectured that our results also generalize to context-free lan-
guages, the main obstruction being to find a polynomially constructive proof.
Recently, Tran [10] extended our work to prove this conjecture, i.e., every uni-
versally simplifying context-free language is sparse. In addition, he establishes
that, if DEXT = NEXT, 1 all sparse context-free (or regular) languages
are universally polynomial; and if DEXT 6= NEXT, only finite languages
are universally polynomial. In the latter case of DEXT 6= NEXT, we also
have P 6= NP [11, Cor. 24.3, p. 425], so every sparse language is universally
simplifying.

Acknowledgments

We thank the anonymous referees for their helpful comments.

1
DEXT is the class problems solvable in 2O(n) deterministic time, and NEXT is

the analogous class for nondeterministic time.

5

References

[1] Esther M. Arkin and Ellen B. Silverberg. Scheduling jobs with fixed start and
end times. Discrete Appl. Math, 18(1):1–8, 1987.

[2] Andreas Brandstadt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A

Survey. SIAM Monographs on Discrete Mathematics and Applications, 1999.

[3] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. On universally
easy classes for NP-complete problems. Proc. 12th Annual ACM-SIAM Sympos.

Discrete Algorithms, Washington, DC, January 2001, pp. 910-911.

[4] Philippe Flajolet. Analytic models and ambiguity of context-free languages.
Theoret. Comput. Sci., 49:283–309, 1987.

[5] Lucian Ilie, Grzegorz Rozenberg, and Arto Salomaa. A characterization of poly-
slender context-free languages. Theoret. Informatics Appl., 34(1):77–86, 2000.

[6] Roberto Incitti. The growth function of context-free languages. Theoretic.

Comput. Sci., 255:601–605, 2000.

[7] Stephen R. Mahaney. Sparse complete sets for NP: Solution of a conjecture of
Berman and Hartmanis. J. Comput. System Sci., 25(2):130–143, 1982.

[8] S. Natarajan and A. P. Sprague. Disjoint Paths in Circular Arc Graphs. Nordic

J. Comput., 3(3):256–270, Fall 1996.

[9] Christos H. Papadimitrou. Computational Complexity. Addison-Wesley, 1994.

[10] Nicholas Tran. On universally polynomial context-free languages. Proc. 7th

Annual Internat. Computing and Combinatorics Conf., vol. 2108 of Lecture
Notes in Computer Science, Guilin, China, August 2001, pp. 21–27.

[11] K. Wagner and G. Wechsung. Computational Complexity. D. Reidel and
Kluwer, 1986.

6

