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Unfolding Polyhedra—Durer 1400’s

Durer, 1498
snub cube
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Unfolding Polyhedra—Octahedron
all unfoldings
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Zipper Unfoldings of Polyhedra—Octahedron
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Zippers

separating zipper

multiple toggles
(cosmetic)
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Zippers

• 1891 patent by Whitcomb Judson

• novel, but not practical (“If skirt is to be washed, remove fastener.”)

• named “zipper” by B.F. Goodrich company in 1920’s

• ubiquitous but super!uous
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Edge Cuts versus Face Cuts

edge cuts face cuts

Zipper edge cuts  =  Hamiltonian unfolding [Shepherd ’75]
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Zipper Edge Cuts (Hamiltonian Unfolding)

Nick Chase

What is a zipper unfolding of a polyhedron?

on the polyhedron
the cut is a simple path on the polygon

this is forbidden
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Outline of Talk

Convex Polyhedra

      Platonic Solids
      Archimedean Solids

Polyhedral Manifolds

Polyhedral Complexes
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Platonic Solids
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Platonic Solids

"ese are doubly Hamiltonian—the cut is a path and faces are joined in a path.
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Archimedean Solids
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Archimedean Solids
great

rhombicosi-
dodecahedron
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What next? 

these have 
zipper unfoldings

Peda Software Polyhedron Poster

??
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Not all convex polyhedra have Hamiltonian unfoldings

rhombic dodecahedron net

its graph has no 
Hamiltonian path

OPEN: #nd a convex polyhedron with no Hamiltonian unfolding but whose 
graph has a Hamiltonian path.  
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Unfolding Convex Polyhedra

unfolding zipper unfolding

edge
cuts

OPEN
Does every convex polyhedron

have an edge unfolding?
Not every convex polyhedron
has a Hamiltonian unfolding.

NO

face
cuts

OPEN
Every convex polyhedron

has an unfolding—
star, source unfolding.

YES
Does every convex polyhedron

have a zipper unfolding?
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Polyhedral Manifolds

polyhedral manifold—a #nite union of planar polygons in 3D s.t. every point 
has a neighbourhood homeomorphic to a disk 

may be non-convex

may have genus ≠ 0

Figure 2: An nonorthogonal polyhedron composed of rectangular faces.

(and symmetry) of a regular octahedron, with each octahedron vertex replaced
by a cluster of five vertices, and each octahedron edge replaced by a triangular
prism. Let us fix the squares at each octahedron vertex to be unit squares. The
length L of the prisms is not significant; in the figure, L = 3, and any length
large enough to keep the interior open would suffice as well. The other side
lengths of the prism are, however, crucially important. The open triangle hole
at the end of each prism has side lengths 1 (to mesh with the unit square),

√
3/2

and
√

3/2; see Fig. 3.
This places the fifth vertex in the cluster displaced by 1/2 perpendicularly

from the center of each square, forming a pyramid, as shown in Fig. 4.

 3/2

1

L

Figure 3: Right triangular prism,
used twelve times in Fig. 2.

 3/2

1

1/21

1/2

 2/2

Figure 4: The cluster of five vertices re-
placing each octahedron vertex form a
pyramid.

The central isosceles right triangle (shaded in Fig. 4) guarantees that two
oppositely oriented incident triangular prisms meet at right angles, just as do
the corresponding edges of an octahedron. The result is a closed polyhedron
of V = 6 · 5 = 30 vertices, E = 84 edges, and F = 42 faces. The 42 faces
include 6 unit squares, 12 L× 1 rectangles, and 24 rectangles of size L×

√
3/2.

3

Magnus Wenninger
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Polyhedral Manifolds—Unfolding

a “nice” non-convex 
polyhedron with no edge 

unfolding

version (643K)

Unfoldings exist for many more polyhedral surfaces. For example, the torus shown below has a planar

unfolding to a single component such that no two faces overlap. (For experts, this polyhedral torus is the

Clifford torus obtained from a non!standard parameterization using Hopf fibers in the 3!sphere.)

The Clifford torus is generated by a family of circles. The torus unfolds nicely

despite the negative curvature of the inner region ! view the animated version

(805K)

It is a challenging task in combinatorial geometry to find polyhedral models of a given topological shape

which use the minimal number of faces or vertices. The Clifford torus shown above uses about 200 vertices,

which is surely more than necessary. A torus with the least number of vertices, 7, was found by Császár [6].

F.H. Lutz [7] produced the model of the unfolding below.

The Császár torus is an embedded polyhedral torus (i.e. one

without self!intersection) with the least number of vertices ! view

the animated version (364K)

Now we are ready to understand an even more complicated unfolding. The Boy surface mentioned in the

introduction is a model of the projective plane. One model of the projective plane can be obtained by taking

the upper hemisphere of a ball and identifying opposite points of the equator. Alternatively, you can take a

planar disk and pairwise identify opposite points on the boundary circle. Since these are topological

constructions you can take any piece of the plane which is bounded by a single closed curve ! such as the

unfolding of the Boy surface.

The discrete Boy surface unfolds to a simply connected disk. Opposite vertices of

the boundary are identified during refolding ! see the animated version (565K)

Imaging maths ! Unfolding polyhedra

Geometric Origami 4

Császár torus (net by Lutz, picture by Polthier)

Figure 6: Adding cubes to Fig. 2.

Figure 7: An orthogonal polygon that folds to the nonorthogonal polyhedron in
Fig. 6.

6

Figure6:AddingcubestoFig.2.

Figure7:Anorthogonalpolygonthatfoldstothenonorthogonalpolyhedronin
Fig.6.

6

Donoso & O’Rourke

some higher genus polyhedral 
manifolds with edge unfoldings

OPEN: Does every polyhedral manifold have a [general] unfolding? 

22.4. Unfoldable Polyhedra 317

using the labeling shown in Figure 22.18, to reach the conclusion that there is a path of T

in the hat connecting two hat corners {A, B, C}.
The hat peak x must connect via T to outside the hat, and so there must be a path

from x through a hat corner, say B. If this path passes through all three spike base vertices

{a, b, c}, then any additional edge of T (and there must be at least one to avoid Figure 22.16)
will connect two corners. So suppose that the path from x to B passes through just one (b:

Figure 22.18(a)) or two (a and b: Figure 22.18(b)) base vertices. In the former case, a and c
need to be spanned by T , but neither can be a leaf (because both have negative curvature).

So there must be a path from A to C as shown. In the latter case, c needs to be spanned

by T , but again it cannot be a leaf. The path through c could go either to C or to A (or to
both), and in either case, we have a path between two corners.

Now the hat corners are the four corners of the tetrahedron. So we have these four corners

connected by four corner-to-corner paths inside the hats. Viewing each of these four paths
as an arc connecting four corner nodes, we can see that it is impossible to avoid a cycle,

for a tree on n nodes can have only n − 1 arcs. This violates Lemma 22.1.2, and establishes
that the spiked tetrahedron has no edge unfolding to a net.

One might wonder if the spiked tetrahedron can be unfolded without restricting the cuts

to edges. Figure 22.19 illustrates a strategy (for a differently parametrized version of the
polyhedron) which throws the four spikes safely out to the boundary of the tetrahedron

unfolding.

In fact, no example is known that cannot be unfolded without overlap:

Figure 22.17. Two views of an ununfoldable triangulated polyhedron.

A

B

C

a

bc

x

A

B

C

a

bc

x

(a) (b)

Figure 22.18. Possible restrictions of a cut tree to one hat.

Bern, Demaine, Eppstein, 
Kuo, Mantler, Snoeyink, 2003.
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Polyhedral Manifolds—Zipper Unfoldings

use separating zipper
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Polyhedral Manifolds—Zipper Unfoldings

"eorem.  If P is a polyhedral manifold that has a zipper unfolding to a 
planar polygonal region F, then either P is a polyhedron and F is a polygon, or
—in the case of a separating zipper—P is a torus polyhedron and F is an 
annulus (with outer perimeter = inner perimeter). 

Nick Chase

not possible
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Polyhedral Manifolds—Zipper Unfoldings

"ese have no zipper edge unfoldings.

Lemma.  A zipper edge unfolding of a torus polyhedron is an annulus with 
faces forming a cycle with trees attached.
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Polyhedral Complexes

Weaire–Phelan structure

polyhedral complex—a #nite union of planar polygons in 3D s.t. intersections 
are edge-to-edge joins

3 faces meeting
at an edge

only one face
at an edge
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Polyhedral Complexes—Unfolding

Liu & Tai,  in Computer-Aided Design, 2007

906 W. Liu, K. Tai / Computer-Aided Design 39 (2007) 898–913

(a) Hyper-common edge set with FAG. (b) Invalid spanning tree.

(c) Valid spanning tree. (d) Detecting
topological validity.

Fig. 12. Topological validity of spanning tree.

Fig. 13. Merging of some pairs of coplanar adjacent faces.

than one hyper-common edge, then both conditions must be
satisfied for each and every such edge before a spanning tree
is certified as valid.

4.4. Merging of coplanar adjacent faces

Fig. 13(a) shows a 3D folded structure and Fig. 13(b)
shows one possible way of unfolding it to form its flat pattern.
This example illustrates an instance where a pair of coplanar
adjacent faces within the 3D folded structure can alternatively

be made up of one single face. There are in fact three such
pairs in this example (faces 1 and 2, faces 3 and 4, and faces
5 and 6). For reasons of structural strength/integrity or ease
of folding, it may sometimes be desirable to have any such
pair of faces formed by one single face instead (as indicated
in Fig. 13(b) for face pair 3 and 4, and face pair 5 and 6).
However, it is not always desirable to have any such pairs
of faces defined as a single face before applying the basic
unfolding procedure because this may reduce the number of
results generated, thereby missing out on some potential flat
pattern designs where the two faces are not situated adjacent to
each other but are in fact separated (as in Fig. 13(c) where face
pair 3 and 4 and face pair 5 and 6 are separated).

Therefore, the strategy adopted in this work is to always
define each and every pair of such faces as two individual
faces in the 3D structure, but with an optional switch for the
designer to choose whether to merge any such pairs of faces
in the results. If the choice is to merge, then for every pair of
such faces that happen to be adjacent within the flat pattern, the
two faces will automatically be merged as one face. For any
pair of such faces which are not adjacent within the flat pattern,
they will of course have to be kept as separate. In this way, no
potential flat pattern results will be left out.

5. Optimality criteria for flat patterns

Depending on the number of faces as well as the connectivity
among them, a 3D folded structure can have thousands or
millions of valid non-overlapping flat patterns. However, the
designer would usually be trying to select just one that is
optimal according to some criteria. Very often, as the flat pattern
is a single-piece layout, there is a desire for it to be as compact
as possible because compactness makes for easier handling
and folding and also has advantages in terms of storage and
transportation. However, there is no single universal measure
of compactness, so three different measures of compactness are
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cannot be 
unfolded

318 Chapter 22. Edge Unfolding of Polyhedra

Figure 22.19. A general unfolding of a spiked tetrahedron.

v

Figure 22.20. An open surface that has no general unfolding to a net.

Open Problem 22.14: General Nonoverlapping Unfolding of Polyhedra. a Does every
closed polyhedron have a general unfolding to a nonoverlapping polygon?

a Bern et al. (2003).

However, it is easy to construct open polyhedral surfaces that have no net. Figure 22.20

is a simple example. Its one interior vertex v has negative curvature and so cannot be a leaf
of a cut tree. So the leaves of the cut tree must lie on the boundary. Because a tree has at

least two leaves, the surface must be disconnected by the cuts.

22.5 Special Classes of Edge-Unfoldable Polyhedra

One might think that, although no one has been able to prove that every convex polyhe-

dron is edge-unfoldable to a net, surely many special infinite classes of polyhedra have been

established as edge-unfoldable. Such is not the case. Results here are sparse. An under-
graduate thesis (DiBiase 1990) established that all polyhedra of 4, 5, or 6 vertices may be

edge-unfolded to a net, but, as mentioned earlier, the proof does not seem to give insight for
larger n. For some classes of polyhedra, a nonoverlapping unfolding is obvious and therefore

uninteresting. For example, all prisms—formed by two con- gruent, parallel convex poly-

gons (the base and top) and rectangle side faces (see Figure 22.21)—can be unfolded by

Bern, Demaine, Eppstein, 
Kuo, Mantler, Snoeyink, 2003.
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Polyhedral Complexes—Unfolding
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Fig. 13(a) shows a 3D folded structure and Fig. 13(b)
shows one possible way of unfolding it to form its flat pattern.
This example illustrates an instance where a pair of coplanar
adjacent faces within the 3D folded structure can alternatively

be made up of one single face. There are in fact three such
pairs in this example (faces 1 and 2, faces 3 and 4, and faces
5 and 6). For reasons of structural strength/integrity or ease
of folding, it may sometimes be desirable to have any such
pair of faces formed by one single face instead (as indicated
in Fig. 13(b) for face pair 3 and 4, and face pair 5 and 6).
However, it is not always desirable to have any such pairs
of faces defined as a single face before applying the basic
unfolding procedure because this may reduce the number of
results generated, thereby missing out on some potential flat
pattern designs where the two faces are not situated adjacent to
each other but are in fact separated (as in Fig. 13(c) where face
pair 3 and 4 and face pair 5 and 6 are separated).

Therefore, the strategy adopted in this work is to always
define each and every pair of such faces as two individual
faces in the 3D structure, but with an optional switch for the
designer to choose whether to merge any such pairs of faces
in the results. If the choice is to merge, then for every pair of
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two faces will automatically be merged as one face. For any
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they will of course have to be kept as separate. In this way, no
potential flat pattern results will be left out.

5. Optimality criteria for flat patterns
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among them, a 3D folded structure can have thousands or
millions of valid non-overlapping flat patterns. However, the
designer would usually be trying to select just one that is
optimal according to some criteria. Very often, as the flat pattern
is a single-piece layout, there is a desire for it to be as compact
as possible because compactness makes for easier handling
and folding and also has advantages in terms of storage and
transportation. However, there is no single universal measure
of compactness, so three different measures of compactness are
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results generated, thereby missing out on some potential flat
pattern designs where the two faces are not situated adjacent to
each other but are in fact separated (as in Fig. 13(c) where face
pair 3 and 4 and face pair 5 and 6 are separated).

Therefore, the strategy adopted in this work is to always
define each and every pair of such faces as two individual
faces in the 3D structure, but with an optional switch for the
designer to choose whether to merge any such pairs of faces
in the results. If the choice is to merge, then for every pair of
such faces that happen to be adjacent within the flat pattern, the
two faces will automatically be merged as one face. For any
pair of such faces which are not adjacent within the flat pattern,
they will of course have to be kept as separate. In this way, no
potential flat pattern results will be left out.

5. Optimality criteria for flat patterns

Depending on the number of faces as well as the connectivity
among them, a 3D folded structure can have thousands or
millions of valid non-overlapping flat patterns. However, the
designer would usually be trying to select just one that is
optimal according to some criteria. Very often, as the flat pattern
is a single-piece layout, there is a desire for it to be as compact
as possible because compactness makes for easier handling
and folding and also has advantages in terms of storage and
transportation. However, there is no single universal measure
of compactness, so three different measures of compactness are
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Polyhedral Complexes—Zipper Unfolding

chain of tetrahedra sharing adjacent edges

Polyhedra Sharing Edges

can extend to n tetrahedra
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Polyhedral Complexes—Zipper Unfolding

35Thursday, August 12, 2010



Open Problems

• Does every convex polyhedron have an edge unfolding? 

• Does every polyhedron have a [general] unfolding?  Every 
polyhedral manifold? 

New:

• Does every convex polyhedron have a zipper unfolding?

• Show it’s NP-hard to recognize torus polyhedra with zipper 
edge unfoldings.

• Which polyhedral complexes have [zipper/edge] unfoldings?
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