Zipper Unfoldings of Polyhedral Complexes

Erik Demaine Martin Demaine Anna Lubiw Arlo Shallit Jonah Shallit

Unfolding Polyhedra—Durer 1400's

Durer, 1498

Unfolding Polyhedra—Octahedron

all unfoldings

Zipper Unfoldings of Polyhedra—Octahedron

Zippers

Thursday, August 12, 2010

Zippers

- 1891 patent by Whitcomb Judson
- novel, but not practical ("If skirt is to be washed, remove fastener.")
- named "zipper" by B.F. Goodrich company in 1920's
- ubiquitous but superfluous

Edge Cuts versus Face Cuts

Zipper edge cuts = *Hamiltonian unfolding* [Shepherd '75]

Zipper Edge Cuts (Hamiltonian Unfolding)

What is a zipper unfolding of a polyhedron?

on the polyhedron the cut is a simple path

on the polygon

Outline of Talk

Convex Polyhedra

Platonic Solids Archimedean Solids

Polyhedral Manifolds

Polyhedral Complexes

Platonic Solids

Platonic Solids

These are *doubly Hamiltonian*—the cut is a path and faces are joined in a path.

Thursday, August 12, 2010

great rhombicosi- dodecahedron	ean Solids	imede	Arch
truncated dodeca- hedron			truncated tetrahedron
truncated icosa- hedron			truncated cube
great rhombicub- octahedron			truncated octahedron
small rhombicosi- dodecahedron			cubocta- hedron
small rhombicub- octahedron			snub cube
snub dodeca- hedron			icosidodeca- hedron

Thursday, August 12, 2010

Archimedean Solids

great rhombicosidodecahedron

What next?

these have zipper unfoldings

Peda Software Polyhedron Poster

Not all convex polyhedra have Hamiltonian unfoldings

OPEN: find a convex polyhedron with no Hamiltonian unfolding but whose graph has a Hamiltonian path.

Unfolding Convex Polyhedra

	unfolding	zipper unfolding
face cuts	YES Every convex polyhedron has an unfolding— star, source unfolding.	OPEN Does every convex polyhedron have a zipper unfolding?
edge cuts	OPEN Does every convex polyhedron have an edge unfolding?	NO Not every convex polyhedron has a Hamiltonian unfolding.

Polyhedral Manifolds

polyhedral manifold—a finite union of planar polygons in 3D s.t. every point has a neighbourhood homeomorphic to a disk

may be non-convex

may have genus $\neq 0$

Magnus Wenninger

Polyhedral Manifolds—Unfolding

Császár torus (net by Lutz, picture by Polthier)

some higher genus polyhedral

manifolds with edge unfoldings

OPEN: Does every polyhedral manifold have a [general] unfolding?

Thursday, August 12, 2010

Kuo, Mantler, Snoeyink, 2003.

Polyhedral Manifolds—Zipper Unfoldings

Polyhedral Manifolds—Zipper Unfoldings

Theorem. If *P* is a polyhedral manifold that has a zipper unfolding to a planar polygonal region *F*, then either *P* is a polyhedron and *F* is a polygon, or —in the case of a separating zipper—*P* is a torus polyhedron and *F* is an annulus (with outer perimeter = inner perimeter).

Polyhedral Manifolds—Zipper Unfoldings

These have no zipper edge unfoldings.

Lemma. A zipper edge unfolding of a torus polyhedron is an annulus with faces forming a cycle with trees attached.

Polyhedral Complexes

polyhedral complex—a finite union of planar polygons in 3D s.t. intersections are edge-to-edge joins

Liu & Tai, in Computer-Aided Design, 2007

Thursday, August 12, 2010

on the polygon

Polyhedra Sharing Faces

what will this zip into?

2 squashed cubes

Polyhedra Sharing Edges

chain of tetrahedra sharing adjacent edges

Open Problems

- Does every convex polyhedron have an edge unfolding?
- Does every polyhedron have a [general] unfolding? Every polyhedral manifold?

New:

- Does every convex polyhedron have a zipper unfolding?
- Show it's NP-hard to recognize torus polyhedra with zipper edge unfoldings.
- Which polyhedral complexes have [zipper/edge] unfoldings?

Zipper Unfoldings of Polyhedral Complexes

Erik Demaine Martin Demaine Anna Lubiw Arlo Shallit Jonah Shallit